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ASYMPTOTIC BEHAVIOR OF FOURIER-LAPLACE TRANSFORMS

LARS HORMANDER

Department of Mathematics, University of Lund

1. Introduction. This lecture is a summary of a recent manuscript by Ragnar Sigurdsson
and myself. It is mainly concerned with complex analysis, but since the original motivation
comes from differential operators with constant coefficients and convolution equations, it
might still be appropriate to present it here.

If / € ^(R71) and F = / is the Fourier-Laplace transform, then the Paley-Wiener
theorem states that

(L!) W)l <. C(l + ICI^exp^ImC)), C 6 C",

where C and N are constants and H is the supporting function of K = supp/. If/is just
a hyperfunction then

(1-iy 1^(01 ̂  <^exp(ff(ImC)+e|C|), C 6 C",
for every e > 0. Both statements have a converse.

If F is any entire analytic function such that

(1.2) |F(C)| ^ e^Kl, C € C",

then u = log |F| belongs to the set PSI^C71) of plurisubharmonic functions in C", and

M u(c)^G+A|a Cec^
For any u € PSH(C71) the estimate (1.3) is valid if and only if the forward orbit {TfU\t ^ 1}
of the dilation group

(1^) T^(C) = t^u(tQ, C e c", oo,
is relatively compact in the topology of ^(C71). For u € PSI^C") satisfying (1.3) we
define the limit set L^{u) at infinity as the set of all limit points v € PSI^C") of TfU
as t -^ +co. They all vanish at the origin and satisfy (1.3) with C = 0. A complete
description of the subsets M of PSE^C") such that M = L^(u) for some u € PSI^C")
was given in [5]. If u also satisfies a condition corresponding to (l.iy,

(1-5) u(Q <.C,+A\ ImCl + ̂ ICl, C € C^ e > 0,
then v <, 0 in R71 if v C L^{u)_The indicator function j^ of u, defined as the upper
semicontinuous regularization of lim<-.oo ̂ u, is a plurisubharmonic function homogeneous
of degree 1, and it is equal to supy^ / x v.
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Theorem 1.1. IfuC PSH^C'1) satisfies (1.5) then the indicator function ju vanishes in
R71, and^(C) <, A|ImC|, C 6 C71. More precisely,

(1-6) H(r,)= supj^+zry),
sea71

is a convex positively homogeneous function, the supporting function of a closed convex
subset of the ball {x € R71; \x\ <, A}, and j^Q == ff(ImC) ifC € CR71 ^or eveiy e > 0
there is a constant Ce such that

(1-7) tx(C)^Ge+ff(lmC)+6|a Cec",
which remains true for e=O i fCo= sup^Rn u(^) < oo.

When u = log |.F| where F is the Fourier-Laplace transform of a hyperfunction / of com-
pact support, then the supporting function which occurs in Theorem 1.1 is the supporting
function of supp /.

Definition 1.2. If u e PSinC") satisfies (1.5), then the supporting function H^ of u
is the convex positively homogeneous function defined by (1.6) where ju is the indicator
function.

Remark. I f v € Loo(^) then v <, ju so Hy < H^. Since j^ is the supremum of all v € Loo(u)
and z;(C) ^ ff^ImC) by (1.7) with e = Co = 0, we have ju(C) ^ sup^^)^(ImC),
hence

(1.8) J^= sup ff^
v€Loo(u)

From [5, Theorem 0.2], [6, Theorem 1.3.1] and [2, Theorem 15.1.5] we obtain:

Theorem 1.3. H u e PSH^C71) satisfies (1.5), then M = L^(u) is compact, connected,
and T invariant, v <, 0 in R/1 for v € M, and T is chain recurrent on At. Conversely, for
every set M C PSinC") with these properties one can find u € PSI^C") with Loo(u) =
M, and u satisfies (1.5) then. One can choose u = log \F\ where F is an entire analytic
function. Thus F = / where / is a hyperfunction with compact support; the supporting
function off is then equal to the supporting function ofsupy^v.

