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Abstract

We describe how short waves solutions to the Schrodinger equation propagate, in
terms of their semiclassical measures, through a thin interface between two inhomoge-
neous media. We get matching conditions for the traces of the semiclassical measures
from each side of the interface. When the thickness of the interface is smaller than
the wavelength these conditions yield a microlocal Snell-Descartes law of refraction.
When it is greater, they yield a classical scattering law. The methods also apply to
the scalar wave equation.

Introduction

0.1 The problem

We consider the Cauchy problem for the semiclassical Schrodinger equation :

{ ^hf),Qih,£ _ ^2 A^^-1-l//^ rr\nh,e ,yi TR> v TH^/i \ LiiUtUi — —-rt-z-iLt -r v \~~^X)U in IK^ x M .̂
v / qih^e (4. _ n\ _ »{.h • Trod _ IR>^~1 v TI?u ' yL — \J ) — ip in IK^ — i r \ i x ir^pd ,

where the potential corresponds to a flat interface of codimension one and thickness e > 0 :
V € (^(R^1) is real and there exists V± G (^(E^) such that lim^±oo V(z,x) = V^(x)
for the C^-convergence on compact sets. In particular, the potential converges pointwise
when e —> 0 to : V^{x) == V_{x) If^d^o) + V+{x) l{a;d>o}, which corresponds to a sharp
interface along {xd =0}. To ensure that it defines a continuous unitary dynamic on the
" energy " space L^R^) for fixed ^ we make the additional assumption : there exists
a, (3 > 0 such that V{z,x) > -a\x\2 - (3 for all z. We shall refer, to the probability of
presence [^^(t,^)]2 dx of the waves at time t as their density. The dynamic conserves
its total mass.
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Given two sequences of positive real numbers h = (/^neN and e = (^n)neN which
converge to 0, and a bounded sequence of data in L2 which does not dissipate at infinity
or through short oscillations with wavelength smaller than h (they would propagate
at infinite speed), we are interested in the asymptotic evolution of this density. For
notational convenience, we shall omit the index n and denote the asymptotic by h —^ 0.
The precise properties we demand of the data are usually called compacity at infinity
and /i-oscillation, and write : limsup f \'^h\2{x)dx and, for any localization function

^ \x\>R

(p € ^(R^), limsup / ly^l2^) d^ tend to 0 as R tends to +00. In particular, such
h \h^\>R

data can be approximated in " energy " space by uniformly compactly supported and
strongly /i-oscillating data (i.e. : 3s > 0, || l/iD^^I^ = 0(1)).

0.2 Semiclassical measures
In order to study how the wave density is refracted by the thin interface, we use the notion
of semiclassical (or Wigner) measures (cf. the survey [9]) which allows, in particular, to
establish for high-frequency " energy " density the analogue of the results of microlocal
propagation of singularities (cf. [12] in general, and [22] for a transmission problem). We
recall that a semiclassical measure of the sequence (^/l) bounded in 1/^(1^^) is a positive
Radon measure m on the phase space T*^ = R^ x W1 satisfying :

(2) Va 6 C^( ^), lim(a(:r,/^)^^ = I a{x^}dm.

This limit of observations (in the quantum mechanical sense) of the wave ̂ h by the semi-
classical test operator a(x^hDx) measures its asymptotic microlocal density. Replacing
h by a subsequence if needed, m always exist.

For example, the semiclassical measure of the coherent state l~^ A{'^}e^k'xlh with
amplitude A € L2^) is \A[x^dx®^ -k) if; = 1, and 6(x) ®\A(^k)\2-^ ifl = h.
More generally, the singular components of the measure represent the locus of positions
and wave vectors where the density concentrates at the scale h.

