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An electrostatic inequality
with applications to the constitution of matter

Gian Michele Graf
Theoretische Physik
ETH Honggerberg

CH-8093 Zurich, Switzerland

Abstract. We discuss an electrostatic inequality, based on tetrahedra, which is a mani-
festation of the screening property of the Coulomb interaction. Several known features of
the constitution of matter can be understood as an application of this inequality.

The inequality
The statement which is at the center of this contribution is essentially as follows: Let a
periodic tiling of R3 into simplices, i.e., tetrahedra, be given. Then the electrostatic energy
of an arbitrary number of charged particles becomes smaller if the interaction is restricted
to particles belonging to the same simplex in the tiling. At least, this is (almost) true on
average w.r.t. translations and rotations of the tiling. We should now present the precise
statement:

Let C be a lattice in R3 with unit cell of unit volume: [P3//^ = 1. An open simplex
is a bounded set

A = [x e R3 I aix <Ci, i = 1, ... , 4}

with di G R3, Ci G R. A periodic tiling ofR3 is a collection To = {^oj of disjoint simplices,
finitely many up to congruences, such that

U ~A TU)3
L\ot = K

a€To

To + U := {Aa + U} = TQ {U G C) .

An example is the tiling given by the Z ̂ translations of the simplices obtained by cutting
the unit cube W = [0,1]3 with all planes passing through the centre and an edge or a face
diagonal of W. This tiling contains just one simplex up to congruences.

We now regard C^ To as fixed and define a tiling T of scale I > 0 to be one congruent
to /To. Its simplices are also said to be of scale I . Given a tiling T (of any scale) let

f 1 if .TI, a; 2 belong to the same simplex of T ,
8^x^x2)= < .

t 0 otherwise .
The average of a function f{T) of the tilings T of scale I is defined as

{f}= I d^dyfWTo+y)^
SO(3)xR3/C
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where d^(R) is the Haar measure on R e S0(3). This definition is Euclidean invariant
in the sense that it is not affected if C, To are replaced by RC, R(TQ + y ) for some R €
S0(3), y € R3.

Theorem 1. [8, 9] There is C > 0 such that for any N 6 N, any a-, G R3, e, <= R, (i =
1, . . . , N) and any I > 0

N N AT

E e»ej / ̂  e,e, \ C v-^ .
^ W^ £ <£, R^7^)) - T ̂  • W
i<} i<j

where the average is over tilings T of scale /.

Related inequalities were derived in [1] and in [2]: There the tiling is made of (smeared
out) cubes, the average is over translations and the interaction on the r.h.s. is of Yukawa
type.

Sketch of proof. By scaling it suffices to prove (1) for / = 1. In this case it follows from
the fact that the function w(x) given by

^-^-^((l-W^y)))

has positive Fourier transform w(p) ^ 0, and that C == w(0)/2 < +00. The proof of
these properties is as follows: To consists of finitely many simplices A^, (z = 1,... , n)
up to /^-translations. Let [0,+oo) 9 r ^ h^(r) be the spherical average of the function
R3 9 x ̂  \A n (A ~ x)\. It is a matter of computation to verify that

^\ ̂  y^ ^(o(o)-^i(o(H)
f ^ nf |
Z=l '^l

The next two observations are crucial:
i) Let A be a simplex. Then h^(r) is non-increasing in r.
ii) Let h e C^O, +00) with liniy._+oo h{r) = 0 and let h"(r} be non-increasing. Then

v{x) = [^["^^(O) - h{\x\)) has positive Fourier transform.
The first claim depends on the fact that A n {A - x) is geometrically similar to A, a

property which characterizes simplices. The second one follows by an integration by parts:

W - ̂  f^ drs\n{\p\r)h11^ = —— f;(-l)^ J\tsmt h''(k7-^) >, 0 . •
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Applications
The applications we present are concerned with Hamiltonians of Coulomb systems. The
above inequality allows to obtain lower bounds for those Hamiltonians in terms of finite
volume Hamiltonians.

1. Stability of matter. Non-relativistic matter is described by the Hamiltonian

N N+M

H=-^^+^ -^—
z-^ 2-^ \Xi — Xj\
i=l tj==l ' ' 3 }

i<J

accounting for N fermionic electrons i = 1, ... , N and M nuclei z = = J V + l , . . . 7 V + M
with positions Xi € R3 and charges e, = -1, resp. 1 < ei <, const. Stability of matter is
the statement:
Theorem 2. There is a constant C such that

H>-C{N+M). (2)

This result has first been proved by Dyson and Lenard [3] and subsequently by Lenard
[II], Federbush [5], Eckmann [4], Lieb and Thirring [14] and Fefferman [6]. We refer to
[12] for the implications of this result. A proof [8] of (2) can be obtained by applying the
above inequality repeatedly — at ever smaller scales — until only a few nuclei are left in
each simplex. At this point the uncertainty principle and the Pauli principle guarantee
stability.

