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Some new results in ID inverse scattering.

John Sylvester 1

Mathematics Department
University of Washington

In this talk we discuss one dimensional scattering and inverse scattering
on the half line from the point of view of the layer stripping. We follow the
approach in [6], see [I], [2], and [3] for other approaches to layer stripping.
We consider the Helmholtz equation

(1) ^+c.V(y)u=0

which we transform into travel time coordinates by introducing the new in-
dependent variable

ry
x = \ n(s)ds.

Jo

The equation (1) becomes, with / == ^ and a(x) = ^^,

(2) u11 +a(x)uf +^u = 0

We consider the unique soltution to (2) which has the assymptotics

u{x^) - e~1^

as x —> —oo. We assume that n(x) varies only for x < 0 and n =. 1 for x > 0,
hence a = 0 for x > 0 and, for x > 0, u has the representation

u(x^)=——,(e-wx+R^}ewx)

The coefficient R((^) is called the reflection coefficient, and we denote the
scattering map by S

a^—>B
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The layer stripping approach is based on the observation that the unique
solution to the ODE

^ r 1 = 2^r+i(l-r2)
(6) r(-oo,^)=0

satisfies
r(0,o;) =J?(^).

To verify this, we suggest that he reader first verify that A = -^— satisfies a
similar equation, and then use the identity A == —^ to obtain (3).

The Frechet derivative, at a = 0, of the scattering map S is called the
Born approximation and turns out to be the Fourier transform. To see this,
let a = ea and p = ^-|^o, then p satisfies

p' = 2^+f
{ ) p{-oo^)=0

which has the explicit solution

p(x^) = f e^-v^Wy
J —oo L

( a \^
= ^Hy^{y+x)J

where Hy^o dentoes the indicator function of the left half line. At x == 0, this
is just the Fourier transform (we use —2zcj in the exponent for convenience)
of^<of.

Our first point in this lecture is that several well known theorems about
the Fourier transform have analogs for the nonlinear map S. Specifically,

THEOREM 1 (PLANCHEREL EQUALITY)

4 [° o^dx = - r° log(l - |/?|2)^
7T J—oo J —oo

= ^W^^.EW
A:=l k

The point of the second equality is to emphasize the definiteness of E(R)^
which we refer to the energy of the reflection coefficient. As E(R) is a posi-
tive sum of Lp norms, weakly convergent sequences whose energies converge
converge strongly, etc..
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There are many theorems about the Fourier transform which are at-
tributed to Paley and Weiner. The one we refer to here is the theorem
that relates the support of a function to the growth rate of its transform
along the imaginary axis. If a has compact support, the reflection coefficient
itself does not necessarily extend to be holomorphic in all of C. however,
certain rational functions of R and its conjugate do have this property.

THEOREM 2 (PALEY-WEINER) The following are equivalent:

(i) supp a C [A — W^ A] for some A < 0 and some W > 0

(ii) I 1 extends to be liolomorphic in C and there is a constant K such
that

\R[
- <, K (e^1111^ + g-^M^)')

1-\R\

(Hi) —n^2 extends to be holomorphic in C and and there is a constant K
such that,

\R\
- < {< fe^14011"^ + e^-11')1"1^))1 - \R\

It follows from the theorem above that ^pp and ^ p have Fourier
transforms supported in an interval of width W, Therefore, the classical
sampling theorem implies that they are exactly determined by their sampled
values. Since their ratio is 7?, we have

THEOREM 3 (SAMPLING) //'supp a C [A- W,A], then R(uj) is exactly de-
termined by its values at uj.n, = 7-—.

The second point in this lecture is to describe an inverse scattering method,
a new (the first mathematically precise) implementation of layer stripping.
We begin with the definition of tlie Hardy space ^^(C"1")

H (C4") = {p | p holomorphic in C4' and sup E^p^ + ib)) < 00}
6>0

where E is as defined in the Plancherel theorem above. We shall add a
subscript and write H^ to denote those functions which satisfy the symmetry
condition p{—u) = p(c^). These are all Fourier transforms of functions in L^
i.e. real valued L2 functions.
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Our description of scattering theory and inverse scattering theory will
rely completely on the Ricatti equation (3). We begin by noting that there
is a distinct difference between propagation in the upward and downward
directions. We use the notation C((rro^z'i); H^) to denote continuous maps
from the interval ( x o ^ x ^ ) into H^.

