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Traces on the Cone Algebra with Asymptotics
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Universitat Potsdam
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Abstract
For every singular point on a manifold with conical singularities we construct a trace on the 'Cone
Algebra with Asymptotics7 introduced by B.-W. Schulze. Each of these traces is determined at
the singularity; none of them therefore is induced by WodzickPs noncommutative residue. On
the ideal of operators with vanishing conormal symbol, however, we find another trace which
coincides with the noncommutative residue in the interior. Moreover, it is shown that all these
traces are essentially unique on a slightly extended version of the cone algebra.
AMS Subject Classification: 58 G 15, 47 D 25, 46 H 35.
Key Words: Manifolds with conical singularities, noncommutative residue, Mellin calculus,
pseudodifferential operators.

Introduction
Following upon work by Manin [8] and Adier [I], the noncommutative residue was dis-
covered by Wodzicki in 1984 [12]. It is the unique trace on the algebra of all classical
pseudodifferential operators (modulo the regularizing elements) on a compact manifold
without boundary.

A trace on an algebra A here and in the following designates a linear map r : A —> C
which vanishes on commutators, i.e., r[A, B] == r{AB—BA) = 0 for all A, B G A. Clearly,
scalar multiples of traces are traces, and the zero map is a trace, so uniqueness is to be
understood in the sense that it is the only non-vanishing trace up to constant factors.

Guillemin independently discovered the noncommutative residue as an important in-
gredient in his so-called 'soft5 proof of WeyPs formula on the asymptotic distribution of
eigenvalues [7].

Meanwhile the noncommutative residue has found a wide range of applications in both
mathematics and mathematical physics; it plays a prominent role in Connes5 noncommu-
tative geometry [2, 3].

While it can be shown that there is no (nonzero) trace on the algebra of all pseudodif-
ferential operators on a manifold with boundary, a unique continuous trace was found for
Boutet de MonvePs algebra of all classical pseudodifferential boundary value problems on
a compact manifold with boundary by Fedosov, Golse, Leichtnam, and the author [6, 5];
this trace extends WodzickPs residue. As a consequence one notices that the right choice
of the operator algebra is indeed important.
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Here, the .underlying object is a manifold with conical singularities. A natural algebra
to consider therefore is the 'Cone Algebra with Asymptotics' introduced by B.-W. Schuize
[11]. The situation then is the following: For each conical singularity we obtain a trace. It
vanishes on operators supported in the interior, so it is not induced by Wodzicki's residue.
However, there is a natural ideal in the cone algebra, namely the operators with vanishing
conormal symbol, where one finds an additional trace extending the one discovered by
Wodzicki.

Uniqueness fails on the standard cone algebra due to the lack of non-smooth multi-
pliers. On the other hand one can easily construct an extension of the cone algebra with
a corresponding ideal for which the above traces are the only ones under the additional
assumption that they are continuous and vanish on the ideal of the smoothing Mellin
operators.

1 The Cone Algebra with Asymptotics
1.1 Basic notation, A manifold with conical singularities of dimension n + 1 is a
topological second countable Hausdorjf space, B, with a finite subset S, the so called 'sin-
gularities^ such that B\E is an (n +1)- dimensional manifold and, for every v G S^ there
is an open neighborhood Uy ofv^ a compact manifold without boundary Xy of dimension
n, and a (maximal) system fy ^ 0 of mappings with the following propertiy

For all <f) £ Tv, the mapping (/): Uy -> Xy x [0, l)/Xy x {0} is a homeomorphism with
</)(v) = Xy x {0}/Xy x {0}. It restricts to a diffeomorphism Uy\{v] -> Xy x (0,1)
Given ^1,^2 £ ^v, the restriction (f>^1 : Xy x (0,1) -> Xy x (0,1) extends to a
diffeomorphism Xy x [0,1) -^ Xy x [0,1).

In this article, B is also assumed to be compact. B^ the stretched object associated with B,
is the compact manifold with boundary constructed by replacing, for every singularity v, the
neighborhood Uy by the cylinder Xy x [0,1) via gluing with any one of the diffeomorphisms
^.