2. The molecular limit of Coulomb gases. A mixture of electrons and various kinds of
nuclei consists of individual atoms and molecules, provided the temperature and the density
are sufficiently low. Put differently, a gas of elementary particles is effectively described
in this thermodynamic regime in terms of an ideal gas of composite particles. Different
mathematical formulations and verifications of this fact have been given by Fefferman [7],
by Conlon, Lieb and Yau [2], and by Macris and Martin [15]. See also [16, 17] for a
discussion of the issues involved.

The mixture shall consist of S species of spinless particles with masses M == (Mi,... ,
Ms) and charges Q = (Qi , . . . , Qs) € Z5. We assume that all negatively charged particles
are fermions, whereas the statistics of the other particles is irrelevant. Let Nk 6 N be the
number of particles of the fc-th species, and set N = (A/ i , . . . , Ns)- The total number of^i _
particles is N = ^^=1 Nk. The Hilbert space T^N,A for N particles confined to an open
set A C R3 is the subspace of L^A)0^ carrying the permutation symmetry appropriate
to the given statistics. The Hamiltonian is

N A N

TT V^ ^A^ . V^ gzgj r? , T.T
^N,A———^-^+ ̂  ,——^7=:TN,A+yN,

z=l 2mt ij=l 1^ ^1
i<J
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where (m^ qi) = (M^, Qk) if the %-th particle belongs to the k-th species. Here AA is the
Dirichlet Laplacian on A. If A = R3, the index A is omitted. Variable particle numbers
are accounted for by means of the Fock space and the Hamiltonian

^A = ̂ (L^A)) = ([)^N,A , H^ = ®^N,A .
N N

For bounded A, the grand canonical partition function and the (finite volume) pressure
are given by

2(/?,^A) = tr^e-^-^.N) ̂  ̂ tr^e-^--^) ,
N

p(^^A)=(^|A|)- l logS(^^A),

where /3 > 0 is the inverse temperature and /A = ( /^ i , . . . ^s) € K5 are the chemical
potentials of the various species. The existence of the thermodynamic limit

p(/?,^) = lim p(/?,^A)
A—»-oo

for suitable sequences {A} (e.g. sequences of balls) has been proven by Lieb and Lebowitz
[13]. They also proved that

p(/?^)=p(/?^+AQ) ( A e R ) , (3)

which expresses charge neutrality.
A basic version of the result [2, 7] states that for suitable values of the chemical

potentials fiQ and for low enough temperature f3~1 the pressure of the S species is to
good accuracy that of a classical free gas of specific 'molecules^. In this picture, molecules
are non-interacting particles with no internal degrees of freedom. The types of molecules
which actually occur are determined by the neutral ground states of H — fio • N, as we shall
explain shortly. Let E-^ and E(fi) be the ground state energies of -HN? resp. of H — p, • N
except for the vacuum, i.e., let

E^ = inf{(^ H^) | ̂  G ^N, H ^ l l = 1} ,
E{p.) = inf (^N - ̂  • N) .N7^0

Our assumption (A) on the chemical potentials ^o embodies the symmetry (3): There is
Ao € R such that

/4 = ^o + AoQ

enjoys the following two properties.
1) For some a- > 0 and all N,

H^ - ̂  • N > aN .
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A first consequence is that -E^o) > 0 ̂ ^ ^na^ ^ne se^ °^ 'ground states',

^ = {N ^ 0 | £;N - ̂ o • N = E(^o)} ,

is non-empty and finite. In the center of mass frame for N 6 G the ground state energy
J^N of !ZN is a discrete eigenvalue. We shall henceforth count N G Q repeatedly, according
to the multiplicity of this eigenvalue.

2) Either Q - N = 0 for all N € Q (neutral case) or there are N+, N_ G G with
±Q • N± > 0 (charged case).
The pressure of an ideal classical gas of molecules of composition N, internal energy

£'N and chemical potential ^ is

^)4(^)3/2e-"•
Consider an ideal mixture of such gases with compositions N G G. This notion is defined
in thermodynamics by the additivity of partial pressures:

P<?(/^)= ^PNO^-N).
N€^

The chemical potentials on the r.h.s. correspond to chemical equilibrium among the
molecules N 6 G. The pressure pQ may not satisfy (3), i.e., it may be related to a
non-neutral ensemble. This can happen because the molecules, although possibly charged,
do not interact in this picture. One enforces (3) by setting

p^(/3,^)=infp^(/?,^+AQ).
A^M

Theorem 3. [2, 7] Suppose assumption (A) holds. Then

p(/?^)==:P^/5^)(l+0(e-^)) (4)

for some e > 0 in the limit (/?,^) ~^ (+oo,/^o).