0.3 The results
We investigate how m determines the semiclassical measure p, of {uh1e} in time and space.
The basic result concerns the case when there is no interface, i.e. V is independent of
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z^ and says that ^ is invariant under the Hamiltonian flow like the classical phase-space
distribution function, i.e. p. is the solution of the Vlasov equation (cf. [5] and [13]) :

^ f 9t^ = WOz;).V^-^.V^
u ^^=0) = mgx^T+^+y^))
In our setting, there are three main regimes depending on the limit ratio between the
wavelength h and the thickness e of the interface :

e <$; h Homogenization effects should prevail. The remnant of the interface at the limit
should be some quantum effect. In fact (cf. sect. 0.4), under hypothesis (HI),
it is easy to prove that the solutions can be approximated in the energy space
by the solutions of the semiclassical Schrodinger equation with the discontinuous
potential V^. Through an analysis in terms of semiclassical measures of the second
order boundary value problems studied in [14] (cf. [8] and [2] for the Dirichlet
problem, and [19] for some results on the Helmholtz equation), we have been able
to prove a microlocal version of the Snell-Descartes law of refraction for such a
sharp interface. This result includes the critical incidence and the diffractive grazing
rays. A distinctive phenomenon is the bifurcation of the density when the incoming
normal velocity is not too small compared to the jump of the potential at the
interface. Therefore the evolution ofp, is no longer classical: it is given by a Markov
semigroup which reflects its wave-like probabilistic nature. The main drawback
stems from the loss of coherence information in the semiclassical measures limit :
the outcome of the interference on the interface of two waves coming from each side
is not quantitatively determined by their microlocal density.

e ^> h Since the variation of the medium properties is small compared to the wavelength,
classical mechanics (geometrical optics) should still be valid. Under the slightly
stronger hypothesis (H2) (cf. sect. 0.4), we have proved that the incoming normal
velocity ^d at the point x ' of the interface determines whether the wave density is
transmitted or reflected and the value of the outcomming velocity, according to the
classical scattering properties of the one-dimensional potential y(-,a/,0), when ^d

corresponds to a non-trapping energy. Our method rely on a 2-scales 2-microlocal
refinement of semiclassical measures. Some 2-scales W.K.B. constructions for some
less general potentials highlight another discrepancy with the previous regime : the
wave is trapped inside the interface for a critical incoming normal velocity.

e ~ h The evolution of p. should involve the quantum scattering properties of V{z^ x ' , 0),
for fixed x ' . We refer to the results of Francis Nier for a potential V(x) + U(3-)
where U is short-range. In our setting, one should compare the evolution for the
potential V ( z , x ' , 0 ) with the evolutions for the step potential V_{x',0) l{z<o} 4-
y+(a/,0) l{z^o} instead of the free evolution. We refer to [18] for the asymptotic
completeness of step-like potentials (see also the references in [10]).

The methods we present here yield analogous results for the scalar wave equation :

(4) 9^wh - V^^Va^ =0 in IR< x K^.
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where we the celerity c has the same form and regularity as V, and satisfies addi-
tional assumptions for the dynamic to exist. The energy density of its solutions is :
\9tWh(t,x)\2dx + IcC^V^w^.a;)!2^. We refer to [21], [4], and [7] for the definition of
the corresponding microlocal measures.

0.4 Semiclassical measure traces at the interface

In this talk, we want to draw a parallel between the first (sect. 1) and second (sect. 2)
regimes. The results we mention are proved in [16] in the context of two homogeneous
media. The results of sect. 1 are announced in [15]. The complete proofs in the context
of two inhomogeneous media are to appear.

Let us first introduce the technical hypothesis that our methods require in each of
these regimes :

(HI) e < h3 and f s^Px^K \V{z,x) - V^(x)\ dz < +00 for all compact set K.

(H2) e ^> /i2/3, Umz-^^ooz9zV(z^x) = 0 and limz-^^.ooQ^Ql,V(z^x} = 0 uniformly on
compact sets, for all multi-index a, for all 7 > 1.

