@incollection{JEDP_1993____A2_0, author = {Thierry Harg\'e}, title = {Diffraction pour l'\'equation de la chaleur}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {2}, pages = {1--9}, publisher = {\'Ecole polytechnique}, year = {1993}, zbl = {0844.35038}, mrnumber = {95a:35052}, language = {fr}, url = {https://proceedings.centre-mersenne.org/item/JEDP_1993____A2_0/} }
Thierry Hargé. Diffraction pour l'équation de la chaleur. Journées équations aux dérivées partielles (1993), article no. 2, 9 p. https://proceedings.centre-mersenne.org/item/JEDP_1993____A2_0/
[Ag] S. Agmon : Lectures on exponential decay of solutions of second order elliptic equations, Mathematical Notes 29, Princeton University Press. | Zbl
[Bu] V.S. Buslaev : Continuum integrals and the asymptotic behavior of the solutions of parabolic equations as t → 0, Applications to Diffraction, 67-86 Topics in Mathematical Physics, Vol 2, Plenum, New-York, 1968.
[Ha] T. Hargé : Thèse Orsay.
[Ha] T. Hargé : Diffraction pour l'équation de la chaleur, A paraître au Duke Math. Journal. | Zbl
[Hs] P. Hsu : Short time asymptotics of the heat kernel on concave boundary, Siam J. Math. Anal 20 (1989), 1109-1127. | MR | Zbl
[IK] Ikeda et Kusuoka : Short time asymptotics for fundamental solutions of diffusion equations, Springer Lecture Notes in Mathematics 1322 (1988), 37-49. | MR | Zbl
[Le] G. Lebeau : Régularité Gevrey 3 pour la diffraction, Communication in Partial Differential Equations, 9 (15), 1437-1494 (1984). | MR | Zbl
[Mi] Milnor : Morse Theory, 67-76.
[NS] J.R. Norris et D.W. Stroock : Estimate on the fundamental solution to heat flows with uniformly elliptic coefficients, Proc. Lond. Math. Soc. 62 (1991), 375-402. | MR | Zbl
[VdB] M. Van Den Berg : A Gaussian lower bound for the Dirichlet heat kernel, Bull. Lond. Math. Soc. 24 (1992), 475-477. | MR | Zbl