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BOUNDARY VALUES OF COHOMOLOGY CLASSES AS HYPERFUNCTIONS

Francois Treves, Rutgers University

Summary

The lecture outlines the contents of the article Cordaro—Gindikin—Treves [1]

which purports to formalize in the framework of hyperfunction theory the concept of

the boundary value of a cohomology class (with coefficients in the sheaf of germs of

holomorphic functions) propounded in the works [I], [2], [3] of Gindikin. In the

article [1] of Cordaro—Gindikin—Treves the hyperfunctions are defined on a maxi-

mally real submanifold of complex space (and more generally on a hypo—analytic

manifold). The formalization is facilitated by the treatement of hyperfunctions and

of the boundary values of holomorphic functions in the recent monograph Cordaro—

Treves [1]. In order to avoid technicalities that would obscure the overall picture,

the present lecture will deal only with hyperfunctions in Euclidean space R".
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We begin by recalling some known facts about boundary values of a holomor—

phic function / in a wedge with edge on IR11. Consider an open set f! C IR" and an open

cone r C IR^O} (thus x e F, A > 0 => \x e F); it is convenient to assume that both 0

and r are connected. The reader may think of a wedge as a tuboid 0 + zF; or else,

more precisely, as the cutoff of such a tuboid in the imaginary direction:

^(Q,r) = { z 6 0 + %r; [ Jmz\ < 8( ^z) },

where 6{x) is a given continuous function in ^, 6 > 0; fl regarded as a subset of C" is

called the edge of the wedge ^(Q,r).

Suppose / G ^(^(f!,r)) and select at random a vector 7 e F, such, say, that

| 71 =1. Given any y? 6 C^^p(f2) we can form the integral

J(f;/,y0= f v[x)f{x+zt^x,
1 "IRn

provided ^ > 0 is sufficiently small (t < 8{x) if x G supp y?). Furthermore suppose

that, given any compact set K c nu^§(n,r), there are constants k £ Z?+, C^ > 0 such

that

(1) 1/^)1 < ^l^^l^v^eKn^n.r).

It is then easily seen that lim I.{t\f ,ip) exists: it suffices to note that f{x+ztj) =
^+0

{Q/Qt^'^x+zt^ with g e (9(^(f2,r)) and t -4 g{x+it^) continuous in the semiclosed

interval [0,6{x)[. But {Q/St^g^x+zt^ = {zj'Q/Qx^g^x+it^, hence, as <-» +0,

W^) = f [(-n^/^)^1^^]^^^^^
' "[Rn

r [(~^7^/^)k+l^M^== < &v,^>.
'[Rn "

Thus does the boundary value of/ define a distribution bv^f in 0.
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The constraint (1) creates unnecessary difficulties. If we were to limit our

attention to distribution boundary values we would be forced to deal only with Dol—

beault forms (see below) whose growth at the edge is tempered, in the sense of (1).

For instance we would be asked to find solutions of this type to the Cauchy—Rie—

mann equations in wedges ^(f!,r), which is more technical than just finding solu-

tions with unrestricted growth. It should be also said that some theorems, foremost

the theorem of the Edge of the Wedge (see below), are more general when the con-

dition (1) is absent. [For other results the version without (1) is weaker!] For our

present purpose it is definitely advantageous to remove (1). To do this I shall recall

the definition of hyperfunction boundary value.

A continuous linear functional fi: ^C") -^ C is called an analytic functional (in

C11). The space of entire functions ^(C11) is equipped with the topology of uniform

convergence on compact sets; we shall denote by ^(C11) the space of analytic

functionals. One says that p. 6 ^(C11) is carried by a compact set K C C" if, given

any e > 0, there is C^ > 0 such that

(2) |<M>1 < C^M^x \h\,
K,

where K^ = { z 6 C11; dist(^,K) < e }. Below we write /A 6 ^(K) if an analytic fun-

ctional p. in (n is carried by a compact set K C C11. It is not true that, for any pair of

compact subsets K^ and Kg of C1",

(3) O^K^O^K^O^K^
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It is possible to have K^nK^ = 0 and yet ^(K^n^K^) ^ {0}: for instance the Cau-

chy formula shows that the Dirac distribution in (C, h -»/i(0), is carried by the circle