For simplicity we assume that there is only one singularity with cross-section X . Let
X be endowed with a Riemannian metric^ write X^ = X x R^ and let X^ carry the
canonical cylindrical metric. Near the singularity we shall employ geodesic coordinates
(x,t), x e x . t e [0,1).

By L^^X) we denote the space of all classical pseudodifferential operators of order ^ on
X ; by 2^(X;R) the corresponding space of parameter'dependent classical elements with
parameter space R.

1.2 The Mellin transform. For /3 G R, Tp denotes the vertical line [z G C : Rez ==
/?}. The Mellin transform Mu of a complex-valued Qj^R-i-)-function u is given by

roo
(Mu)(z)= t^u^dt, z ^ C . (1.1)

Jo

This also makes sense for functions with values in a Frechet space E. The fact that
Mu\r^^_^{z) = Mt-^z{t~^u}[z + 7) motivates the following definition of the weighted
Mellin transform My;

M^u(z) =M^(r^)(^+7), u e Co°°(R+^).
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The inverse of Aty is given by

^^^^i/r r^^-^TVl Jl l/2--f

1.3 Sobolev spaces and weighted Mellin Sobolev spaces, (a) H8^)^ s € R, is
the usual Sobolev space over a smooth compact manifold fi with or without boundary.

(b) For s G N and 7 6 R, the space H^^} is the set of all u G V\X^) such
that ^^{tQ^Du^x^t) G ^2(XA) for all k <, s and all differential operators D of order
< s — k on X. Next we define W^^X^) for s ^ 0 by interpolation, then for s < 0 by
duality: ^(X") = [H-^^X^ with respect to the pairing

(^ v) = .— i (Mu(z), Mv(z))^(X) dz.ZTTZ JI.TZ-Hn^-

(c) The following relations hold: ^(X^} C Ar^(XA); T^A^) = F^550^);
H^[X^ = r71/2^2^).

(d) Fix a smooth function uj on B^ equal to 1 close to the boundary and supported
close to the boundary. Given a distribution u € D^mflB) write u == u^ +^2 ^ith u^ = uju
supported close to the boundary and u^ = (1 — c<;) u supported away from the boundary.
We shall say that u G ̂ ^(B), provided that uz € ̂ {X^ and u^ € 7P(B).

1.4 Mellin symbols and Mellin operators. Let [L G Z, 7 € R. By L^(X;ri/2-/y)
denote the space of all parameter-dependent classical pseudodifferential operators on X
with parameter space R, using the canonical identification Fi/2-7 ^ P. Given f G
(700(R+ x R+, Z^(X; 1^1/2-7)) ^^ ^a// wnfe / = /(^ -(/, ^)^ where z indicates the variable in
^1/2-^' F01" ̂  ̂  -) z fi^d, f(t^ t1 ̂  z) is a pseudodifferential operator acting on sections of vec-
tor bundles over X. We define the Mellin operator op^f on C^(X^ = ^o°(IR+, C^X))
by

[°PMfW=^ J /{t/tr'W^W^dz. (1.1)
Fi/2-^ 0

The function f is called a Mellin symbol for op^f. It is easy to see that op^f :
C^(X^) -^ C°°(X^ is continuous. Iffe C^R.̂  x R+,J^(X; ri_^)), then there is
a bounded extension

^i[opMf}^ : H^W -. U8-^^}

for every choice of s G R and ̂ ^2 € (^^(R-i-).

1.5 Asymptotic types and Mellin Sobolev spaces with asymptotics. In the
following let us fix fi G Z, 7 e R, and the weight datum ^= (74 - n/2,7 + n/2, (-1,0]);
the latter is a triple consisting of two reals (here both are equal to ^f+n/2) and an interval,
here (-1,0].

An asymptotic type associated with g is a finite set P == { ( p j i ^ j ^ C j ) : j = 1 , . . . , J},
where pj G C^ —1/2 — 7 < Repj < 1/2 — ^, mj 6 No; and Cj is a finite-dimensional
subspace ofC^^X}; J may depend on P. We let Tr^P denote the set {pi,... ,pj}.
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A Mellin asymptotic type is a sequence P = { (p j . r r i j , Lj) : j G Z}, where Repj —^ ±00
a5 J ~^ T00; ̂  € No, <mc? jL^ ^ a finite-dimensional subspace of finite rank operators in
L-°°(X).