The notion of chain recurrence is explained in [5]. As in [6, Theorem 1.2.7] there is an
analogue for k tuples of plurisubharmonic functions, and it has the following consequence
(cf. [6, Proposition 2.1.4]):

Proposition 1.4. Let A'i, K^, K^ be compact convex subsets ofR/1. Then there exist
hyperfunctions fj with chsupp/y = Kj, j = 1,2,3, and fz = /i * /2 if and only if

(1.9) K 3 C K z + K 2 ,

and with the notation

(1.10) K = {(,2:1,3:2) 6 A'i x K^x^+X2 € K^}
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the projections TTJ : K —^ Kj axe surjective for j = 1,2.

Proof. The necessity of (1.9) is obvious. Let Hj be the supporting function of chsupp/y.
Then H\ is the supremum of the supporting functions h^ of elements v^ 6 ^oo(log |/i|),
so K\ is the convex hull of the corresponding convex sets. If x i is an extreme point of
.KI it follows in view of the compactness of £oo(log|/i|) that one can find h^ such that
{^•) <. ^i. We have (vi,^) 6 ^oo(log|/i|,log|/2|) for some 1:2 6 ^oo(log|/2l). If h^
is the supporting function of 1:2, it follows from Theorem 1.5 below that h^ + h^ is the
supporting function of vi + v^ 6 £oo(log l/sl). Hence /ii + h^ <, H^. When (a;2, •) <, h^ it
follows that 3:2 € -K'2 and that x\ + a?2 6 Kz. Thus 71-1 is surjective, and the surjectivity of
7T2 follows in the same way.

Suppose now that (1.9) holds and that TT^ is surjective, j = 1,2. By Theorem 1.3 for
pairs we can choose fj € ^', j = 1,2, with

£oo(log|/i|,log|/2|)={((a?i,-),(a?2,-));(a?i,a:2)e^}.
The surjectivity of TT, implies that chsupp/y = Kj^ j = 1,2. If /3 = /i * /2 then

^oo(log|/3|) = {(xi +a:2,-);(a:i,a:2) € ^} = {{.r,.);a: e ^3},
by (1.9) and (1.10), which proves that chsupp/3 = Kz.

Now we turn to functions in PSI^C^) satisfying (1.3) and a weak analogue of (1.1),

L^<-
where u4' = max(u, 0). This is equivalent to the apparently stronger condition

niiy / KOl^ ^ , -(L11) ^ ^ LoTieD^^'
and implies the weaker condition

(1.12) <-n-l t K0| ̂  ̂  0, t ̂  +00.^6R.»,m<t
When u satisfies (1.3) and (1.12), then every v € Loa{u) vanishes in R", and that is the
only restriction on -Z/oo(") in addition to the properties listed in Theorem 1.3. When (1.3)
and (1.11) are fulfilled one can say much more:
Theorem 1.5. Hue PSI^C") satisfies (1.3) and (1.11), then

(1.13) / \u^+tzrf)/t-H(]mzr))\d\{z)^0, t -^ +00,
JK

for almost all (C,»?) € C" x (R" \ {0}), if K is a compact subset of C and H is the
supporting function of u. For every v 6 Loo(u) we have

(1.14) z;(C)=ff(ImC), CeCR",
and
(1.15) u(tQ/t - ff(ImC) -^ 0 in ̂ (CR" \ {0}), as ( -4 +oo,
(1.16) u^^/t - H^ sin 0) -^ 0 in ̂ (R"), as t -^ +oo, 9 e R.

The result motivates the following:
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Definition 1.6. If H is a supporting function in R", that is, H is convex and positively
homogeneous of degree 1, then PH will denote the set of u 6 PSI^C") such that

(1.17) ti(C)<^(ImC), CeC"; ti(C)=ff(ImC), CeCR71 .

The conclusion (1.14) in Theorem 1.5 was that Loo(u) C PH if u 6 PSI^C") satisfies
(1.3) and (1.11), and H is the supporting function of u. It is clear that PH is a convex
compact T invariant subset of PSB^C"), We shall discuss the properties of PH in the
following section.

The limit (1.15) was established by Vauthier [7] when u 6 PSI^C71) is bounded above
in R/1, hence when u 6 PSI^C^ is the difference of two such functions. The proof is
somewhat easier then. The support theorem of Titchmarsh and Lions is an immediate
consequence of (1.13); recall that it states that

(1.18) chsupp(/i * /a) = chsupp/i + chsupp/2, it /i,/2 6 ^(R71).

By Proposition 1.4 this is not true for hyperfunctions.