{ z\ \z\ = r } whatever r > 0. However, and this is of the foremost importance for

us, (3) is valid if K^ and K^ are subsets of real space R11. In this case we can talk of

the support of p. (in R11), which we define to be the intersection of all the compact

subsets of R11 which carry p.. This property of real space follows from the fact that

every compact subset K of R11 is polynomially convex, ie.,

K ^ z e C ^ V / i e O O C 1 1 ) , \h(z)\ < M a x \h\ }.
K

Proof: For < = ^+ZT? i K, take h(z) = expf- S (^--^)21. For all x € R11, 0 < h{x) <
L j = i J J J

1; and if ̂  K.Max \h\ < 1. But h(() = exp(H2). n
K

The polynomial convexity of the compact subsets of R11 has also the conse-

quence that, if Kj CC R" (j = 1,2),

(4) O^K^^O^K^+O^K^

Finally we point out that if K CC R11, ^(K) carries a natural Frechet space struc-

ture.

Properties (3) and (4) are all that is needed to develop the concept of a hyper-

function according to Martineau [1]. First let U be an open and bounded subset of

R". The hyperfunctions in U are the elements of the quotient linear space

(5) ^(U)^^!!)/^!;).
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Here 9V is the boundary of U in 1R". If V C U is also open it follows from (4) that

any /A e ^(TT) can be decomposed as fi = ^ + /^, with ^ e ^(V), /^ e ^(I^V).

If we also have /z = z/7 + v\ v ' e ^'(V), ^ € ^(TJ^V), then /^ / - ̂ / = ^ - /A" is

carried by V as well as by TT\V, and therefore, accroding to (3), ^ — v ' € O^QV).

In other words, the coset [^/] of ^ / is unambiguously defined; it is taken to be the

restriction of [p\ to V. This defines the restriction map r^r: B(V) -* 5(V), whence a

presheaf, whence a sheaf, the sheaf S of hyperfunctions in IR11. If now H is any open

subset of IR11, the continuous sections of the sheaf S over Q are the hyperfunctions

in Q. When Q is bounded this is consistent with Definition (5). It is readily seen

that the sheaf 3t is flabby, ie, every hyperfunction in Q extends as a hyperfunction

in R11 (whereas not every distribution in 0 f K11 extends as a distribution in IR11!).

There is a natural linear injection T^l) -» fi(^); however there is no natural Haus—

dorff topology on the vector space 5(0) [due to the fact that O'^QV) is dense in

o'm
Suppose now that the boundary of the open set U CC 0 is smooth, and let /6

0(^(0,r)), 7 6 rnS11"1, as in the beginning. For any h m (7(C11) define

<4^>=/ h(z)f(z)dz
J1U U+if7

(dz = d^A- - 'Ad^, 0 < ( < inf 6). It is obvious that y ^ 7 ^ ) can be regarded as an
U •M

analytic functional carried by TT+^7. The following result is proved in Ye [1] (it is

inspired by an argument of Hormander [1]).

THEOREM 1.— There is / z 7 , 6 ^(^D such that the following is true:

To every open neighborhood V of 9V in C11 there is e > 0 such that, ifO < t < e
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then ̂  - ̂ y{t) is carried byj.

If we change 7' e rnS"-1, f/ f 7, Stokes' theorem implies at once that /J -
/ J)"

^J.U e ^C^)- Thus the coset of /^y in fi(U) is independent of 7. We shall call it

the hyper function boundary value o f / i n U and denote it by bv,/; i f V c U (with 9V

smooth) we have bv^f = r^(bv^f). We can let U expand to fill 0 and thus define

&v-
THEOREM 2.— The boundary value map

WW) 3 f ^ bv^f e BW

is a linear injection.

Proof: Let the open set U CC 0 be connected and have a smooth boundary 5U.

