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EIGENFUNCTIONS OF THE LAPLACIAN, QUANTUM CHAOS, AND COMPUTATION
Dennis A. Hejhal

The following is an extended summary of the talk I gave in Saint Jean de Monts
on 30 May 1995.

§1. Consider a freely moving particle (of mass m ) on a compact Riemann surface
S of negative curvature. The trajectory taken by such a particle is necessarily a
geodesic. It is known, however, that when the curvature is negative, the geodesic

flow on S is ergodic. The particle^ dynamics will therefore be quite sensitive
to the initial conditions. In common parlance, one says that the particle's dynamics
are classically chaotic,

The question then arises: what manifestations of this chaotic behavior are seen

at the quantum-mechanical level?

Those things that are seen can be loosely described as quantum chaos.

In view of the fact that quantum mechanics should tend to classical mechanics as
•h —> 0 , it is a safe bet that something akin to ordinary chaos should be visible
at least for those quantum-states (i.e. quantum-mechanical "particles") having a

nonvanishing energy E as ft tends to 0 .

The wave-function S^ of a quantum-mechanical particle of energy E satisfies

^^ == -^—A^ = £^ .(1.1) »^t ^ ^

where A is the Laplace-Beltrami operator on S . Upon taking E = "flAT , we

immediately get

v^ ^We^ (?eS,-L^^)

and

A ,s 4. 3WE w == 0 <m S -(1.2) ^i^+ ^ ^ u

Since the probability that the "particle" lies in a box A = S is

J ^I^P )
A

the function <f needs to be square-integrable on S with Ly norm j.
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2The occurrence of the combination 2mE/1t reflects the fact that the potential
energy V(P) is identically zero.

With ^ = 2mE/Jh2 , ( 1 . 2 ) becomes:

( 1 . 3 ) A^ +" ̂  ̂  0 oh S »

For energies bounded away from 0, taking "h ——>• 0 simply means that we want ̂
to be large.

§11. The results we reported on in the talk pertained to the case of surfaces
having constant negative curvature K == -1 ( i . e . the case of hyperbolic geometry).

In such a setting, it is customary to represent S as a quotient space P \ H ,
where H is the Poincare upper half-plane and P = PSL(2,iR) is a Fuchsian group.

Bearing in mind that, on H , the hyperbolic metric has ds = [d z | / y and area
-2element dp = y dxdy , equation ( 1 . 3 ) immediately becomes:

/" ^[^xx^^J ^ / I c f ^ O -For z € H

(2.1) ^ < )̂ - ̂  > ^€ r

^j if) <</<
r\H

This is precisely the setting of the Selberg trace formalism (as described, say,

in [H1.H2.V] ).

The main theoretical result currently known about eigenfunctions (^ with large ^

is the so-called equidistribution theorem of Shnirelman/Zelditch/Colin de Verdiere

[Shl,Sh2,Zl,cj. The result asserts that, apart from a "thin" sequence of exceptional

eigenvalues X satisfying N^bad \ = x j = o(X) , one automatically hasn -' • "- n

f / ^ I ^ ^(A^
(2.2) (̂  J W ^ - ^(r\H)

for every Jordan measurable set A = F \ H . (It is believed that, in constant

negative curvature, the exceptional X -sequence is empty, but this remains to be

proved. Cf. [LS,Rs3 .)

Getting a better grip on the distribution of the individual CP 's , particularly

when F has no special arithmetic properties, seems to be a very challenging

problem,
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For the time being at least, the surest way of obtaining new insight into this

matter appears to be by way of numerical experimentation.

§111. To this end, it now becomes expedient to allow the consideration of

surfaces S = P \ H which are noncompact, but still of finite hyperbolic area.

Geometrically, this simply means that S is compact except for a finite number

of hyperbolic punctures (i.e. cusps).

Cf. LH2,Vj for the relevant spectral theory.

§IV, The groups I chose to experiment with were the Hecke triangle groups F =

(C(2cos -̂ - ) = C generated by
N ^

Z ——> - 1/^ ^d ^ ——^ Z4- 2<05/J-)

Here N is a positive integer = 3 . Compare [HR.J and EH3J .