2. Properties of PH. The set PH always contains the function C ̂  ff(ImC). In the
rotationally symmetric case where H{^) = |̂ |, it is easy to see that also the function

(2.1) C^|Im(C,C^I

is in P H ' ) and that it is strictly smaller than H(lm() for every C ^ CR71, which is a cone
of real dimension n + 1 and smooth except at the origin. The function (2.1) occurs as the
indicator function of log |/| when / 6 £1 is rotationally symmetric. The interest of the
strict inequality is explained by the following result from [6, Theorem 2.3.1]:

Theorem 2.1. Let f be a hyperfnnction in R" with compact support, and let H be the
supporting function ofsuppu. Let ^0)^0 6 R" \ {0}. Then

;n°) = H(n°}^gl/l^+^-W)

if and onlyif{x^°) € WFA^f) for some x € supp/ with {x,r)°) = J^0).

If we take for / the characteristic function of the unit ball, then WFA^f) is the conormal
bundle of the boundary and we get the property of (2.1) just mentioned. For a general
supporting function H we shall denote by MH the set of all C € C^ such that u(C) =
H(Im C) for every u € P H ' Thus MH = CR" if ff(^) = |$|. On the other hand, it is easy
to see that MH = C" if H is the supporting function of a polyhedron. This is related to
flatness of the supporting function as proved by the following two theorems. We write C+
for the open upper half plane in C.

Theorem 2.2. For any u € PH and 77 e R'1 \ 0, 9 € R", the subharmonic function

(2.3) v{z) = u{0 + zrj) - ̂ (Im zrf) = u{Q + ZT)) - Im zH{r]\ z C C+,
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is ^ 0 in C+, and as t —»• +00

(2.4) tv{tz) = t{u{6 + tzvi) - ImtzHW) -^ ]m(l/z)q^r,,0), in ̂ (C+),

for some qu(r), 0) >, 0, unless the left-hand side -»• —oo uniformly on every compact set in
C+; in that case we define qu(ri,0) = +00. We have qu(rf,9) = (ImC,Au/7r)c+,

(2.5) ^(77,0 + CT}) = ^(»7, ^), c € R, g,(c77, ̂ ) = ^(»?, ̂ )/c, c > 0,

and gu.(̂ ) = qu(sri,s0)/s, s > 0, ifu, = T,ti. Ifqu(.r],9) < oo then (2.4) aZso holds with
convergence in £î (?R+); i fO^xe C'̂ °(R+) and /x(5) ̂ 3/3 = 1, it foilows that

(2.6) t t (tsHW-u{0+itsrj^(s)d3-.q^ri,0), t -^ +00,
JR+

whether gu(^7,^) is finite or not. Ifqu{r), 6} = 0 then u(0 + zrf) = ff(Im^77) ifz 6 C+, and
qu(.r), 0) = 0 for every u 6 PH if and only if 9 + if] e MH. The non-negative function q^ is
lower semicontinuous.

The limit qu(r], •) is usually finite in the direction 9 if H is almost twice differentiable
at 77 in that direction:

Theorem 2.3. If^eR" are linearly independent and u 6 PH, then

rT
(2.7) sup T-3 / q^rj, r0) dr<,C Urn (H{ij + r0) + H{rj - rQ) - 2H(f)))/r2.

T>0 J~T (r,ii,'e)-(o,n,9)

Here C is independent of u and H. Hence qu(r]iT6) < oo for almost all r € R, if the
right-hand side of (2.7) is finite, and R0 + C^T) C MH if

(2.8) Urn {H(i^+r0)+H{ij-T0)-2H(rj))/T2=0.
(T,il,e)-^(0,ii,9)

When H has Lipschitz continuous first derivatives in R" \ {0}, one can prove much
more. To simplify the statement we shall make a somewhat stronger assumption:

Theorem 2.4. Let u € PH where H € C2 in R" \ {0}. Then the non-negative function
qu(ri,0) in (R" \ {0}) x R" denned by (2.4) is JocaUy bounded; in fact,

(2.9) 0^qu{r,,0)^^{H"W,0}.

The difference

(2.10) Q^ff) = j(^(7?)M) -guM

is a convex function of 9 with values in L00^71"1).