Suppose that bv^f E 0; this means that ^ e O^QV) and therefore, given any

compact neighborhood K of 5V in (n, provided (is sufficiently small,

(6) |f h{z)fWz
| U-H<7

< C7sup \h\.
K

Take h{z) = (^/^^expf^ S (^—^-^7i)21 with ( 6 U away from K. As v -4 +oo
L j = l J

the left-hand side converges to |/(^+^7)|. The right-hand side is dominated by

(W^r^Max exp(-z/|^-^|2+^2).
K

If ( « dist(^,K) it will converge to zero, implying that / E 0 in an open subset of

the connected wedge ^(U,r). n
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Of course the map (6) is not surjective: no hyperfunction which vanishes iden-

tically in an open subset of f2 can be the boundary value of a function / e

0(^(0,r)) since ^(0,r) is connected. But suppose that a set of open and convex

cones I - (j = l,...,r) has the following property:

(7) r^u---ur^=iR11 ,

where 1̂  = { ( e IR"; V x e Fj, ^x > 0 }. Then, given any hyperfunction u in R11,

every point x^ € R" has an open neighborhood U in which

(8) u = s ,̂ /j e W .̂)).

Formula (8) is easily verified when u is a distribution, which obviously can be

assumed to have compact support. For the Fourier inversion formula and (7) allow
r

us to write u = S u^ with
j ^ "

u,(x) = Wf e^^W
Aj

where A. c H is a Borel set. But. for y € Fj the oscillatory integral

u^x+zy) = (2T)-11/ e^^^-^Qd^
^j

defines a holomorphic function in IR'^+zFj.

If we forget about Condition (7) we may introduce the following definition

(Satol969):
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DEFINITION 1.— The hyper function u is said to be (microlocaUy) analytic at the point

(x^°) e ^([^{O}) if the cones Fj (j == l,...,r) can be chosen in the open half-

space { x e IR"; x9 ̂  < 0 } in such a way that (8) is valid for some open neighborhood

V ofx^ We shall refer to the complement of the set of points at which u is analytic as

the analytic wave-front set ofu and we shall denote it by WF (u).

Other names for WF (u) are the essential singular support of u, the essential

spectrum of u^ the microsupport of u. The invariant interpretation of the space in

which (a;,^) vary is of course phase space, ie, the cotangent bundle of 1R11 (from which

the zero section has been deleted).

We are now going to introduce an alternate definition of hyperfunctions. In

what follows U will denote an open subset of C11 and (^(^AP*^) the space of differen-

tial forms

/=,,f ,,f W^,- he <"W-|I|=p |J|==q '

We are using the multi-index notation: I = {ip...,i } with 1 < i^ <- - -< i < n, dz-

= dz. A - - -d^. ; p is the length of I, and likewise for J and d?,. We have11 ip j

?/= S E E [9i -/9z,)dzMz,f\dz-.
|l|=p |j|=q<=i 1)J ' ' l J

For each p = 0,1,...,n, we obtain the Dolbeault complex

'8: C^AP'^) -»C^AP'^1), q = 0,l,...,n.

We shall denote by H?'^) its q111 cohomology space. Below we shall make constant

use of the fact that if/e C^A"^) then ~Qf = df.

Consider now a compact set K c IR" and a form / 6 ^(C^K^"'11-1) such that

d/ = ~8f-= 0. Let T) be an open subset of C" such that K c T), whose boundary is a C®
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hypersurface E. Then h -> f hf defines an analytic functional fi carried by E. By
-S /

Stokes' theorem E can be contracted about K as much as we wish. It follows that {i.

is carried by K. On the other hand, since E has no boundary, replacing / by /+ dv,

v 6 (^(C^KiA11111'2), does not modify /^ , , which means that /^-is really associated to

the Dolbeault cohomology class [/] of /. Let us therefore write fir.. We obtain a

linear map

(9) Hn- l(Cn \K)^[/]-.^€0 /(K).

First suppose n = 1. In this case H^C^K) is the space of forms y{z)dz with

(p 6 0(C\K). If we recall that C\K is connected (hence K is Runge) it is easy to

construct a right—inverse of the map (9), namely y. -^ F/A dz, where

T I I = (2^^)-l</z^(z~w)-l>

is the Cauchy transform of /z. Notice that r maps O^K) into the space ^(C\K) of

holomorphic functions in C\K that vanish at infinity. Whatever h e 0(C),

< ii,h > = f h(z)Tii(z)dz,
"E

where S is any smooth, closed curve in C\K winding (once) around K. Laurent

expansion gives a natural isomorphism 0^t\K) ̂  ^(C\K)/(7(C).

