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Abstract

This note describes joint work with S. J. Patterson. Let F be a discrete
group of isometries of hyperbolic n + 1-dimensional space HP4'1 having no
elements of finite order, no parabolic elements, and infinite covolume, i.e,
vo^I'̂ H71'1'1) is infinite. The orbit space IP'1"1 is isometric to a non-compact
Riemannian manifold M of infinite volume which is the union of a convex
compact manifold with boundary, TV, and finitely many ends diffeomorphic
to cylinders. The manifold N has infinitely many closed geodesies whose
length spectrum is described by the Selberg zeta function Zy{s). We show
that scattering poles for the Laplace operator on M together with the Euler
characteristic of M determine the zeros of Zr{s)^ and prove a version of the
Selberg trace formula for this class of groups. A by-product of our analysis
is a sharp bound on the distribution of scattering poles.
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1 Main Results
The relationship between scattering poles and closed geodesies has attracted
great interest in the case of obstacle scattering, where Gerard and Ikawa
[7, 10, 11] has shown how closed geodesies (trapped rays) "generate" poles
of the scattering operator. An important element in Ikawa's analysis is the
dynamical zeta function associated to the geodesies. Here we would like to
describe an analogous situation in geometric analysis where the scattering
poles are among the zeros of an associated dynamical zeta function. The
results to be described were obtained in joint work with S. J. Patterson.

Let r be a discrete group of isometries of hyperbolic n + 1-dimensional
space H714'1 so chosen that (i) F has no elements of finite order, (ii) F has no
parabolic elements, and (iii) the orbit space F \ H714'1 has infinite hyperbolic
volume. Under these assumptions, the orbit space F \ H '̂1 is a Riemannian
manifold M; the first assumption rules out conical singularities of M and the
second assumption rules out cuspidal singularities of M. The third assump-
tion guarantees that the Laplacian A on M will have absolutely continuous
spectrum in [n2/^, oo) together with finitely many discrete eigenvalues in
[0,n2/4) (see Lax and Phillips [12, 13, 14]).

Thus the L^M^resolvent operator R{s) = (A — s(n — s))~1 is meromor-
phic in the half-plane ^(s) > n/2 with finitely many poles along the real
5-axis corresponding to eigenvalues of A. The critical line 3%(5) = n/2 cor-
responds to the continuous spectrum of A. It is a deep result of scattering
theory (see [1, 6, 15, 17, 22] and references therein) that the resolvent admits
a meromorphic continuation to the complex plane whose poles are, morally
at least, poles of the scattering operator for A. The 'spectra? data for A
thus consist of eigenvalues and scattering poles.

Here we will define the scattering poles by reference to the scattering
operator S(s) for A, viewed as a map between incoming and outgoing gen-
eralized eigenfunctions for A. To define it, consider the upper half-space
model R71 x R"1" 3 {x^y) of H71"1"1, so that y = 0 corresponds to the bound-
ary at infinity of ET^1. The manifold M admits boundary charts isometric
to a neighborhood of infinity in H71"1'1, so that the geometric boundary B
of M corresponds to y = 0. A smooth solution of the eigenvalue equation
(A — s(n — s))u = 0 admits an asymptotic expansion of the form (see for
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example [2])
u{x^y) - E^W^' + a,-W-54-^

^o

near the boundary y = 0; the coefficients af{x) are smooth functions uniquely
determined by ao(x). The scattering operator S(s) is the linear map S{s) :
OQ ^ a^. This definition is not invariant under coordinate changes but S{s)
is well-defined as a map between certain line bundles over the boundary B.
It can be shown [1, 15, 17, 22] that

Theorem 1.1 For %(.$) > n/2, the operator S{s) is a meromorphic family
of elliptic pseudodifferential operators whose poles in ^{s) > n/2 consist of
trival poles at s = n/2 + k and simple poles for s{n — s) an eigenvalue o/A.
Moreover, S(s) admits a meromorphic continuation the the complex plane
whose poles are smoothing operators.

Remarks. 1. The meromorphic continuation of S(s) is proven by showing
that S{s) factors into c(s)P{s){I +T{s))P{s) where P{s) is an entire family
of pseudodifferential operators, c(s) is a multiplicative factor, and T{s) is a
compact operator. One then shows that (J + T{s)) is invertible on the line
3^(5) == n/2 and applies the meromorphic Fredholm theorem. 2. The operator
T(s) is sufficiently regular that a renormalized determinant det(J + T(s))
exists. The 'poles of the scattering operator' are defined as zeros of this
regularized determinant.

The Selberg zeta function for F, denoted Zr(s), is an analytic function
that encodes information about the distribution of lengths of closed geodesies
on M, much as the Riemann zeta function encodes information about the
distribution of prime numbers. If 7 is a closed geodesic of M, associated to
it are its length ^(7) and an SO (n) matrix ^(7) that describes the rotation
of nearby closed geodesies under the Poincare once-return map. If {7} is a
listing of the primitive closed geodesies of M, the formula

( _^/^m\ \

)̂ = exp -S,,,S::_.—— -̂ det (/ - e-^-'XfD)" ) (1)

holds for SR^) > n, and defines an analytic function in this half-plane. Using
results of Ruelle and Fried (see [5]), one can show:
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Theorem 1.2 The function Zr{s) = Fr(s)/Gr(s) where Fp and Gp are
entire functions obeying the estimates

\Fp(s)\ < dexp^l^r^
\Gr(s)\ < Clexp^H7^1)

for positive constants c\ and €2.

