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The Mathematics of Large Atoms

C. L. Fefferman and L. A. Seco

After the initial success to explain the hydrogen atom, one of the early challenges of
quantum mechanics was to create a simplified theory to study larger atoms. One of the
successful pictures is Thomas-Fermi theory. According to it, the atomic energy E(Z)
and density pz(x) of an atom of charge Z (to be defined a little later) behave as

E(Z) ̂  c,pZ7^ p^x) - p^(x) = Z2?^ (Z^x) , (1)

for a suitable explicit constant CTF and universal (Z-independent) function p\y. Asso-
ciated with the density there is also the Thomas-Fermi potential V^, satisfying also a
perfect scaling condition

V^{r) = Z^p (Z^ . r) .

Here we content ourselves knowing that Thomas-Fermi theory is simpler than the
Schrodinger equation. We will postpone the derivation of the Thomas-Fermi equations
until later.

The problem to understand Thomas-Fermi theory mathematically was tackled in 1973
with the work of Lieb and Simon (see [LS] and [Li]), which is now a central piece in
modern mathematical physics. In their setting, large atoms were viewed as a limit
Z —> oo. Since then, large-Z asymptotics have become the mathematical paradigm of
large atoms. In particular, the work of Lieb and Simon proves that (1) is the leading
expression as Z —> oo.

The purpose of this presentation is to give an updated account of some more or less
recent mathematical issues related to the theory of large atoms in the context of large-Z
asymptotics.

We begin with some definitions. An atom of nuclear charge Z fixed at the origin, and
N quantized electrons at positions xi G K3 is described by the hamiltonian

f; f-A., - z-} + \ y ——fev 1^17 '^l^-^l
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acting on antisymmetric functions in ^(R3^) (in this discussion we omit spin consid-
erations). The atomic energies are defined as

E(Z, N) = inf (^ Hz^} , E(Z) = inf E(Z, N).
lml=l TV^O

The energy E(Z, N) is non-increasing as a function of N , and it attains a minimum at
some critical TV, which represents the largest number of electrons an atom can bind.

The ground state ^ is the eigenfunction with eigenvalue E(Z). Its density is defined as

p(x) =N |^(^2,...^N)|2 dx^ . . . ( I X N .
,/K3(N-1)

Mean-Field Theory. The first attempt at a simplification of the original hamiltonian
HZ,N involves replacing the repulsion term above by more manageable expressions of
the type

1 N

j ̂ j ,—^——. ~ ^ , V(xi) — constants,
i^j \X^~X3\ z=i

modulo small error terms.

Physically, one would argue for such formulas as follows: assume that the electronic
distribution is given by a density function p: one would then expect the repulsion term
to be approximately

E/ r^^y-U 4^^.^7R3 \ X i - y \ y 2 J^e \x-y\ y

the last term appears to neutralize the non-quantum effect appearing in the right hand
side of electrons interacting with themselves: for this reason it is referred to as the self-
energy term. There are several delicate points in this physical argument, one of them
being that we need to choose the density in a clever way. We postpone the discussion
of this problem until later, and content ourselves with knowing that the Thomas-Fermi
density achieves this purpose very well.

The first such rigorous results go back to Lieb and his collaborators, and are by know
well-known in the mathematical physics folklore as Lieb's formulas. Here is one:
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Theorem (Lieb's inequality): Assume ^(a"i , . . . , x ^ ) , (Z <, N <_ 2 Z ) is such that

\W^cz^.

Then, we have that

(HZ,N ̂ ) > W^} - \ ff PTFOCWt/) dxdy - C'Z61^

where

N

H^=Y^{^^-V^}}
i=l

The proof of this result can be found in Lemma 2 in [SW2]. The role of this inequality

is that it reduces the analysis of systems with interaction to a system without it.

The interpretation of these formulas is that one can replace the true quantum electronic

interaction by the classical interaction of the electrons with a more or less accurate, but

fixed electric field, at the expense of error terms of the order Z /3, which are of course

related to the inter-electron correlations.

We remark that this procedure can be viewed as an operator that, given a density choice

p(x)^ produces a total effective potential felt by electrons, given by

^-VfW=-^l ̂R JR3 \x -y\
dy.

This will be useful in determining the equations satisfied by the Thomas-Fermi density

and improvements on it.

In order to obtain a more refined analysis of the interactions, one then needs a better

understanding of the electron correlations: we refer the reader to [FS3], [Ba] and [GS]

for improved estimates.
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Semiclassical asymptotics. The most immediate consequence of mean field theory
is that the original hamiltonian HZ,N can be replaced by the much simpler H^^. This
is an immense simplification, since this hamiltonian can be studied by separation of
variables, and one easily sees that

E(Z) ̂  SNEG (-A - V^{x)) ,

where

SNEG^) =Tr( .H_) ,

denotes the sum of the negative eigenvalues of H.