Given an asymptotic type P = { ( p j ^ j ^ C j ) : j = 1, . . . , J} associated with g and
real numbers s and 7, we define the weighted Mellin Sobolev space with asymptotics^
T-^(B) as the set of all u € 7 (̂B) for which there are functions c^ C C^ j = 1 , . . . J,
k = 0,..., r r i j , such that for a suitable (then arbitrary) cut-off function uj,

J ^j
u - E E ̂ k(x)t-^ in^o^) e T^74-1-^)

j=l k=0

whenever e > 0.
A cut-off function here and in the following is a function uj in (^(R^.) with i^(t) =. 1

for t near zero. We also assume that uj has support in [0,1), so that it may be considered
as a function on the part ofSS> identified with X x [0,1).

1.6 Meromorphic Mellin symbols. M^(X) is the space of all entire functions
h : C —^ LP'{X) for which the restrictions h^g are elements of L^(X;r^ uniformly for
/3 in compact intervals. It is naturally a Frechet space.

Given a Mellin asymptotic type P, let Mjp(X) denote the space of all holomorphic
functions h : C\ Ti-cP —» I^(X) with the following properties:

(i) In a neighborhood of pj G TTC? we can write

mj

^-E^^r^+w
A;=0

with suitable vjk € Lj and a function ho which is holomorphic near p j .

(ii) For each interval [01,02] we find elements v^ in Lj such that

^
h(f3 + ir) - ^ ^ v,kMt^(t-^ In^ t^(t))(/3 + zr) C ̂ (X; R,),

{j:Repje[ci,C2]}k=0

uniformly for (3 G [01,02]. Here 10 is an arbitrary cut-ojf function.

Again we have a natural Frechet topology. As usual, we let Mp°°(X) = n M^X) be
the space of smoothing Mellin symbols. One can then decompose M^X) = M^)(X) +
Mp°°(X).

We call the elements o/(7°°(R4. x R+.M^X)) holomorphic Mellin symbols of order
Ii, those o/C7°°(R+ x R^,M^(X)) meromorphic Mellin symbols with asymptotic type P.

1.7 The 'Cone Algebra with Asymptotics9. (a) Co^g) denotes the space of all
operators G : C^°{int]SS>) —^ I)'(m^B) which have continuous extensions

G^Tr^^B) -^ ^^(B) and

G* :^-^-^-^(B) -^ ^~"~^(B)

for arbitrary k G N and suitable asymptotic types Qi and Q^, associated with g and
independent of k. Here G* is the formal adjoint with respect to the pairing in 1.3(b). In
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fact it is sufficient to require these mapping properties for k = 0; continuity on the larger
spaces can then be deduced. The operators in Ca^g) are called Green operators.

(b) CM+G(B^) is the space of all operators A : C^^intW) -> V^intW) that can be
written

A =^i[opj^ho\^ +G

with 7 - 1 <, 70 <: 7, ho G Mp^(X), Tr^Po Ft Fi/2-^o = 0; cut-off functions ^1,^2, arid
G G CG^B^). The definition makes sense, since the difference induced by changing the
cut-off functions results in a Green operator. These operators are the smoothing Mellin
operators.

(c) C^CB.g) is the collection of all operators A : C^{intVS) -> Z?'(m^B) of the form
A = AM + P + R^ where

AM is a Mellin operator supported close to the boundary, i.e., AM == ^[op^fh]^ for a
holomorphic Mellin symbol h of order fi and suitable cut-off functions io\^uj^;

P is a pseudodifferential operator of order ^ supported in the interior, i.e., there are
functions (f>i^(f>2 vanishing in a neighborhood o/9B with P = ^P(f)^; finally

R is an operator in CM+G^B,^).

C7(B^) = U^ez ̂ (B?50; ls ca^6^ the cone algebra with asymptotics. It is indeed an
algebra, with ideals Co^g) and CM+G^B,^ ^ the following theorem shows.