The standard fundamental region for (& \ H is :} = { z € H : | z [ > 1 ,

|x| < cos—r } . From DOJ 9 °^ knows that € is commensurable with PSL(2,Z)

if and only if N = 3 , 4 , 6 . For all other N , € is nonarithmetic (and has

itself as its PSL(2,R) - commensurator) .

In line with the Sarnak-Phillips philosophy [PS,S2j , when N ^ 3,4,6 , it is

tacitly assumed that any (f under discussion is odd with respect to x .

The Shnirelman/Zelditch/Colin de Verdiere result (2.2) will continue to hold for

G \ H modulo this proviso : see [ Z 2 j .

For ^ ^ 0 , each wave function CF necessarily admits a Fourier development
of the form

/ < \ r̂ j r-^ /^Wy\ ^w<£
(4.1) ( f (XT^) ^ 2. ^^ W — ^ ) ^

Y\^Q

with ^ = -^ + R2 , R > 0 , and ^ = 2cos^) . See [H2,H3j .
j /̂oLThe trivial estimate for d asserts that d = 0(Jn ) . This was recentlyn n * '

improved in fs3,Pj.

Complementing this from the standpoint of the Rankin-Selberg theory (cf . CHR»

eq. (6 .10)]) is the fact that:

(4.2) 2: \^ ^ (PX -for X —> ^
(^(^X

The coefficient ft is a simple function of N, R, and f /<f f /^
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§V. Though the method of [H3j was successfully used in computing a variety
of relatively large R-values on general <E , the procedure is handicapped by its
inability to produce (even for small R ) more than just the first few dn

This difficulty was overcome by replacing the old (collocation-based) algorithm
with a new one which takes advantage of the fact that y(x+iy) is effectively a
finite Fourier series [with (nj = M(y) J for each y . ( 1 )

When the grid points z. = x. +iy in the "defining" equation for ^M^Y^f—^—)
J J J

are pulled back to by virtue of (^'s automorphy, it quickly becomes apparent
that one obtains a non-tautological linear system for {d : ( n ( = M ( y ) } so long as
y < si^-1-) . The fact that 3- remains above y = sin(^-) ensures that, in this
system, everything basically just depends on solving for {d, : j k | = l^sin-^)} .k. N/
The latter entails solving a system no bigger than 2M(sin^-) X 2M(sin-S- ) .

As in I.H3], the number R has to be adjusted in such a way so that, when solving
the system for at least two different y-values, one obtains a solution vector free
of any y - dependence.

Successively higher d are (then) obtained by taking y smaller and smaller.

§VI. This method seems to work quite well on the computer. R-values as high as
1000 were easily explored for 4 = N = 7 . For <&„ , R was pushed as high as 5000.

We generally used either the Cray-2 or the Cray-XMP at the Minnesota Supercomputer
Center for this work.

As an indication of CPU time, we can report that, once R and the initial set of4d< are known, calculating d out to n = 10 (with 8 /s/ 10 place accuracy) typicallyK n.
takes several hours of machine time.

The "rub" of course is that M(sin^) grows linearly with R . As such, the time
needed to calculate R and the first few d- eventually becomes prohibitive.K.

For N = 3 and R = 5000 , the overall condttzonzng-level still seemed to be in
pretty good shape, however. ( 2 )

§VII. The new method has the further advantage that it is trivially restructured
to apply to the (time-honored) case of holomorphic cusp forms F of even integral
weight m on G \ H .

( ) Bear in mind here that K. (X) begins to decay exponentially fast once X
lR

exceeds R ,

(2) Here M(sin 1L ) ^ 970 .
H
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For such functions, one has:

v W /« b \ ^

(7.1) r(Tz) ^ F(r)(cz-^) ^ T^ {c d ) € ^

and
<! s^r/^

(7.2) FM = Z ^e

i^<

An elementary manipulation shows that the coefficients c can always be taken to

be real without loss of generality. It is also customary to replace F by f E
^L

y^ F , so that:

^= w-^ for ^-^^
and

^ , _ A / v -?n-.MX/^
(7.4) f(^} = 2- ^V^^^y)^

M=(

„,, -^-- -a»ry/^y^* .̂  *-*j a a.
C., 2 ̂  H , ^- ^ ^

1 /. . '/o .The trivial bound for d is again 0(n ) , with an improvement being available
in [G^ . In addition: (4.2) continues to hold for suitable <P

The computational situation is now entirely similar to that of <^ except for the

fact that the automorphy condition (7.3) is a bit more complicated than before.