When u 6 PH is a smooth function, positively homogeneous of degree 1 in a neighbor-
hood of CR" \ R71, thus H{rj) = u{irj) is smooth for 77 ̂  0, it is easy to improve Theorem
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2.4 by differential calculus. If 0, rj e R" \ {0}, then the subharmonic function v defined by
(2.3) is ^ 0. By Taylor's formula y

(2.11) tv{tz) = <2(u(<v( + zri} ~u{zrl}} ̂  WW^}. t ̂  +00, where
u"^ + irj) = 3^ + iri)IQ^.

Comparison with (2.4) shows that

(2.12) W\^6} = -̂ M), . € C+, r, € R" \ {0},

so qu(r),0) is a non-negative quadratic form in 9 with ^,.(77,77) = 0. The Levi form

(2.13) r.^)^^^92"^
j^ QWk 9z9z

can be calculated on CR" \ R" by means of H and $„,

(2.14) r,,(^;w) = i(OTlmz77) -<^(77,0)/Imz)w,w).

Since ^(^, ̂ )/ lmz= ̂ (Im^, ̂ ) by (2.5), the plurisubharmonicity of u gives again

(2.15) 0 ̂  g»(77,^) ^ ^{H"W,0}, rj € R" \ {0}, ^ € R".

Since ̂ (^ + 2;^;^) is non-negative and vanishes when 0 = 0 and Imzrj -^ 0, it must
vanish of second order then. In fact, we shall prove that it vanishes of fourth order. Since

tv(tz) = t^u^ff/t + zri} - lmzH(r))) -^ Im(l/z)q^rj, 0), t -^ +00,

we obtain by applying ffl/QzQz, noting that ]mz and Im(l/̂ ) are harmonic,

t2^^ + zr]; 77) -+ 0, ( -^ +00.

This proves that C,n{9 + .277; 77) vanishes of third order when 9 = 0, and since /;„ ^ 0 it
must vanish of fourth order. We do not know if there is an analogue of this fact for general
functions in PH.

The following theorem suggests that Theorem 2.4 lists the most important properties
of q^ when u 6 Pff and u is homogeneous.

Theorem 2.5. Let H be a supporting function in C^R" \ {0}), and let Q{r], 9\ 0 € R",
77 € R" \ {0} be convex, even and homogeneous of degree 2 in 0, positively homogeneous
of degree —1 in 77, and assume that

Q(77,(?+r77)=Q(77,<?), r€R,

0 < Q(77,9} < ̂  {H"W, 0}, if r j , 0 are linearly independent.
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Assume that Q(r)^0) £ C2 when rj and 6 are linearly independent. Then one can find
f 6 ^'(R71) such that for the indicator function u of log)/1 we have when Imz > 0,
Rez^O,

t{u{Q + tzrf) - H(lmtzri)) ̂  ̂ (Hlf{r^)0,0} - Q(T^)) Im(l/̂  t ̂  oo.

Thus u 6 PH and q^r,,0) = ̂ ^0) - Q(r,,0).

The core of the construction is an examination of the indicator function of log |/| when
/ is the characteristic function of a convex set with analytic boundary. (These generalize
(2.1).) Unfortunately, the homogeneity assumed in the theorem is essential in this proof.

In the smooth case we have seen that the Levi form degenerates of fourth order on CR^.
That there is no higher degeneration in general is shown by the explicit example

u = ̂ {u\ +ul\ ui(C) == lImO ^2(C) == IMC l̂.

The Levi form £.u has the lower bound

(2.16) r,,(C; w) >. ^(C; w)/32, C € CR" \ R", w € C",

<2-17) ^^sy^' —"+<. ̂ -o-
Starting from this example one can also prove:
Proposition 2.6. Let H € (^(R" \ {0}) be a supporting function such tAat H"{^) has
rank n — 1 for every ^ ̂  0. Then one can find uy € PH positively homogeneous of degree
1 and a constant Co > 0 such that UQ € C^C" \ R"), and

(2.18) C^L^w) ̂  r«,(C;w) ̂  W^w), C <= C" VR". w € C",
(2.19) r^(C;w)^(l+C'o^)£«,(C;w), Ce^YR", w€C",
when 6 is small. Here us is the regularization ofuo denned by

(2.20) U5(C) = f u(C + SAQy(A) dA,

where 0 ^ y? 6 C§° in the n2 dimensionaj vector space of real n x n matrices, and the
integral ofy with respect to the Lebesgue measure equals 1.