The question is thus reduced to obtaining accurate formulas for the sum of the negative
eigenvalues of a fixed operator in R3, namely —A — V^,. We also need estimates for the
one-electron density of that same operator. Note that this problem is doubly singular:
first, there is the singularity of the Thomas-Fermi potential; second, and more important,
there is the singularity in the energy, due to the non-smooth restriction of the trace to
the negative spectrum.

The density of H^ equals

P(x)=^k{x)\2.
i.

The semiclassical approximations to these quantities are

SNEG(-A + V) ̂  -^ I |y|5/2 +^Z2+^ f IVI^AV.
Jv<o Jv<o

P^) ̂  (^TFMI3/2.

We omit a discussion of these formulas, which, at least in the case for smooth potentials,
are well known to experts in semiclassical asymptotics. We point out that despite that
the formula for SNEG was guessed by Schwinger and Scott by comparison with the
hydrogen atom and the harmonic oscillator, it is easily seen that in fact they fail for
these two potentials; thus, that it continues to be true for the Thomas-Fermi potential
must be a deep fact. This is the well-known relation between semi classics and classical

periodic trajectories. Aperiodicity of zero-energy Hamiltonian paths is well-known to
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play a crucial role in the study of eigenvalues and eigenfunctions. In our setting, we find
trigonometric expressions of the form

s= E ^z^-F{z-lln}\
l^<Zl/3^c

for elementary functions such as (3(t) == t — [t] — - (Here [t] is the greatest integer in
t) and a certain function F which depends on the potential. Since (3 is bounded, we
obtain trivially the estimate S = O^Z /3 ). If F{fl,) = TT^Q + v with ^ rational, then
the trivial estimate for 5" is easily seen to be the best possible. On the other hand, if
cPF/d^2 < c < 0, then one can prove that the numbers

^ = Z^F^Z-^l}

are equidistributed modulo TT. (The argument is close to Hardy^s estimates on the
number of lattice points in a disc.) Since /?(<) is periodic and has average zero, it follows
that S = 0(Z7) with 7 < - In the case of the hydrogen atom and harmonic oscillator,
the function F degenerates to the case F(fl,) = 7r/^0+^ with ̂  rational, and the oscillating
sum gives a contribution comparable with the last term, and the asymptotic expansion
breaks down.

We will study a little more closely the form of this trigonometric terms in the sections
below.

Self—consistent Mean Fields We now come to the basic issue: our previous dis-
cussion was based in a fundamental way on the Thomas-Fermi density and potentials,
although their nature has been left intentionally in the dark.

Recall that given a charge density p we formed the effective potential it generates V6 .
Also, given a potential V we constructed the density arising from the Schrodinger oper-
ator it gives rise to, p v '

A natural requirement for a "reasonable" guess for a charge distribution would be that
it satisfies the equation

PV = Vf. (2)

We call this the self-consistent mean field model, which has been proved by Solovej,
that it has a number of physically interesting properties.
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The Thomas-Fermi density and potentials arise as the solutions to the semiclassical self-
consistent mean field density: we replace py in (2) by its semiclassical approximation,

Pv^-^V^{x\ (3)

and we recall that
^V,(x)=47rp(x)^

to arrive at the usual equation for the Thomas-Fermi potential

Ay=^2. (4)

Energy Asymptotics The starting point in this paper lies in the asymptotic formula,
as Z goes to infinity, for the atomic energy

E{Z) = -CTF^ + ^Z2 - c.Z573 + 0(Z^ , a > 0. (5)

The first term above was introduced by Thomas and Fermi in [Th], [Fe], and proved
rigorously in [LS] (See also [Li] for a review of Thomas-Fermi theory). The Z2 term
was discovered by Scott in [Sc] and proved to be true in a series of papers by Hughes-
Siedentop-Weikard, in [Hu], [SW1], [SW2] and [SW3]. Its generalization to molecules
was obtained by Ivrii-Sigal ([IS]). The Z /3 term was obtained by Schwinger in [Sch],
and proved to be correct in [FSl], [FS2], [FS3], [FS4], [FS5], [FS6], [FS7] and [FS8].

The expansion in powers of Z almost surely stop here; in fact, interesting mathematical
phenomena start to take place in the error terms above. In view of (11 — 18), it is
naturally conjectured (see [Fl]) that the next term in the energy asymptotics for E(Z)
above is given by the following sum

^ = g —————^±1———__ , fl / (^M _ ̂ 1}" ^
^Lf(y^.^Y\r ^A - /+ I

7r j \ r /+

where dist (x^ Z)2 -- — and ^TF is the greatest integer such that Vr^p(r) — £(£ + l)/^2 is
positive somewhere.

The book ofEnglert ([En]; see also references thereof) contains a discussion of oscillatory
terms in the asymptotics of E(Z),
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The sum ^q[Z} turns out to be an adaptation of similar expressions well-known in
analytic number theory, related to the circle and the divisor problem, among others. It
was proved in [CFS1] and [CFS2] that this sum ^q corresponds to a sum of classical
data of a certain classical hamiltonian, which would then suggest that the expansion for
E(Z) is a trace formula which one would expect from a path integral picture.