In both regimes, it is easy to deduce from these hypothesis that IJL still satisfies Vlasov
equations corresponding to V^ outside the asymptotic interface {xd = 0}. Introducing
new coordinates (^° , . . . , z/^, 77° , . . . , ̂ d) on T*^4'1 and the symbols uj+(y, rf) = —T—^-—
V+ (x) on the half-space V4-= [y = (t,x) ;^ > 0}, ando;_Q/,7/) = -r-^f--V,{x1 .-x^
on the half-space Y~ = {y = (t^x'^—x^ \xd < 0}, these equations write : H ' ^ I J , = 0 in
Y±^ where H± = V^cj±.V^ — Vy/o^.V^ + ^Qyd. Since these Hamiltonian vector fields
(transport operators) are transversal to {yd = 0} when rf' ^ 0 (non-grazing wave vectors),
theorem 4.4.85 in [12], t. I, implies that p, is C°° up to the interface as a function of yd

taking its values in the space of distributions in the other variables. It allows us to define,
in {^d 7^ 0}, its traces from the right and from the left ^0± at xd = 0'^. These distributions
inherit the positivity of IJL and consequently are positive measures satisfying the following
" jump formula " : <9^(!{^>o} ̂ ) = !{^>o} 9^ + ^2/Q ® ̂ 0± in Y-^ H {^ ^ 0}. Since
they also inherit the localization of the measure IJL on the characteristic set, they can be
decomposed as : ^0± == 6{ri+ ̂ 2^(^,0,7?')) ̂ ^in± +6{ri- ̂ ^(y'.O, T/))^01^, where
the positive measures ^m± and ^out± correspond to the " incoming " and " outgoing "
densities at xd = 0"^.

,m+ out+

x^O
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Let mf be the push-forwards of the restrictions of m to V^ by the Hamiltonian flows
of ^r± and ̂  = l\t\<edt ® (m^ + rr^-)(cb, c^) 0 5(r + 1^ + ^(rr)). If the density ^ does
not reach the interface for t € [ —0,6}, then it is determined from the initial condition by
the Vlasov transport equations on each side of the interface : 1|^|<^ = ̂  The problem
of studying how m determines ^ (as long as it does not graze the interface) amounts to
deriving appropriate matching conditions for the traces of p, on the interface. We obtain
matching conditions for these four measures by means of the intermediary consideration
of unknown measures on the interface : measures of the traces of the solution and its
normal derivative on the interface in the " sharp interface " regime, and 2-scales 2-
microlocal surface measures in the " classical interface " regime. In both regimes, we
first get relations between all these measures on the interface thanks to symbolic calculus
commutator expansions, and then we get rid of the unknowns through some positivity
properties linked to Garding's inequality.

1 Sharp interface : e <$; h -€ 1

As explained in the introduction, under the hypothesis (HI), the waves (z^) can be ap-
proximated in Lf^ by the solutions of the Cauchy problem for the semiclassical Schrodinger
equation :

(5)
ihQt^ = -t^^uh + V^x)^ in Rt x ̂

^=0) = ^ inIE^ =Rd71 x

for the same data and a discontinuous potential which corresponds to a transmission prob-
lem across a flat interface of codimension one : V^(x} = V_(x) l{a;d<o} + V+{x) l^xn-

If V^ is to represent a true interface, it is natural to assume (at least locally) that it
satisfies a jump condition :

(HI5) For all x ' ' , V^x',0) - V-^'.O) > 0.

Under this jump condition, the multiplicators Qxd^ and Vc^z^, localized in time
and space, yield that i^ and its semiclassical derivatives /iD^i^ admit bounded traces
r.f ^d _ n± i-n T'2 /TD> r2 /Tn)ri—l\\at x — U in L^[Kt,L^[K^ ) ) .

A large part of the analysis can now be done on each side of the interface separately.
Moreover, the time variable does not play any particular role. Therefore it is convenient
to make this analysis for more general boundary problems using simpler notations.

1.1 Geometry and semiclassical measures for boundary value problems

In this section, we shall analyze in terms of semiclassical measures the class of second
order boundary value problems studied in [14] (cf. [8] and [2] for the Dirichlet problem,
and [19] for some results on the Helmholtz equation) : Y is an open set in R^1 with
C°° boundary QY, Ph =_p{y,hDy) is a second order semiclassical differential operator
with coefficients in C°°{Y), real /i-symbol p, and for which 9Y is not characteristic. They

XII-5



can be reduced locally, in normal geodesic coordinates { y ° , ' ' ' , ^/d), to the following form
(cf. [12], t. Ill, p. 424) : Y - {Q/,^) e E^1^ > 0}, 9Y = {Q/,^) e R^1 ;^ = 0},
and p{y, T]) = (77^2- - u{y, //), where a; 6 C^V x R^).