Now suppose n > 2. We introduce the Bochner-Martinelli current,

E{z) = c^ S (-l)^1-^1 d^A- • -Ad^Ad^A- - -Ad^^Ad^^A- • -Ad^.
j = l \Z\2n

We have

dE(z) = (-l)11^ S ̂  (-AL )d^A- - -Ad^Ad^A- - -Ad^
J=1^ l^ j 2 1 1
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and

^9 ( zj . , ^ S < 9 5 . 1 N n-lAr1 ^L— ̂ ~U = -C11-!)^ — — (7—, ,) == - -^(7211-2)>
J=^j l ^ j 2 1 1 J=^j^j l^l2"-2 ' r

and we select the constant c^ in such a way that (—l)"'13^^!2 '̂̂ !!^) = ^- Thus

(10) d£'= 8dz^- - -Ad^Ad^^A- - -Ad^.

From this and from Stokes' theorem it follows at once that, if E is the smooth

boundary of the domain V 3 w, then, for any h e ^(C11),

A(w)== f h{z)E(z-w).
"E

Let now K c WllR11 be compact and connected. We observe that, for any z 6 S,

;̂ -4 z!—^i admits a holomorphic extension to an open (and connected) neighbor—
\z-w\2n

hood U of K in C11: just extend l^-^l2 as the function S [(a^-^k)2 + y^]. This
k = l

extend E{z-w) as an (n,n—l)—form £'(^,w) in ^—space whose coefficients are C"

functions of (^,w), holomorphic with respect to w, in (C11^)^. Here U' is a

neighborhood ofZ? contained in D\ obviously h{w) = f h(z)'&(z,w) in ^. If p. 6 O'(K)
2j

we may write

</z,/i>=f/i(^(^).
E

Since we are free to contract the domain T) about K as much as we wish provided we

contract U correspondingly, we have

^ = < /^KM > € ^(C^KiA——1).

In C^Z? we have ̂  = < ^ ,^E'(^,w) > = 0: to ^ e ^(K) we have assigned a class [^]
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6 IP^'^C^K). The very manner in which we have constructed the class [?E] shows

that the map // -* [^] is the inverse of the map (9), which thereby has been proved to

be a bijection. [It is an easy exercise to derive Properties (3) and (4) from the

isomorphisms we have established.]

We can sligthly re—interpret what was just said to confirm the analogy with

the picture in Theorems 1 & 2: Here the cone F is taken to be B^VO}; suppose K =

IT, with U open in IR". The preceding argument shows that, if /6 (^(C^KiA11'11"1) is

closed, then the analytic functional /^Tj(<) defined by

< fi {t^h > = f hf
J V { J "U-^S"^

"converge" (in the sense of Theorem 1) to /z- e ^(TI) whose coset modulo O'^QV)

only depends on the class [/] e IP^C^K). That coset can be denoted b v [ f ] and

called the boundary value of [/] in U. The following statement has already been

essentially proved:

THEOREM 3.— Let U be an open and bounded subset o/R". The linear map

(11) H—^^TI) 9 [/] -. bv^[f} e 5(U).

is bijective.

[When n = 1 the cohomology space at the left in (11) must be interpreted as the

quotient space 0(C\TT)/<7(C) ^ <^(<C\TT).]
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In summary we have seen that we can define boundary maps from the coho—

mology spaces IP'^+zr) into 5(f2) when q = 0, in which case the cone F can be

taken to be convex; and when q == n—1, in which case F = R^O}. When q = 0 we

obtain a "small" subspace of 5(^2), whereas when q = n—1, we obtain all of 5(0). In

both cases the boundary value map is injective.

We shall now tackle the cases 1 < q < n—2 (henceforth n > 3). The definition of

the boundary value map is a natural extension of the ones in the cases q === 0, n—1.