Next, we include a few remarks about analytic number theory which may clarify the
nature of the sum ^/q above.

Number Theory. Consider sums of the form

[A]

sw=Ef^^{xf(f)^)
where A is a large number, jji is a periodic function with average 0, / is an amplitude
function which can be viewed as constant and (f) is a smooth function which satisfies the
crucial non-degeneracy condition

W\x}\ > c o > 0 .

Particular cases of sums of this kind give rise to two well-known problems in analytic
number theory, namely

1. / = 1, l^(x) = e27"^, (f)(x) = x2. In this case, 5(A), for A integer, corresponds
to the Gauss sums. The value of S is then known explicitly, and satisfies the
estimate

s{\)=o(\l/2}

2. / = 1, p,(x) = x — [x] — - 4>{x) = \/1 — a*2. In this case, S is related to the error
E{\) in the lattice point problem for the circle in R2, which can is defined as
follows: take a large circle on R2 of radius A, and denote by N{\) the number
of lattice points in Z2 which fall inside this circle. Then

E(A) = N{\) - 7r\2

and it is an old problem in number theory to prove that

E(A) == ^(A^
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for the best possible value of a. It was observed very early, by Gauss and
Dirichlet, that one can take a == 1 which is an obvious geometric fact, and
is also obviously satisfied by 5(A). Different probabilistic approaches (as the
one by Cramer, for instance) indicate that a above will not be smaller than -
What follows is a brief historic overview of the estimates for a (see [GK] for
details).

a = l , Gauss-Dirichlet, 1849.

. j = 0.666.., Voronoi 1904, Hardy, 1917.

. ^ = 0.6600, Van der Corput 1922.

. ||t = 0.659919.., Walfisz 1927.

. g = 0.6585.., Nieland-Van der Corput 1928.

. i| = 0.6521.., Tichmarsh 1935.

. || = 0.6500, Loo Keng Hua 1942.

. j^ = 0.6486.., Kolesnik-Yin Wen Lin 1962.

. || = 0.6481.., Kolesnik 1971.

. |j| = 0.648018.., Kolesnik 1985.

. ^ = 0.636636.., Iwaniec-Mozzochi 1988. (improved by Huxley 1992.)

Note now that the perfect scaling condition of the Thomas-Fermi potential shows that our
sum ^Q is (almost exactly) of the form S(\) as defined above, where /j,{x) = dist (.r, Z)2 —
— A = Z /3, and a certain explicit (j). The proof of the non-degeneracy condition for (j)
was done in [FS8], and it has the peculiarity that its is a computer assisted proof.

A natural question then arises: what is the level of difficulty in analyzing the size of
^Q?. Is is as simple as the analysis of the gauss sums above? Or so hard as the analysis
of the lattice point problem?.

A method devised by Van der Corput (or at least, a variant of it), in his attempts to
understand the lattice point problem provides the answer: we compute our sum using
Poisson summation, and then we expand each Fourier integral using stationary phase.

XI-8



In doing this, we end up with a sum in which fi is replaced by its Fourier coefficients
j^{n). If they decrease fast enough (like In]"372, it so happens), the sum is bounded by
A /2. In our case, ^(n) ~ H~2, therefore, after realizing that the size of our amplitude
function is Z /3, we can conclude that ^q ^ Zi4"^.

A density model. Compared to the atomic energy, the ground state density continues
to be largely a mystery. In addition to the well-known classical results of M. and T.
Hoffmann-Ostenhof, there is a number of recent interesting results, namely the proof of
the strong Scott conjecture in [ILS] or the computation of the full hydrogen density in
[HL].

In this short and entirely speculative section we present a conjectured density model
which appears to have a number of physically interesting features. The main idea is
to translate the previous considerations for oscillatory terms in the ground state energy
asymptotics, to the density.

If one knew better semiclassical formulas for the density of one-particle hamiltonians,
we would be able to improve on (3), and thus obtain a different, hopefully more accurate
density functional equation in (4). It was conjectured in [FS6] that

T r /*•> / \ . / \
PV » ̂ V^{x)+p^(x),

1 V^T/^^-^ (2^+1)^)
for

(̂,) = i ^ (V^))-7- . ^+1^

^l2^ JK^C2r z { ^ v / r / T ^ Z / \ \ - / 2 i^ i ^(V/(x))^ dx

Notice the close similarities between this p^ and the oscillating function in the energy
asymptotics. This correction p^ was studied in [CFS3].

The natural conjecture then for a refined Thomas-Fermi density is

V == VTF + correction?

where Correction is determined as the solution of the PDE

LA ̂ correction == TT TF ^correction 4~ 47T /^T? [

Correction ~ COUSt., X —> 0. J

It is not very hard to see that the density obtained in this way has certain properties
which remind us of the shell structure we expect atoms to have.
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