@incollection{JEDP_1996____A16_0, author = {Elmar Schrohe}, title = {Traces on the cone algebra with asymptotics}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {16}, pages = {1--11}, publisher = {\'Ecole polytechnique}, year = {1996}, language = {en}, url = {https://proceedings.centre-mersenne.org/item/JEDP_1996____A16_0/} }
Elmar Schrohe. Traces on the cone algebra with asymptotics. Journées équations aux dérivées partielles (1996), article no. 16, 11 p. https://proceedings.centre-mersenne.org/item/JEDP_1996____A16_0/
[1] M. Adler. On a trace functional for formal pseudo-differential operators and the symplectic structure of Korteweg-de Vries type equations. Inventiones Math., 50:219-248, 1979. | MR | Zbl
[2] A. Connes. The action functional in non-commutative geometry. Comm. Math. Physics, 117:673-683, 1988. | MR | Zbl
[3] A. Connes. Noncommutative Geometry. Academic Press, New York, London, Tokyo, 1994. | MR | Zbl
[4] Yu. Egorov and B.-W. Schulze. Pseudo-Differential Operators, Singularities, Applications. Birkhäuser, Boston, Basel, Berlin (to appear).
[5] B. V. Fedosov, F. Golse, E. Leichtnam, and E. Schrohe. The noncommutative residue for manifolds with boundary. J. Funct. Anal. (to appear). Preprint MPI/94-140, Bonn 1994. | Zbl
[6] B. V. Fedosov, F. Golse, E. Leichtnam, and E. Schrohe. Le résidu non commutatif pour les variétés à bord. C. R. Acad. Sc. Paris, 320:669-674, 1995. | MR | Zbl
[7] V. Guillemin. A new proof of Weyl's formula on the asymptotic distribution of eigenvalues. Advances Math., 55:131 - 160, 1985. | MR | Zbl
[8] Yu. I. Manin. Algebraic aspects of nonlinear differential equations. J. Sov. Math., 11:1-122, 1979. | Zbl
[9] E. Schrohe and B.-W. Schulze. Boundary value problems in Boutet de Monvel's algebra for manifolds with conical singularities I. In: Pseudodifferential Operators and Mathematical Physics. Advances in Partial Differential Equations 1. Akademie Verlag, Berlin, 1994, 97 - 209. | MR | Zbl
[10] E. Schrohe and B.-W. Schulze. Boundary value problems in Boutet de Monvel's algebra for manifolds with conical singularities II. Boundary Value Problems, Deformation Quantization, Schrödinger Operators. Advances in Partial Differential Equations 2. Akademie Verlag, Berlin 1995, 70 - 205. | MR | Zbl
[11] B.-W. Schulze. Pseudo-Differential Boundary Value Problems, Conical Singularities and Asymptotics, Akademie Verlag, Berlin 1994. | MR | Zbl
[12] M. Wodzicki. Spectral Asymmetry and Noncommutative Residue. Thesis, Stekhlov Institute of Mathematics, Moscow, 1984.
[13] M. Wodzicki. Noncommutative residue, Chapter I. Fundamentals. In Yu. I. Manin, editor, K-theory, Arithmetic and Geometry, volume 1289 of Springer LN Math., pages 320-399. Springer, Berlin, Heidelberg, New York, 1987. | MR | Zbl