As before let r c K^O} be an open and connected cone and let c be a Lipschitz

q—cycle in F, ie., the image of a Lipschitz map j. Sq -» F. We are going to integrate a

C® differential form ^ of degree q in F over c: this means that we integrate over Sq

the pullback ^^. Let then U C 0 C IR11 be as before and consider a closed Dolbeault

form / e ^(^(n.r)^11^). We can define the analytic functional

0^)3h-.<^Jt\h>=f hf.
Jlu "U-hifc

The analogue of Theorem 1 is valid here. As a matter of fact, the statement for q

arbitrary can be deduced from that when q = 0 by taking

^u = t, ̂ u^'
where d7 stands for an appropriate measure on c. At any rate, by reasoning directly,

we get an analytic functional /z0 6 ^(TT) such that /z0 — t^r-r^t) is carried by ever7, U 7, U 7, U

"smaller" neighborhoods of 9V provided ( > 0 is sufficiently small. As before the

coset modulo O^OV) of ^ depends only on the class [/] € H^y^n.r)); it also

depends only on the homology class of the q—cycle c in F. We get a bilinear map

lynxip-W^r)) 9 ([c],[/]) -. bv^[f] e 5(U).
Below we keep the cycle c fixed; letting U /" 0 we define the boundary value map
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(12) H-W^r)) 3 [/] -. bv^[f] e BW.

We cannot expect this map to be surjective, but we must demand that it be

injective, for otherwise the information extracted from boundary values evaporates.

This forces us to shift the focus from the cone F to the cycle c and to microlocalize,

in the sense that the open set U is allowed to contract about a central point 0 and

the open cone F to contract about c (it is convenient to take c c S"'1; at any rate

microlocalization ignores the radial dilations in F).

We are unable to prove directly the injectivity of (12) even in good circum-

stances (e. g., when c is a q—sphere). But we recall that H^Z/) is but one of the

"realizations" of the cohomology space H^,^^) with coefficients in the sheaf

O^^ of germs of n-forms hdz {dz = d^A- • -Ad^, h holomorphic). Another realiza-

tion is the Cech space ^(U.O^^), and the switch from Dolbeault to Cech enables us

to prove what we want, but only under a special assumption about the cycle c:

(13) the cone F generated by c in IR^O} is equal to the boundary of its

convex hull I.

By the boundary of f we mean its boundary in L\{0} where L is the smallest linear

subspace of R" that contains f . Actually I, is generated by its intersection with a

(q+l)-dimensional affine subspace A of IR11; there is no loss of generality in assuming

that c is equal to that intersection. In this case c is a Lipschitz hypersurface in A

and (13) amounts to saying that c is the boundary in A of a relatively open,

bounded and convex subset of A.
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We shall skectch the proof of the injectivity of the map (12) in a simple

situation, when q = 1 and c is, say, a square abed in a plane A. Call F , an open and
0,0

convex cone contained in F whose intersection with A contains the side [a,b], and

similarly for be, cd and da. By selecting the cones F F F and F sufficiently

"thin" we ensure that the intersections F = r ,nr , (3 a) T = r nr fg 6t r =a a6 da - ' 6 ab be ' '' c
r feezed (9 c) and r^ = ^c^da (9 ri) are "Dually far apart. Let 0 be an open subset
of (R" and let U CC Q be an open ball centered at a point 0. If /e ^(^A"'1) and ifBf

= 0 we can find u^ e ^(U+zF^; A"'0) such that ̂  = / in U+iF^, and similarly

for be, cd and da in the place of a6. In V+zT we have u - Ui = a dz a e
a ab da "a ' "a

(7(U+?r ). Whatever /i 6 ^(C"), we have

/ ^=
U+itt

f ^/+ f /i/ + f A/+ r /,/=
U+t<[a,6] ••U+t<[6,c] •'U+i<[c,d] •'U+i<[d,a]

Ĵ ,̂ ''..-«.) + f^^-^ + ̂ .̂ '•.r̂ ) + .C^^-'-J =

•C.,.̂ '+ ̂ ...̂ '+ ̂ hsdz + ̂ ,..̂ -
By letting t > 0 go to zero we conclude at once that

(14) bv^[f] = bvy ^ + bv^ g^ + bVy ^ + bVy g^.