§VIII. The foregoing techniques were then used to carry out a series of experiments

aimed at investigating two of the most likely manifestations of quantum chaos in the

functions <P and F .

Since the case of Co was already dealt with in [HA,HR,LJ , we were principally

interested in what could be said for nonarithmetic (E-- .N
Our experiments (3) yielded the following conclusions:

JAJ For any (K , it would appear that the individual eigenfunctions ^P become

locally Gaussian distributed as n ——>• CX) , in the sense that

( 3) with G \ H for 3 ^ N = 7
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^eA: <^)£ Wll _ , ^ .̂
[e-^A
^

e (v^ c/«
(8.1) (<^ ^<^) ff^ "«

M—»°4

c ^holds for every Jordan measurable A = J" .
Here <T = l/^p(3" ) in accordance with ( 2 . 2 ) .
The possibility that ( 8 . 1 ) may hold was first raised nearly 20 years ago by

M. Berry Cal in connection with domains in IR
The heuristic justification for ( 8 . 1 ) outlined in CHR,§6j is readily adapted

to C , but, for nonarithmetic groups, major problems loom because there are no
Langtands-type lifts from € \ H to GL(q) which would make the higher-correlation
estimates involving d that are called for seem even remotely provable.

(One strongly suspects that there exists a better, more intrinsic, way of attacking
this question.)

[BJ For nonarithmetic (& , it appears that in the case of both <̂ > and F , the
Fourier coefficients {d : n = 1} will conform to Gaussian statistics of mean 0"nn
and standard deviation Vrl(? as n —> C>0

Here, in accordance with (4 .2) ,

r ^ fo'f cf

^ i < ^ F

B' It also seems reasonably likely that convergence of moments takes place for
every k = 1 , in the sense that:

£ t^ - ^.^WX .
. < < Y\^y\ = A

In particular: by letting k grow, it is immediately evident that one gets

(8.3) ^ :r Ofn )

for every £. )> 0 . The Ramanujan-Petersson estimate would thus continue to hold

VII.6



for nonarithmetic groups.
Relation ( 8 . 2 ) should be contrasted with the results in [MS.Rl ,R2,R3] .

FcU For arithmetic € , Hecke operators exist and the functions ^, F
can be taken to be Hecke eigenforms without loss of generality. In this case,
the coefficients d satisfy muttzpUoatzve relations which cause primary interest
to focus instead on the numbers d (at least after renormalizing things to ensureP
that d( = 1 ) . Here p = prime .

The results we obtained for N = 4 , 6 were entirely analogous to those obtained
earlier for N = 3 , cf. [HA,Stj . It continues to appear that the d satisfy
Wigner's semicircle law

^{^x; ^ef^J} _ i { ^ n r - ^ j ,^ L f______L_______ -̂ r —— 1 ^f ̂  — u si<Ji
(8.4) (:̂  ^{(^X| ^ ^ v l

x-^^ ^ >

for -2 = a = b = 2 , as well as {^in the case of <^J the apriori bound

(8.5) \^\ ^ ^

Estimate (8.5) is of course a deep theorem in the case of F ; see L D J .

Properties (A) - (C) are consistent with the view that the wave-functions C^

should look more and more like random waves as n ——> 00 . Some additional tests

of (asymptotic) statistical independence and local energy density would be very

desirable here, however. Cf . C H R , § 5 j and the references cited there.

Particularly in the case of nonarithmetic groups, where the d lack any kind

of multiplicative structure, it is tempting to "explain" the presence of a Gaussian

in (A) and (B) by the meta-mathematical statement that, if a limiting distribution

does exist, it must "surely" be characterized by a maximum level of uncertainty (i.e.

entropy). For given mean and standard deviation, however, only a Gaussian fits this

bill. Cf . [Re,ShW,T 3 •
Bear in mind here that (2 .2) and (4.2) are known.

When it comes to (8.2) , this type of reasoning is no longer applicable. C f . , in
• • r *'i

particular, our earlier remark about Langlands-type lifts in item [A ] .