The cotangent bundle to the boundary T*9Y can be decomposed (intrinsically)
as the disjoint union of the following regions depending on the signs of the functions
0:0 = ^Q/,0,r/) and 0:0 = <9^Q/,0,7/) (cf. [12], t. Ill, pp. 430-432) : £ = {(y',7/) e
T*9y ;a;o(?/W) < 0} (elliptic), H = {uo > 0} (hyperbolic), Qd = {0:0 = 0, ^o(yW) >
0} (diffractive), Qg = {cjo = 0, UQ < 0} (gliding or pseudo-convex), and GQ = {^o = ^o =

0} (gliding of higher order).
Let (l^x)}^) be a bounded family in L^IR0^1), strongly /i-oscillating (cf. sect.0.1),

satisfying the equation P^n^ = 0 on V, with semiclassical measure IJL € M^iT^Y).
From basic properties of semiclassical measures (cf. [9]), IJL must be supported in the
characteristic set T*Y H [p = 0} and satisfy Hpp, = 0 on V, where Hp = ^Qyd — H^
denote the Hamiltonian vector field associated to p. As in sect. 0.4, we introduce the
decomposition of its trace at yd = 0"^ on T-L into its " incoming " and " outgoing " parts :
p,0 = 6{rj + y^o) ® ^in + 6(ri - V^o) ® /^ut.

Let's also introduce the traces vh = u^ d^n and v11 = hDydU^ d^Q and assume they are
bounded in L^IR^/), with diagonal semiclassical measures v et ;>, and joint semiclassical
measure v3 — a complex measure of the asymptotic correlation between the two traces
(cf. [9] for the definition of matrix-valued semiclassical measures associated to vector-
valued functions).

Applying to l{^>o}^ commutators of Ph with semiclassical test operators which are
differential in rf of order 0 or 1, with tangential pseudo-differential coefficients, we get
the following transport equations where the " source " terms come from the boundary
terms in the integrations by parts :

(6) Qy^^^d^-H^^^d^-Q^uj'^^^^ = ^+^)^6(yd)

(7) 9ya I ^(d^) - H^ t /^) = Re ̂  ® 6{yd).

By the " jump formula ", we let the traces of p, appear on the left hand side of these
equations. When restricted to the interface, they yield relations between the traces of fi
and the semiclassical measures of the traces of (z^) in the hyperbolic region :

PROPOSITION 1.1 i) 2uo{^lout + ̂ in} = \v + UJQV and v/?^(^ - ̂ in) = Rez^' on U.
ii^——O^-^^^on^

The second point is crucial in the transmission problem, though it is an easy consequence
of the first. In fact, when ^tn = 0, the point i) yields the equality :

-v + UJQV = \/2c<;o He v3 ^ 2(-^)2(a;o^)2

Zf Zi

where the inequality is the semiclassical measures version of the Cauchy-Schwarz inequal-
ity for (vh) and (^/l). Since the sum of the squares of two terms is lower or equal to the
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double product of these terms if and only if these two terms are equal, the conclusion in
the point ii) holds.

Equation (6), shows that 9yd f {r]^2 ̂ (drj^ does not charge {yd = 0}, which allows us
to write : p. == l{i/d>o}^ + ^Q/^) ® S^) ® p6\ where ^a is a positive measure supported
in Q. From (6) and (7) we also obtain informations on the grazing region :

PROPOSITION 1.2 i) -QydUJ^9 = \v on Q. ii) v(Q \ Qg} = 0 and Re^(£ U (Q \ Gg)) = 0.
Hi) The restriction of IJL to the trajectories stemming from Qd is invariant under F in

a neighbourhood ofQd'

Remarks. — For the Dirichlet boundary conditions ̂  = 0, we have v3 = 0. Proposi-
tion 1.1 i) yields ^out = ̂ in (total reflection) in the hyperbolic region. Proposition 1.2 iii)
yields the propagation of ^ in the diffractive region. The propagation of the support of
IJL in the grazing region with contact of finite order (which includes Qd) is proved in [2].