1.8 Theorem, (a) Cc(B^) ̂  CM+G(B,^) c-^ C^(B^).
(b) The composition of operators induces continuous maps

C^g)xC^g) -. (7 (̂B^

C^^g) x CM+G{^g) -^ CM+G(B^),

CfM+G(B^) x C^^g) -. C7M+G(B^),

C^g)xCG(^g) -^ Co^g), and

Co^g} xC^B^) -^ CG{^g).

2 The Extended Cone Algebra
7 € R, the weight datum g = (7 + ^,7 + f, (-1,0]), and ^ GFix ^ 7 + t , ( - l , O j ) , a n d / , e Z .

y^ r* * i * /^n 1 1 i • r i • • -rns2.1 Definition. Choose a smooth nonnegative function t_ on B, strictly positive in the
interior and coinciding with the geodesic distance t to the boundary near <9B^ i.e., for
t < 1. Let (^(B,^)4" be the vector space generated by the set of all linear combinations of
operators of the form t^A, where A G (7^(B,^) and Rem > 0. Multiplication by t^ is a
continuous action on all spaces TY^B)^ so the composition of the operators makes sense.
We call (^(B,̂  = U^W^ the extended cone algebra.

Correspondingly let CM+G'(B,<7)4' denote the space generated by operators of the form
^R, with R G CM+G'(B^) and Rem > 0.

We next introduce C^(B,</)^. It consists of those elements in C^^g)^ that can be
written in the formic with suitable e > 0 and A £ C^^g)^. Analogously^ CM+G^B^)^
is the space of all f^R with R G CM-^B^)"^ .
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The intersection C^(B,^ n C^(B,fiQ clearly consists of the elements in the cone algebra
with vanishing conormal symbol, i.e., where h(0) + ho = 0 in the notation of 1.7.

It follows from the definition that t^G and GV71 are elements of Cc(B^) whenever
Rem^ 0 and (9 € Co^g).

2.2 Proposition. One obtains the composition laws of Theorem 1.8 for the corre-
sponding extended algebras. Moreover, C(B^)^" is an ideal in the sense that composition
maps

C^g^xC^g)-^ -^ C^(B,̂  and

C'^g^xC^g^ ^ C^(B,^.

A Trace on the Extended Cone Algebra
We shall change the notation slightly. Given a Mellin symbol h G ^(R+.M^X)) we
shall denote by h(t) the operator in M^(X). This is a parameter-dependent classical
pseudodifferential operator along each line Vp in C. We write h{t)(x,^f3 + ir) for its
local symbol, and hk(x, ̂  (3 + ir} for the component which is homogeneous of degree k in
(^,r). We start with a simple observation.

2.3 Lemma. Let f = Emec^fm, where C is a finite subset of {Re z > 0} and
fm e Q^IR^). Then the mapping

f ̂  /o(0)
is well-defined, i.e. independent of the representation of f.

We understand the notation Emec as ̂ e summation over all different elements of C.

2.4 Definition. It is immediate from the definition that an operator A G (^(B,^)"1"
can be written in the form

A = E ̂ {oPMhm}^ +P+R
mCCmCC

with a finite subset C of [Rez >_ 0}, cut-off functions near zero, ^1,^2, Mellin symbols
hm e C°°(R+^M^(X))^ a pseudodifferential operator P of order fi, supported away from
the boundary^ and R G CM+G^g)^'

For the summation Emec^i^t^M^m]^, the operator ho(0) is well-defined as an
element of, say, L^{X\ Fo) according to Lemma 2.3. By ho{0)_^ {x.^ir), r e R,^ e R^
denote the homogeneous component of degree —n — 1 of its complete local symbol in a
coordinate neighborhood.

In the representation of A, the elements hm are not unique. Any other choice^ however^
differs by a linear combination of elements of the form ^^[op^Jim}^ with Rem >_ 0
and hm € Mj°°(X). The contribution to ho(0)_^_^ is not affected by this ambiguity.

So let S={^eRn:\(\= 1} and ̂  = E?=i(-W<i A ... A% A ... A d^. The hat
indicates that d^j is omitted. It is well-known that a^ induces the surface measure on S.
We therefore define

00

res^(A) = j j Tr ho(0)_^ (x, ̂  ir) dra^ dx^ A ... A dxn,
S -co
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where x belongs to a coordinate neighborhood and "Tr" denotes the (finite dimensional)
trace on the symbol. Note that in view of the holomorphy of ho we might integrate over
another line F/j instead of To.