In the case of (8,3), however, one can give a second approach as follows.

For simplicity, we restrict ourselves to <^ . The thing to notice first is that:
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i ^— / 2 r + j X \ _ y j r- ^ /^hl^\ ^^/£
- 2: yf-Ti'-J = 2: ^^^hr-"-)^

A//M J=0 M-^O

Hence:

(8 •o .W )̂ » H'̂ Jî J '̂̂
The hope is that the bracketed term will have bounded L^ norm for y ^ H~€ as

M——^ °<? . This would immediately imply that d-^ = OCM^3)

The functional

^-1 ^.^

(8.7) ^(x,^ S ̂  ̂  ̂ '̂ "̂

is of interest for any automorphic g having mean 0 (on £ \ H) and sensible

behavior near i&d . The essential point here is that the hyperbolic distance

between successive (z+ j iSC) /M is

~( r £ -T
cesh i i ^ ^aj

This quantity tends to infinity anytime y ——>0 . There is thus some chance that

the d-^-pullbacks of the points ( z + j X ) / M will get "thoroughly mixed", or

decorrelated, as (y,M) ——> (0, oa ) .

Coupling the fact that €^ \ H has no eigenvalues in (0,1/43 with results

like [si] and [Ra] , one is led to expect at least 'heuristzcally that

-C
(8.8) ^-J (^(x^)^ ———> 0

and

' f^r^)jx - J— \^¥ + ^ ^ ol^^<8-9) rJo (^ (^ / v^ ~ ^} J J / J J

^
anytime y ——> 0 . The heuristics enter only in (8.9).

Assertions (8.8) and (8.9) clearly become interesting candidates for numerical

experimentation anytime yAog(M) starts to become small.

If one is lucky, the summands in (8.7) will begin to imitate independent random

variables, and the distribution function of U (x,y) on 0 ^ x ? '3L will tend to

a Gaussian with mean 0 and standard deviation
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^
{^fc J f^!

^

as M——> ^

These ideas were systematically tested for N = 3 , 5 , 7 using 16 very simple

choices of g . (The restriction to simple g was necessary due to cpu-time concerns.)

M was taken in the range [lO , 10 J .

The machines used were the Minnesota Cray-C90 and T3D/64 . In our largest jobs

(^37 cpu hours each), we were able to look at y = M""^ for M ^ 10 and 6 having
size about .38

For N = 5 and 7 , the functions U (x,y) were consistently found to have distri-

bution very close to Gaussian, with standard deviation differing from (8.10) by no

more than several 7a . One naturally suspects that these results are indicative of
what happens for general g .

The hope voiced after (8.6) would thus seem to be in fairly good shape for

nonarithmetic € (at least in those 6 - ranges we managed to reach).

For N = 3 , however, these heuristics basically fell apart.

The reason for this lies in the fact that the functional U is essentially just

the Hecke operator T^ . When g = (f , for instance, one effectively gets:

(8.11) —— 21 <ff'z71L) ^ (c^t^t)(^)
^ J.O

From this it follows that there is no chance of having U«£<fJ manifest any type of
< < y» xl

Gaussian limit on 0 = x = <L . Indeed, by applying [si] to powers of CP , one

quickly sees that the limiting distribution of <f (x + iy) with respect to x must
be just the spatial distribution of <f .

Relation (8.9) goes bad because the constant in (8.11) is not generally ±1.

To understand what happens for a more general smooth g , one simply applies (8.11)

to the individual components and eigenpackets making up the spectral decomposition
of g . (4)

We can summarize things by saying that the existence of Hecke operators basically

induces long-range correlations in the "flow" ( z + j < ? C ) / M mod <E (as y->0).
Such correlations seem to be absent when t is nonarithmeticN

( ) Some finite set of these terms will of course carry the bulk of the information.
(Note too that, when g is odd, the eigenpackets are absent.)
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That absence causes (8.3) to take on the look of something that is true for
"ergodic-theoretic" reasons.

§IX. Placing any one of the results in §VIII on a rigorous footing seems to

be a tall order. New ideas definitely seem to be necessary. Perhaps some of these
will come from PDE.
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