1.2 Matching of the traces at the interface

The jump condition on the interface (HI5) allows us to prove the estimates on the traces
of the solution u11 of the transmission problem (5) that we need in order to apply the
previous analysis on each side of the interface. Moreover, it yields the following partition
of the hyperbolic region at {xd = 0~} : U~ = U-^ U Q^ U (H~ H ̂ +).

In [15], we define a semigroup S^ on ^.^{T^W1^1) which describes the time invariance
of IJL as long as it satisfies the non-interference and non-trapping conditions : ^in+ J- ^m-

and /^((04" \ SJ") U {Q~ \ G^)) == 0. We summarize its meaning :

i) The energy coming from {xd < 0} on ^+ U^J" is reflected following the billard flow.
ii) The energy coming from {xd < 0} on Q~^ and from {xd > 0} on Q~^ is reflected

along the diffractive bicharacteristic curves.

iii) On 'H'1", the energy is both reflected and transmitted with proportions and directions
which are explicit functions of the traces of the coefficients on the interface and the
incoming wave vectors. These coefficients can be obtained from the usual plane
waves computation.

Recall the definition ̂  = l^dt®^ +mt){dx,d^®6(T+^-+Vt(x)) from sect. 0.4.

THEOREM 1 Under hypothesis (Rl) and (B.F), if supp(m) H {xd = 0} = 0, then there
exists a time 0 > 0 such that l|t|<<9^ = ^ e ' Moreover, if S^e is without interference nor
trapping for all s € [0,T], then l\t-T\<e^ = S^^e.

Remarks. — The non-interference condition avoids the phase coherence phenomena on
T-L^ which semiclassical measures do not take into account. The non-trapping one stems
from our present inability to prove that the density which propagates inside the non-
diffractive grazing region (^+ \ Q^) U {Q~ \G^) is progressively radiated.
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Our approach also yields a microlocal version of Snell-Descartes^s law of refraction
for the scalar wave equation (4) where the discontinuous coefficient is the celerity c. The
" ray picture " is recovered by applying this result to initial coherent states with Dirac
semiclassical measures. Note that the asymptotic expansion of the solution for such data
in the critical case (Q~^ in i)) seem to be already inextricable when c± are constants
(cf. [11]). We refer to [22], sect. 1 : transmission problem^ for propagation of singularities
results in this context.

2 Thin classical interface : h <C e <^ 1

In this section, we explain how to match the traces of the semiclassical measure ^ of the
solutions of (1) under the hypothesis (H2) (cf. sect. 0.4). Our method rely on a quite
general tool which we have called 2-scales 2-microlocal measures and the underlying 2-
scales symbolic calculus.

We won't consider our results on wave trapping which are less complete and more
technical.

2.1 2-scales 2-microlocal measures

Recall that semiclassical measures describe the asymptotic density in T*^ at some scale
h. The aim of 2-scales 2-microlocal measures is to refine this description in relation to
some involutive submanifold Z at some coarser scale e. In the present case, the involutive
submanifold is simply the interface : Z = {xd == 0}. The general idea is to blow-up the
semiclassical measure with respect to Z by the factor k This yields an " internal surface
measure " on the normal fiber bundle NX which is like a semiclassical measure at the
scale /1, and an " external surface measure " on the homogeneous normal fiber bundle
SNI = NI/W^, which is like an H-measure corresponding to all the scales between h
and ^. Thus the projection of the semiclassical measure on Z is refined as a measure on
the blow-up space of Z : NT U S N I . Since I = {xd = 0} here, SNI has two connected
components so that the " external surface measure " is further decomposed into measures
on each side of the interface.

Remarks. — A similar notion of one-scale 2-microlocal measure has been introduced
independently from us by Clotilde Fermanian-Kammerer in [3] and by Francis Nier in [17].
It is to 2-scales 2-microlocal measures, what semiclassical measures are to H-measures or
Microlocal Defect Measures. It applies to the quantum interface regime e ~ h with the
same limitations that Nier has pointed out in his work.