2.5 Lemma. reSx(A) is a density on X.

Proof. Since t is global, any change of coordinates is of the form (a-, t) ̂  (\(x), t), where
X is a change of coordinates for X. So the lemma follows essentially as in the standard
case, cf. [5, Theorem 1.4]. ^

Lemma 2.5 shows that the following definition makes sense.

2.6 Definition. For A € C^(H,g)+ with a representation as in Definition 8.4 let

resA = f^ res^A = f^JJ^ Tr ho(0)_^ (x, ̂  ir) dr a^dx, A ... A dxn.

We shall abbreviate dx = dx-i A ... A dxn.

2.7 Theorem, res : (^(B,^)4- -»• C is a trace.

Proof. Let A,B € (7^(B,fi')+. We have to show that res[A,B] = res{AB - BA) == 0.
Using a partition of unity on X and the linearity of 'res', it is no restriction to assume
that both are supported by a single coordinate neighborhood of X. By linearity we may
also assume that

A = ̂ [opMg^ + ... and B = ̂ [0?^}^ + .. .

each have a single Mellin term. Applying [5, Lemma 3.1.10], the Mellin symbol of AB
has the asymptotic expansion

„ °° 1
tm+m E Tft9m(t}^ ̂  ir - m)#(-^)^)(^ ̂  zr).

k=0 Kt

Here # denotes the symbol composition with respect to x and ^. A non vanishing con-
tribution to the residue requires m == —m G iR, say m = ifz = -m. Moreover, only the
terms with k == 0 can influence the result due to the powers of t in the above formula.
We can therefore focus on the terms

5^(0)(^ ̂  ir + i^#h^(0)(x, ̂  ir).
We may apply the corresponding consideration to BA and conclude that

res [A, B] = f ( F Tr [gi,(0)(x, ̂  ir + ifi)#h.^0)(x, ̂  zr)].,.,
</A Jo </ —oo

-Tr [h,i^0)(x, ̂ , ir - ifi)#g^(0)(x, ̂  ir)].n_i dr <7^ dx

= ly /. /°° Tr t^0)^' ̂  ir + Wh,i,(0)(x, ̂  ir)</A «/o J —00

-Tr [h.^(0)(x, ̂  ir)#gi^0)(x, ̂  ir + i^},n-i dr ̂  dx,

using the translation invariance of the integral with respect to r. The Leibniz product in
the integrand has the asymptotic expansion

E - {<9^(0)(zr + z/^^(0)(ir) - 9^h^(0)(ir)D^(0){zr + z^)} ,
j^j^ou" '

where we have omitted the variables x and ^ for better legibility. We may now proceed
similarly as in [5, Theorem 1.4] to obtain the assertion. <
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Traces on the Cylinder Algebra
For the proof of the uniqueness of res on the extended cone algebra and the definition
of yet another trace on the smaller ideal C(1B>^g)^ it will be more convenient to work on
the cylinder X^ = X x R+. We shall employ the cylinder algebra" C^{X^,g}^, i.e., the
algebra generated by the Mellin operators supported close to the boundary <9B.

2.8 Definition. By C^^X^^g)^ denote the algebra of all operators generated by the
elements ^^[op^hm]^ wth arbitrary cut-off functions o?i,o;2; Rem >_ 0^ and hm G
C^^R+^M^X)) for arbitrary Mellin asymptotic types. By CM+G^X^^g)^ denote the
subspace generated by all operators whose Mellin symbol is smoothing, i.e., where hm €
^(E^ Mp°°(X)) for a suitable asymptotic type P. We let C[X^,g}^ = U^ C^{X^,gY.

Just as before we define CP'(X^^g)^ as the subspace of all those elements in C^^X^^g)^ ^
where Rem > 0 for all m involved. Finally, CM^G^X^^}^ denotes the subspace of oper-
ators that in addition have smoothing Mellin symbols.