The regularization in (2.20) makes us a C°° function outside CR" but not in CR",
since (1 +SA)CRrt C CR" for the maps involved. There is a natural metric G in C"\CR"
defined as follows: If C € C" \ CR" we can write C = e'^a +i&) where a, & € R", (a, 6) = 0
and |a| >, |6|; we define

iRe^-^w)!2 IMe-^w)!2 ——pn^Rn,,-pn
c ( ) = =———iai2———+———H2———' C € C \ C R , w € C .

The metric is actually smooth,

„, . ^icnwp-Re^c.cxw^))
Gc(w) == ———l^-KGOl2———•

Its importance in connection with the regularization is that ti^(C) is an average of UQ
over a G^ ball of radius ~ 6 with center at C, which means that u^ behaves as a symbol
corresponding to the metric G^.
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3. Constructions of plurisubharmonic and entire functions. The fact that the
Levi form of every function in PH is highly degenerate at CR" makes it hard to construct
a function with a given limit set M C PH unless the functions in M are fairly close to each
other at CR". The following theorem gives a sufficient condition:

Theorem 3.1. Let H be a supporting function, let M C PH be compact, connected
and T invariant, and let T be chain recurrent on At. Assume that there is a positively-
homogeneous function UQ € PH satisfying (2.18) and (2.19), and constants C > 0, 6 > 0,
such that with E( = {w € C"; G^w - C) < S2}

(3.1) / Kw) -zxo(w)|dA(w)/A(^) ^ C^C.CR^/lImC!3,
JE^

for allveM and (^ eCn\ CR^ Also assume that

(3.2) M x M 9 Qii,^) ̂  sup . I Imc13 , / |tii(w) - u,(w)\ dA(w)/A(^),
cec^cR" d(C,CRn)4 JE^

which is bounded by (3.1), is a continuous function. Then there is a function u 6 PH with
-^oo(^) = M. For any given functions /c(r) ^ 0 and A(r) ^ oo as R+ 9 r —+ oo one can
choose u so that £u(C;w) > ̂ (101)^(0;w) ^or l^rge |C| when C € C" \Rn and for any closed
cone r C C" \ CR"

1^ - ̂ o)(C)l ̂  Cr,,^|C|l--lalA(|Cl)2n+lal, when C € F and JC| is large.

For the proof one chooses a sequence Uy which is dense in M such that with sequences
Oy [ 0 and c^y f oo the distance from T^Uy to Ta^^Uy^ converges to 0. The existence
of such sequences expresses that M is connected and that T is chain recurrent on M.
Next one moves a regularization of Uy far away by a dilation Ti/rp where TO = 1, cry =
(jjyTy = Q^-nT^i, which defines Ty and cr,, inductively. With u chosen in this way for
2<7^-.i ^ |C| ^ <7^ one switches to the next function when (Ty <^ \^\ <^ 2(7y. However, to be
able to compensate for the error terms in the Levi form caused by the switch one actually
has to replace the regularization of Uy by an average with a regularization of no, taking a
steadily diminishing weight for UQ. The technical details cannot be given here.

The last statements in Theorem 3.1 allow one to modify constructions in Sigurdsson [6]
to prove:

Corollary 3.2. If the hypotheses of Theorem 3.1 are fulfilled and UQ € C3^ \ CR71),
then one can find / 6 ̂ (R") such that H is the supporting function of the convex hull of
supp/, and ^oo(log |/1) = M.

A complete characterization of limit sets of plurisubharmonic functions u satisfying
(1.3) and (1.11) would require either a substantial improvement of the properties of Loo{u)
given in Section 1, or a much more efficient construction method than that used to prove
Theorem 3.1, or both. A basic question is if qy is independent of v 6 Loo{u), which is
implied by the hypotheses we had to make in Theorem 3.1. In particular, that would mean
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that qv(r]^ (?) is homogeneous in 0 of degree 2. However, it is an open question whether
that is true. Note that if qy is in fact independent of v € Loo^u)^ then we would have
a uniquely defined map £9 9 / ̂  g^ v 6 2/oo(log |/1)» which would satisfy the analogue
of the theorem of supports (1.18). However, if qv does depend on v 6 Loo(u), then one
would have a situation similar to that in Proposition 1.4, which we proved to indicate the
consequences of variations in the limit set.

Further references and background material can be found in the references below.
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