In order to prove (4) as an upper bound, the inequality (1) can be used in the form
of the following lemma.

Lemma 4. [9] There is a simplex A such that

p(^,/i)^p(^^+o(rl),^)(l+o(rl)), (i ^+oc) (5)

uniformly in f3 > 0 and IJL 6 R5.

In rough terms, (1) yields a lower bound on H^ in terms of 5^, which translates
into the upper bound (5) for the corresponding pressures. Thereby, theJast term in (1)
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is absorbed into a readjustment of the chemical potentials p, by 0(/~1) in (5). The factor
1 + 0(7~1) can be understood as coming from the Dirichlet boundary conditions on IA.

We make use of the above lemma for I == e7^ with 7 > 0 small enough. Then the
simplex I A most likely does not contain anything, but if it does, then most likely a molecule
N 6 Q. This situation gives raise to the pressure p^(/?,/x).

3. The continuity of the free energy. The canonical partition function and the (finite
volume) free energy density for a Coulomb systems of S species are

Z(A^A)=tr^e-^

/(A^^IAI-^C^A^A).

where we set /? = 1. The thermodynamic limit for the free energy

fs{p)= lim /(TV, A)
A—»-oo '

exists [13] for neutral systems N ' Q = 0 with limA-.oo N/\A\ = p. The limiting densities
p are those in

PS = [p = (pi, ... , ps} | P ' Q = 0, pi ^ 0, i = 1, ... , S} .

The function fs{p) is convex on PS [13] and hence continuous on its interior PS. At points
in 9 PS convexity only implies upper semicontinuity. Nevertheless one has:

Theorem 5. [10] fs{p) is continuous on PS.

The lower semicontinuity of fs at points po € 9Ps of the form po == (po?°) wlt^-
Po e PS' and 0 < 5' < S is the statement

Hm /5(p)^.Mpo). (6)
P—^Po

Since ps{^) is the Legendre transform of fs(p), i.e., psW = sup^p^ [p ^ - fs{?)], the
bound (6) would follow from

lim psW <P5^o)-
^-^o,-oo)

This, however, follows from (5) and fact that a corresponding statement holds in finite
volume.

XI-6



References.

[1] J.G. Conlon, E.H. Lieb, H.T. Yau, The TV7/5 law for charged bosons, Commun. Math.
Phys. 116, 417-448 (1988).

[2] J.G. Conlon, E.H. Lieb, H.T. Yau, The Coulomb gas at low temperature and low
density, Commun. Math. Phys. 125, 153-180 (1989).

[3] F.J. Dyson, A. Lenard, Stability of matter, I, J. Math. Phys. 8, 423-434 (1967).
[4] J.P. Eckmann, Sur la stabilite de la matiere, Lecture notes (unpublished).
[5] P. Federbush, A new approach to the stability of matter problem, J. Math. Phys. 16,

347-351, 706-709 (1975).
[6] C.L. Fefferman, The uncertainty principle, Bull. A.M.S. 9, 129-206 (1983).
[7] C. Fefferman, The atomic and molecular nature of matter, Rev. Math. Iberoameri-

cana 1, 1-44 (1985).
[8] G.M. Graf, Stability of matter through an electrostatic inequality, Helv. Phys. Acta,

to appear.
[9] G.M. Graf, D. Schenker, On the molecular limit of Coulomb gases, Commun. Math.

Phys. 174, 215-227, (1995).
[10] W. Hughes, Thermodynamics for Coulomb systems: A problem at vanishing particle

densities, J. Stat. Phys. 41, 975-1013 (1985).
[11] A. Lenard, in Statistical Mechanics and Mathematical Problems^ A. Lenard ed.,

Springer (1973).
[12] E.H. Lieb, The stability of matter, Rev. Mod. Phys. 48, 553-569 (1976).
[13] E.H. Lieb, J.L. Lebowitz, The constitution of matter: Existence of thermodynamics

for systems composed of electrons and nuclei, Adv. in Math. 9, 316-398 (1972).
[14] E.H. Lieb, W. Thirring, Bound for the kinetic energy of fermions which proves the

stability of matter, Phys. Rev. Lett. 35, 687-689 (1975). Errata 35, 1116 (1975).
[15] N. Macris, Ph.A. Martin, lonization equilibrium in the electron proton gas, J. Stat.

Phys. 60, 619-637 (1990).
[16] Ph.A. Martin, Lecture on Fefferman's proof of the atomic and molecular nature of

matter. Acta Physica Polonica P24, 751-770 (1993).
[17] R. Peierls, Surprises in Theoretical Physics^ Princeton University Press (1979).

XI-7