The idea of the proof is to represent geodesic flow on M as a symbolic
dyanmical system. This representation depends on the construction of a
Markov partition for geodesic flow as in Bowen [4]. Although Bowen assumes
that the ambient manifold is compact, this poses no essential difficulty (see
the remarks in [21]). One can then express the Selberg zeta function in terms
of Fredholm determinants of transfer operators defined using the symbolic
dynamics as in Ruelle [25]; a detailed argument, using [16] and [25], is given in
Friedas paper [5]. Estimates on the resulting determinants give the dimension-
dependent estimates in Theorem 1.2; These estimates show that Fr and Gr
are entire functions of order at most n + 1 and finite type (see Boas [3]).

It is now natural to consider the spectral and topological data that de-
termine these zeros. We have proved [21]:

Theorem 1.3 Suppose that n + 1 = 2m is even. Then Zy{s) is an entire
function with the following zeros:

(i) The finite set of real numbers s with s > n/2 and s(n—s} an eigenvalue
of the Laplacian on M.

(ii) The set of complex numbers s such that s is a pole of the scattering
operator for A.

(Hi) The set s == —k, k == 0,1,2, - • •, where zeros occur with multiplicity^^^-^
where ^(M) is the Euler characteristic of M.

(iv) The point s = n/2.

VIII-4



Remarks. 1. The multiplicity of type (i) zeros is the multiplicity of the
corresponding eigenvalue. 2. The scattering poles all have ^t(s) < n/2,
and their multiplicities are determined by the multiplicities of zeros of a
renormalized Fredholm determinant. 3. It is not known whether scattering
poles also occur at the points s = -fc, k = 0 , 1 , 2 , - - - . In this case the
multiplicities of zeros of types (ii) and (iii) add. 4. The Euler characteristic
of M is defined by viewing M as a manifold with boundary. 5. The expression
multiplying the Euler characteristic in (iii) is the dimension of the space of
spherical harmonics of degree k on S21711^, and is therefore integral. 6. We
cannot at present compute the multiplicity of the zero at s = n/2. It may
be zero!

The proof relies on Patterson^s [19] observation that for ^{s) large and
positive, the Selberg zeta function Zp{s) obeys the identity

——— == (2s - n) / G(x, x\ s) - Go(x, x\ s} dvol
Zr{s) Jy

where T is a fundamental domain for F in H"^1, G{x^x\s} is the integral
kernel of the operator (A - s(n - s))~1, and Go{x, x\ s} is the integral kernel
for the corresponding operator on H^1. Using this identity one can derive
a functional equation for Zp(5)/Zr(^) of the formw ̂  ^,^

Zr{s) Zr(n-s)

I I / T I / \ <"\ I / 7 I / \

where

G^(s) = / k^V^n-s^Qsk^b'.s)
J BxB

n ( \ A (-l)Tn r(5)r(n-5) ,,^
G-2(<S) == —47r-7-^———TTtTTT———v /o\Tn/—7?T———vY(^0v / (2m-1)!F(5-n/2)r(n72 ~^J /

where ^(M) is the Euler characteristic of M. Here B is the boundary at
infinity of the manifold M and fc(-, •; s) is the integral kernel of the scattering
operator for A on M. It is shown that the poles of G\(s) are eigenvalues and
scattering poles of A while those of G^{s) can be explicitly calculated. Using
this result and the known analyticity properties of Zy{s} when S?^) > n/2,
we obtain Theorem 1.3.

Together with Theorem 1.2 and Jensen^s inequality, this implies a sharp
bound on the distribution function for scattering poles:
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Theorem 1.4 Let

N{r) = #{5 : ̂ (5) < n/2, s is a pole of the scattering operator/or A}.

Then
N{r) < Cr^1.

Remarks. 1. This improves an earlier bound of Perry [24]. 2. Explicit
examples (see [8] or [24]) show that this bound is optimal. 3. Recent work
of Guillope and Zworski [8, 9] proves polynomial bounds on the distribution
of resolvent resonances for asymptotically hyperbolic manifolds.

The Euler product representation (1) together with Theorem 1.3 and
a short calculation give the following Selberg-type trace formula (compare
[26]):

Theorem 1.5 Let h e C^°(0,oo) and let

h { t ) = 1 r hW^dx.
27T J—oo

Then

oc e^^h^me^))
^M^^—det (J - K^re-^W)

-2TriNh(0) - fc(t)h(t)dt - ̂ ^ih{r^} - ̂  27rih(rp).

Here the sum over 7 runs over primitve closed geodesies, N the multiplicity
of the zero of Z(s) at s = n/2 and c(t) is an explicit logarithmic derivative
of Gamma functions.
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