Suppose now that bv^[f] s 0. At this point we apply the theorem of the Edge

of the Wedge, actually a refined version of it. The standard version states that there

are six functions F^ 6 O^'+iF^ F^ e O^'+z^J, F^ € 0{V'+z!'J, F^ e

0{V'+iY'^ F^ 6 OiV'+z!^), F^ e O^V'+z!^), with U7 c U an open ball cen-

tered at 0 and J" an open and convex cone in IR"\{0} containing the segment [p,q],
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such that

\= ^b + ^C + ^d in ̂ +^^0^^

h = - ̂ b + ̂ c + ̂  in u/+^(^a5n^5cn^6dn^^

g = - F -F, + F . inu'+^r nr, nr jw ),"c ac 6c cd ' ac be cd c"

g = - F . -F , .~F . inir+^r nr7 nrjii,).^a ad bd cd v ac be cd d7

The refined version, proved by fully exploiting the convexity of the square, allows us

to assume that the functions corresponding to the diagonals, F and F,,, vanish

identically. The meaning of this is that the quadruplet {g ^g^g ,5,}, a priori a Cech

cocycle for the covering {V'+zT^yV'+zV^.V'+zT^V'+z!^} of U'+zl^, is in

fact a Cech coboundary. But then the natural isomorphism between the Dolbeault

and Cech cohomology tells us that / = ~8u in U'+zF' , with IT C U an open ball

centered at 0, F' C F an open cone containing c and u € (""(U'+zr^A11'0). [A more

careful reading of the equations might avoid any shrinking of U or of r, but the

shrinking is at any rate unavoidable when dealing with boundary values on curved

edges.] The method we have just outlined can be generalized to any "convex"

q—dimensional polyhedron c, and thence to any Lipschitz q—cycle by a careful poly-

hedral approximation, leading to the proof of

THEOREM 4.- Assume n > 3 and 1 < q < n-1. Let c be a Lipschitz q-cycle satisfying

(13) contained in an open cone F c R^O}. Let U be an open neighborhood in IR" of a

point 0 and 6 a number > 0. There are an open neighborhood V C U of 0, an open

cone F', c c r7 C r, and a number 6', 0 < 6' < 6, such that, for any [f] €

H^(U,r),Odz), ifbv^[f] = 0 then the restriction of[f] to ̂ (U'.r) vanishes.
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The correct way of stating Theorem 4, especially its version for curved wedges,

is microlocal, in the following sense. The concept of germ of a wedge y§(U,r) is

obvious: let the open subset U oftR" contract about the point 0, the cone F c [^{O}

about the q-cycle c and let 6 -» +0. Denote such a germ by y([R11,0,c). We may then

talk of the germ of a cohomology class [f] e H^^IR11,^),^^) in the germ of wedge

^(IR^O.c); and of its boundary value along I . bv^f], which is the germ at 0 of a

hyperfunction in IR". We shall debote by ffJCR11^) the space of germs of hyperfunc—

tions at 0 of the form bv^f], [f] e H^IR^O.c),^). [The degree q is the dimen-

sion of the cycle c.]

Before proceeding we discuss an example which shows that Hypothesis (13) is

unavoidable. Let n be a two—plane in IR3, not passing through the origin, and

consider four points of n, ^, v^ v^ v^ such that the union of the triangles s. with

respective vertices ^, v,, v^ (j = 1,2) is not convex:

^i

Due to the lack of convexity of ^U^ there exists a germ of a holomorphic function h

in the germ of wedge ^(IR3,^,^,^]) which cannot be represented as the difference of

two such germs in the wedges ^(IR^O,^.) (j = 1,2; we are using the terminology of

germ of a wedge in a case where the directrix is a chain and not a cycle, but what is
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meant should be clear). Let then c denote the boundary of the (nonconvex) polygone