Indeed, it follows as before - see Proposition 2.2 - that C(X^^g)+ is an algebra. The
spaces C(XA^g)^ CM^-G^X^^)^ , and CM^-G^X^^}^ clearly form ideals.

With the same considerations as before we obtain the following theorem:

2.9 Theorem. The trace u res^ also yields a trace on C{X^^g)~{'. It vanishes on
CMw{X\gV andonC{X\g}t.

On the subalgebra C{X^^g)^ we find another trace.

2.10 Definition. Let A = Z^ec^i^hPM^m]^ + R with a finite subset C of [Rez >
0}, cut-off functions a;i,a;2 satisfying additionally uj\uj^ =^i, hm G (^(R^, M^[X}\ and
R e CM+G(X^,g)^ Let h(t) = ̂ {t) Emec ̂ h^t) and define

/oo r /74
res^^A = j Trh(t)-n-i{x-,^i^)o'^drdx^ A .. .dxn A — .

-oo JS t

The condition uj\uj^ = uj\ is necessary for this to make sense. One next establishes

2.11 Lemma. Let cr^r = (—l^^rd^ A ... A d^n + ̂  A dr be the n-form constructed
in analogy to the construction of a^. Then

resox,tA == / Trh(t).n-i(x,^ir)a^rdxz ^.^dxn^ —,
^{K^^1} ^

and res^ ̂ A is a density on X^.

2.12 Definition. In the notation of Definition 2.10 we can therefore let

res0 A = / res0 A,
JXA ^

This makes sense, since all m have positive real parts. Moreover we get:

2.13 Theorem, res0 is a trace on C(X^^g)^, It vanishes on CM+G^^^)^.
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We shall now show that there are no other traces. As a preparation we need the
following results.

2.14 Lemma. Let f € M^(X). For e > 0 let

/.(,) = f^^)-W ^ ,.(,) , f(^.e)-f(.)
e ie

Then f, -^ 9,f and g, -> Q,f in the topology of M^(X).

2.15 Proposition. By Q denote the space of all finite sums of functions of the form
f = f{t,x) = ̂ f^t.x}, where fz G C^([0,l) x (-1,1)") and Rem > 0. By ^°) denote
the subspace of all f 6 Q with Rem > 0 for all m involved.

(a) We can define a linear map T : Q —^ C by

Tf= I f(0.x}dx,Tf= I f(0,x)dx.
A-u)"

It vanishes on all functions f for which there is an F 6 Q with t9tF = f or 9x F = f for
some 1 < j < n. Any other linear mapping Q —r C with this property coincides with T
up to a multiplicative constant.

(b) We have a linear map T : Q^ -^ C by

Tof = \ \ f ( s ^ x } / s d x d s .
JQ ^(-1,1)^

It vanishes on all f for which there is an F G Q^ with tOfF = f or 9^ F = f for some
1 < ] < : n. Any other linear mapping with this property coincides with To up to a
multiplicative constant.

2.16 Theorem. Any continuous trace on G^^^/CM+G^^)4" coincides with a
multiple of "res^.

Any continuous trace on the subalgebra C{X^^g)^ /CMW^X^ ̂ g}~^ coincides with a
multiple of "res0".

The only continuity assumption we need here is that the convergence of a sequence of
Mellin symbols hj —» h in (7°°(R+, M^(X)) entails the convergence of the traces of the
operators <^i[op^fhj}^ to the trace of ̂ i[op^h]^.

Proof. Let "tr" be such a trace, and let A G C^(X^^g) be an operator supported inside
a single coordinate neighborhood U for X, where U is diffeomorphic to ( — I , I)71. Let
c<;i,c<;2,c<;3 be cut-off functions with ̂ ^ = ̂ i^2^3 = ^2- Since the trace by assumption
vanishes on the CM+G-ideals, let A = ̂ it^op^h}^ with h G G^R-H M^(X)), Re m > 0.
By Xj and Dj^j == 1, . . . , n, denote the operators with the symbols (/i(t)(^, <^ z) = uj^{t)xj
and g^{€)[x^^z} = ^3(1)^, respectively, on U.