THEOREM 4 Consider the initial value problem:

(^ r' = 2z^r+a(l-r2)
v / r{x,^) == roHe^

If x\ > XQ, then

for every a 6 L^, there exists a unique r{x,uj} e C{{XQ,X^}\ H^) which solves (5).

If x\ < XQ, then

there exists a unique pair (a, r) G ^(.z'i, xo)QC{(x^ z-o); H^) which solves (5).

COROLLARY 1 (FORWARD SCATTERING) If a 6 Z/^(-oo,0), then R{^) e
^.

Proof: Let XQ = —oo and ro = 0 in the previous theorem, then r(0,o;) ==
R^).

COROLLARY 2 (INVERSE SCATTERING) If R^) e H ^ , then R is the re-
flection coefficient for a unique a G ^(—oo,0).

Proof: Let XQ = 0 and r'o = R in the previous theorem, then there exists a
unique a G ^(—oo.O).

In the remainder of this lecture we sketch the proofs of these theorems.
We start with (3), multiply by 77, and take real parts to obtain

(6) \r\21=^(r+-r){l-[r\2)

Dividing by 1 — |r|2 gives

(7) -log(l- | . / . |2) /=^(.r+,-).
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The formal expansion r{x,iu) = °^ + 0 (^2-) for large (^, suggests that

/• oo Cv( T\
\ (r(u)+F(a;))^=4-

*/oo Z7T

so that, integrating (7) with respect to u gives

(-yj -log(l - K^)!2)^)' = ̂ .

Integrating with respect to x gives the Plancherel equality

/ OO 1 f-X

-log(l - |r(.r,a;)|2)^ = — / a\y)dy.
-oo 47T ./—oo

To obtain the Paley-Weiner theorem, we divide (6) by (1 — |r|2)2 to obtain

/ H2 V ( r T \
=^ -.——rrr+\1 - I 'rl2; \1 - |r|2 1 - \r\2^

We may also check that

r \ - / r \ I |r|2 \ a

\l-w=2•"lT-wJ+al^^FJ+2
so that the system of ODE'S for , • .2 , , r .0, and —m ls closed and linear. IfJ i — j y - j ^ ? i _ [ 7 . j 2 ? l—|r|2

we inverse Fourier transform (uj ^-> f ) , then the system obtained is hyperbolic
with characteristic slopes —1,0,1. The finite speed of propagation for this
system implies the easy direction of the Paley-Weiner theorem in the case
A = 0; we don't discuss the rest.

In order to sketch the proof of theorem 4, we write out the integral equa-
tion equivalent to (3),

(8) r[x^} = e2^'-'-0) r^-y)0^!^ _ r^y^dyT\X^UJ} = e v ' " / / e
IXQJX(\ ^

When x > a/'o, the exponential e21^'"^ decays in C4', so that the solution
r will naturally be in H^1 C H2^^) (assuming we prove the necessary esti-
mates). However, when x < XQ^ the exponential decays in C~, in particular,

r e^^a^dy € H\C^}
JXQ
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We insist that r € H2^) and recall that

^(^-^(C4-)®^2^-)

with P"*" and P" denoting the orthogonal projections onto each factor. Ap-
plying P" to (8) gives

0 = P-r(^) == ^e2^^^0^^+P-(e2i"(a;^o)ro-- [ x e^-^a^dy)
JXQ 2 Jrro

Rearranging this equation and applying P4' to (8) gives the system

F e^(^-y)c,(y)dy = P-(e^(x~y)ro- ( x e^^a^dy}
JXQ JXQ

r(x^) = P^^^-^ro-r e^^a^ydy}
J XQ

which exhibits the downward flow as an evolution for the Fourier transform
of a and r together.
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