5.U5o. For each i = 0,1,2,3 we define the germ of a holomorphic function g^ in the

germ of wedge ^IR^O^^J) as follows: g^ = - g^ = h (restricted to the relevant

wedge); g^ = g^ = 0. This defines a Chech one—cocycle g and the boundary value of

its cohomology class vanishes. Suppose g were a coboundary. It would mean that to

each pair (i,j) f (0,3), 0 < i < j < 3, there is a germ of holomorphic function Fy in

the germ of wedge ^IR^OJ^,^]) such that the following is true

(15) F^ F^ = A, F,3- F,, = 0, F^ F^ = 0, F^ F^ = ̂

in the germs of wedges ^(IR3,^,^}), j = 0,1,2,3, respectively. Thanks to the micro-

local Bochner tube theorem we derive from the two middle equations (15) that, for i

= 1,2, there is the germ of a holomorphic function F^ in ^(IR3,^,^) such that

F, = F,, in yCR3,^^]), P. = ^3 in WO^^D-

But then the first (as well as the fourth) equation (15) implies h = F^- F^ in

^(IR^O,^,^]), which contradicts our choice of h.

Back to the square abed we note that the equation (14) has further implica-

tions, beyond the injectivity of the boundary value map. Let us not assume that

bv^ s 0 but, instead, that the four vertices a, 6, c, d all lie in the closed half space

H. = { y 6 R11; y-^o < 0 }, which means that c c H.. Since the intersection of each

cone F , r , r , r . with the interior of H. is nonempty it follows that (0,^o) t

WF (^[/D. In other words, WF^(6^[/])| ̂ does not intersect the "antipolar" -r^

= { ^ G B^VO}; V y e c , ^ - y < 0 } . And as a matter of fact, if u e B(IR11) is such that
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^^lo^-^) = 0 then u == ^[/l for s01116 [/] 6 H^WU,?)), if the open
neighborhood U of 0 is sufficiently small (F: an open cone in IR'^VO}, F 3 c). This

can be proved in full generality:

THEOREM 5.- Let c be a Lipschitz q-cycle satisfying Condition (13) and let 0 be an

arbitrary point o/lR". For the germ at 0 of a hyper function u in IR° to belong to

BJ^^) it is necessary and sufficient that WF (u)| n(—r°) = 0.

The following consequence of Theorem 5 is noteworthy:

COROLLARY 1.- Let c, c' be two Lipschitz cycles in IR"\{0}, both satisfying Condition

(13). Ift^, C r^ thenBJi^^) c 5jlR",c).

The cycles c and c7 need not have the same dimension, but note that f* , c F

(^ F^ c r^,) entails dim c7 < dim c.

Let us give a simple illustration of Theorem 5. Consider an arbitrary (hyper-

function) solution u of the wave-equation

9-iulox^- S 9^/9x^=0
k = l

in IR"41 (n > 2). By a celebrated theorem of Sato we know that WF u C { ^ e IR"; ̂ ^

= d +' • •+ ^ }• For any 6 € IR", [ 6\ < 1, call Cg be the intersection of the unit

sphere S" with the hyperplane Hg = { ^ e R"; ̂  = ̂  +.. -+0^ }. Observe

that Eg intersects the light cone solely at the origin; and that dim CQ == n—1. It
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follows that, in the neighborhood U of an arbitrary point of IR1141, u = &-yco[/] with /

^ H11'1111-1 !̂;,!̂ )) where r@ c ^'^{O} is an open cone containing HQ\{O}. As we

show in a forthcoming article all these cohomology classes can be glued together, to

yield an (n+l,n—l)-class in the whole region R^+zr, where now F is the entire

complement of the solid light cone: F = { y e R1141; y^ < y\ +- - -+ y^ }. It would

be interesting to describe explicitely the cohomology classes corresponding to the

classical solutions of the wave equation, say, to the solution u such that

"1 ̂ i=o = ̂ i-̂ ). 9u/8x^ ̂ ^ == 0.

Considerations similar to those above apply to more general differential

operators with C^ coefficients.

The article Cordaro—Gindildn—Treves [1] proves the results above, and more,

when the edges of the wedges lie on a totally real C00 submanifold of 1R11. The

difficulty in extending the results is that we cannot exploit the convexity of the

tuboids U+zF when U and F are convex subsets of Euclidean space. The difficulty is

resolved by a local approximate convexification (see Appendix, loc. cit). This

procedure leaves no other choice than to microlocalize.
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