Since the operator of our problem (1) writes P^'6 = —ihQf — ^^x + V^^^x)^ it is
natural to quantify symbols of the form : a(^-,a;,/^). We shall use Weyl quantization
rule, defined by

aw{x,D)u(x)=j'ei(x-^a^^u{y)-^,
R11
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so that our 2-scales quantization rule writes : OpT (a) == d^(^—^x^hDx).
The class of test symbols S used to define 2-scales 2-microlocal measures should yield

a nice symbolic calculus with P^ and be a separable subspace of C^R2^1) to ensure
the existence theorem for these measures.

DEFINITION 2.1 (TEST SYMBOLS) The class S of test symbols is the the set of a G
C^^C^^)) such that : for all 7 € N, 9]a(z,x^) converge in ^(R^) when z
tends to +00 or —oo. We denote : lim^±oo^(^^<0 = ̂ ±(^0-

DEFINITION 2.2 (/^-2-MICROLOCAL MEASURES) A 2-microlocal measure at the two scales
h < e < 0 with respect to I = {a^ =0} of a bounded sequence {u^6) of L^^), is
composed of three positive Radon measures :

• An internal surface measure : ^°, on NX = ffi^ x IR ,̂"1 x WJ.

• Two external surface measures : ^±, on the connected components of SNI =
{-1,+1}^ xR^,-1 xR^,,

satisfying, extracting a subsequence if necessary, the following oscillation-concentration
property : Va G S,

llm(aw(^^^^)^^^)^ = /* a_(rz;^)^+ ! a^(x^)d^
n^E c. J I

{xd<0] {.rd>0}

+ y a- {xf,0^)dv-+ ta+{x/,0^)d^+ t a{z,x',Q^} d^

In particular the Radon-Nikodym of the semiclassical measure with respect to the
Dirac measure on {xd = 0} is :

^=v~+v^sv>^•x'^•
R

Any bounded sequence of ^^(^) has an fa-^-2-microlocal measure (cf. [16] for this
existence theorem and the symplectic invariance properties).

Let us illustrate the meaning of each of the three components with an example for
which the other components are null. The /^-6-2-microlocal measure of —A{xf, ̂ ^)e^-^
where A e L2^), is v± = ||A(^)||^(^ ^ d x ' ® 6(^ - k) if I = ±y^ and ^ =
^ ( x ^ z ^ d z ^ d x ' ® 8 ^ - k ) ifl=£2.

The symbolic calculus which suits the quantization Op^^ naturally is the Weyl-Hormander
calculus (c.f. sect. 18.5 in [12], t. Ill) associated to the following Hormander metric :

„, = \d^ + ^2 +1^, ^h: ̂  = (i + \^.
XII-9



Its uncertainty function is : H^e = f(^)~1 ^ ^ ^ 1. We can take the constants of
slowness and temperance (in the terminology of [1]) equal to 1, uniformly with respect to
h and e. This metric is well adapted to the 2-scales quantization of the classical classes of
symbols ̂  = -?m(^)m,^ where g = \dz\2 + \dx\2 + ̂ )-2|^|2. In fact, defining the k^
seminormby : \\a\\^s(M^g) = sup^ ^eR2^1 ;^xW)<:i M(X)-1\9T,... <^a(X)|, we have :
lla(^^.^)ll^((^)-,^) ̂ ||a||^(^^), since g^(^.,xf,0^)=g^x^)=g(x^).
Therefore : if a ^ S171 then a(xl,x,h^ is uniformly bounded in S^h^.g^e).

The /i-^-symbol of P^ pertains to the class EJ^ of polynomial symbols in $ with
coefficients like V with the hypothesis (H2). Note that : if p e SJ^ then, for all
(p € C^R^), (^(a;)p € S171. In order to derive properties of the ^-2-microlocal measures
from P^u^6 = 0, we shall need the following product and commutation estimates, which
are a consequence of theorem 18.5.4 in [12], t. Ill, since S C S~°° :

LEMMA 2.1 The following estimates are uniform with respect to to the seminorms of a
in S, p in EJ^J and y in C^(W1) :

^OpWOp^p^ = V0p^(ap)y+0^^)

^[Op^{a)^0p^{p)]y = ^Op^(^^+/i^0p^(^a)^+0^^(^^

where Lp = Q^dpQz - QzpQ^d and Hp = V^p.Va. - Va;p.V^.