The commutator [X^A] has the Mellin symbol if^i^)^/^ while [-Dj,A] has the
Mellin symbol —z^^i^)^^. Since "tr^ vanishes on commutators, it vanishes on all
operators whose Mellin symbols are derivatives with respect to some xj or < ^ , 1 ̂  j <^ n.
Similarly we have the operator ^{t)t9f with the Mellin symbol ^(t}z^ the commutator
[^(t)t9t, A] = [t9t,A] has the Mellin symbol tQ^h^}}. Hence ̂  also vanishes on
Mellin symbols that are totally characteristic derivatives with respect to t.
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Finally we let T^ be the operator with the Mellin symbol ̂ (t^^e > 0. It is a basic
property of Mellin operators, see e.g. [10, Lemma 3.1.10], that the commutator [T^A]
then has the Mellin symbol t^h^x.^z^t) - t^6 h(t}{x, ̂  z - ze). Since we may
choose m = -ie, 'W vanishes on all symbols of the form h(t)(x,^z) - h(t,x,^-ie).
The continuity in connection with Lemma 2.14 implies that it will also vanish on all
Mellin symbols that are derivatives with respect to z. On C(XA,g)^ we may work with
multiplications by t€.

Now a construction similar to that in the proof of [5, Theorem 1.4] in connection with
Lemma 2.15 completes the argument. <]

The Manifold Case and an Extension of the Wodzicki Residue
2.17 Definition. ByC°°(R+,L^X',R)) we denote the set of all p € C^(R+^(X; R))
for which there is a q e (7°°(R+,^(X; R)) withp(t,r) = q(t,tr).

We call these operator-valued symbols totally characteristic.

2.18 Mellin^ Quantization. It was shown in Schrohe-SchuIze [10, Section 2.4] that,
for h e G°°(R+,M^(^)), there is a p e C°°(R+,Z^(X;R)) with

opp=op^h mod L~°°(X^ (2.1)

and vice versa. We have the asymptotic expansion
00

P(*)(^M - EW W^x^^-zT^t^T^/t^^
k=0

where T(t^t'} = ^~_^,' Note that T(t^t) = t. Applying this formula, one gets:

2.19 Proposition. Let A be as in Definition 2.10, and let opp G L^(X^) be the
pseudodifferential operator associated with A modulo L~°°{X^) according to Theorem
2.18. Then

-res0 A = I j Trp(t).n-i(x,^r)a^rdx/\dt= W-resopp,
J X ^ J{|^,r|==l}

where W-res for the moment denotes the Wodzicki residue.

This leads to the following theorem.

2.20 Theorem. The dimension of the space of continuous traces on (7(B, fi^ /CM+G(B, g)^
equals the number of conical points.

On C(^g)^ /CM-^-G^Q)^ there is only one non-trivial continuous trace (up to mul-
tiples). It extends the Wodzicki residue.

Proof. In the interior, the only traces are the multiples of Wodzicki's residue. On the
other hand, each trace on (^(B.i^/CA^^B^)"1" yields a trace on the cylinder algebra
^(^^(^/C^M+G'^^^)4"- For operators supported by compact sets in X x (0,1) both
have to agree. This shows that the only possible traces on (^(B^'^/CM^^B^)4' are
the multiples of ^res". For simplicity we had been working with one conical point; the
argument now shows that we may pick a constant for each of them.
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In the case of C(B>,g)^ /CM+^B,^ we know from Proposition 2.19 that the only
possible choice on the cylinder, namely "re,s°", extends Wodzicki's residue and therefore
is a trace on the full algebra C(JS>,g)^ . 0

2.21 Remark. On Schulze's original cone algebra there are infinitely many traces. In
fact, for k 6 N and A 6 C^^g) of the form A = ̂ [opj^h]^ + R with cut-off functions
ui,c<;2 near zero and R € CM+G^S) let

reskA= { ! F Trh^.^.^x^^T^dra-^dx.
JX J S J—oo

Then resk is a trace on (7(B,(/).

Acknowledgment: I would like to thank B.V. Fedosov for many valuable discussions
and useful techniques. Remark 2.21 is his observation. The paper also is the result of the
close cooperation with B.-W. Schuize on the cone calculus.
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