The Garding inequality, which relates the positivity of an operator to the positivity of
its symbol, combined with the theorem of Schwartz which says that a positive distribution
is a Radon measure, has been used as a means to prove the existence of microlocal
measures (cf. [6] and [20]). Here, we could also use it for this purpose (cf. [16] for
an alternative approach using wave-packets transforms). But we shall need its most
sharpened form, the Fefferman-Phong inequality (cf. theorem 18.6.8 in [12], t. Ill), in the
context of the g^^ calculus, to derive some properties of the /i-^-2-microlocal measures :

LEMMA 2.2 Uniformly with respect to the seminorms of a in S° :

a^O ^ Op^(a) ̂  -C^Id^ with : 0 < C^ = 0((^) )

and therefore : Va, ||0<,(a)||̂  ^ ||a||̂  + 0((^)2) .

2.2 Matching of the traces on the interface

Let us first introduce some objects related to the one dimensional classical scattering
properties of the potential U{z,x'} = V(z,xf,0), where x ' plays the role of a parameter.
We note U^x'} = 14(^,0), A(^) = U^x'} - U.{x'}, U{x'} = sup, U{z^x1).

The point {z,t,x1\r,<f) G NT is said to be almost bounded positively or negatively
if j|^|2 + U{z, x ' } = U^(x1). Let B C NX denote the union of trajectories which are
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positively or negatively bounded or almost bounded. The transmission and reflexion
regions are defined by :

r±={^xf^^)eI^^d\2>U{xf)-U^xl)} and 7^ = Z\ (7^ U^ U {^ = 0}),

where the thresholds regions C± are the set of critical values :

C± = {(^,T,^) e I ;3^[/(^') = 0 and j|^|2 = U(z^1) - U^x')} .

The transmission map T : T~ —> T^ and the reflexion maps R : T —t T are defined by :
T(^,r,0 = (^^^r^^^n(^)v^7^A(^) and R^x^r^) = (^.r,^,-^).

PROPOSITION 2.1 i) ^°(NI \ B) = 0. ii) ̂  (X \ (C^ U {^ = 0})) = 0.
in) ̂ °- = T* (^0+) on T-. iv) ^0± = R" (^0±) on n±.

The general idea is to " observe " (z^'6) through commutators of P^ with two-scales
test operators. Expanding the commutator in ^%( [Op^^a),?^] u^.u^) 3 = 0 by
lemma 2.1 and passing to the limit, we get : L^° = 0 with L = ^c^ — QzUQcd^ and
obtain the point i). If we do the same for ^( [Op^(a),P^] u^.u^6)^ = 0 with test
symbols a such that La = 0, we may prove that ^± (T^ = 0 which is enough to obtain
the point iii) but not the point iv) (cf. [16]). To overcome this difficulty, we apply
lemma 2.2 to the first term of the expansion of ^( [Op^(a),P^] u^.u^) 3 = 0 with
test symbols a such that La > 0. This weaker condition on a allows us get some other
informations on ^± in the form of inequalities and obtain the point ii). It results in the
points iii) and iv) when test symbols a such that La = 0 are used. The transmission
and reflexion maps arise for the following reason : La = 0 implies a+ o T == a_ on <T~
and a^ o R = a± on T?^.

From proposition 2.1, it is straightforward to define a broken flow C8 on f1*]]^1 which
describes the time invariance of IJL as long as it satisfies the non-grazing and non-trapping
conditions : Supp(p.) H I H {^d = 0} = 0 and Supp^) HC^ = 0. Recall the definition
^e = ̂ \t\<edt ® (m^ + m^dx.d^} ® J(r + ̂  + V^(x)) from sect. 0.4.

THEOREM 2 Under hypothesis fH2^ ifsupp{m) H {xd = 0} = 0, then there exists a time
0 > 0 such that l\t\<eP' = ^ 6 ' Moreover, if C^JJLQ is without grazing nor trapping for all
s € [0,T], then l\t-T\<6^ = C^Q.
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