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INVERSE SCATTERING PROBLEMS IN SEVERAL DIMENSIONS

G. ESKIN AND J. RALSTON

Department of Mathematics, UCLA

§1. Refined inverse scattering problem for a real-valued potential

Consider the Schrodinger equation in R":

(^ (-A-{-q(x)-k2)u=0,

where q(x) is a real-valued potential,

u(x)=eikw•^+v(x,u),k)

is the sum of the incident plane wave e**"-*-, k > 0, M = 1, and the reflected wave

v(x, w,k). We assume that u(.r,u?,Jfc) has the following asymptotics:

(2) ^^<•)=-e^- (a(0^k)+o(1-\Ym~s~ \ \kl//

where 6 = j^ and |.r| -^ oo. Function a(0,u),k) is called the scattering amplitude. It is

convenient as in [ER1] to consider an integral equation

(3) ^'^L^w^^-^'
where g(^) = /„„ q(x)e~i^•(dx is the Fourier transform of q(x). Then

(4) a^t(;'fc)=^((^)^"ti)n 'Wk^k).
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Since a (0,o?, fc), 6 € S'1-1, ^ € 5n~l, k € R+, is a function of 2n - 1 variables while

q(x) depends on n variables the inverse scattering problem of determining q(x) from the

scattering amplitude a(^,cj,fc) is clearly an overdetermined problem (see [F], [N], [NK],

[Me] where this problem was studied).

One can try to determine q(x) using only a part of the scattering amplitude. The

backscattering amplitude a(6^ —<?, k) is a natural candidate since it depends on n variables

{6 € iS^"1, k 6 R+) as the potential q{x). It was shown in [ER1] that the inverse backscat-

tering is a well-posed problem when we don't require that q(x) is a real-valued potential

i.e. we allow complex-valued potentials.

However when q(x) is real-valued the inverse backscattering problem is still overdeter-

mined. Note that q{^) = 9(—0 it q{^) is real-valued but the backscattering amplitude

&(^) == a(]-7, -nf J^D? obtained from a real-valued potential q(x) does not satisfy the rela-

tion &(^) = &(—0 i.e. &(^) is not a Fourier transofrm of a real-valued function.

In order to find a natural inverse problem in the case of real-valued potentials consider

the one-dimensional case. In this case fc(^) is a complex-valued function on the real line

satisfying the following relations:

(5)
6(0 ̂ (O, $>0,

6(0=r-(0, $<0,

where r" )̂ and r~(^) are the right and the left reflection coefficients. Note that

r±(0=r:±FO, ^ € R 1 .

It is known (see [Ma]) that in the absence of bound states one can recover real-valued

potential on the line from one reflection coeffient (either left or right). It will follow from
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our results that bound states play no role in the inverse scattering problems for n ^ 2.

Hence in several dimensions the analog of a reflection coefficient would be &(() restricted

to a half-space and the inverse problem will be the following: Choose arbitrarily a unit

vector v € R71. Denote by R^ the closed half-space {^ : ( • v >. 0). The inverse problem

will consist of the recovering of a real-valued potential q(x) from the restriction of the

backscattering amplitude to R^.

As we shall show even this inverse problem is still slightly overdetennined.

If c(x) is real-valued function then its Fourier transform c(^) is not an arbitrary function

on R^ since it must satisfied the relation c(^) = c(—$) for $ € RI? such that ^ • v = 0.

Let \(t} € C^°(R^) be a cutoff function such that ^(<) = 1 for |(| < 5, \(t) = 0 for |(| > ^

and ^(() = ;<(-<). For each ^ € R" we have the following decomposition

(6) ^=(^>+^

where ̂  • v = 0. Denote by ?„ the following operator acting on functions defined on R^:

(P./XO = /(O - x(^ • ̂ V(^) + x(f. • ̂ f^^-^

(7) = /(O +1 x($ • »/)(7R^ - /(^)) •

Note that

(8) (P./X^) = (P./X-^)

and

(9) (P./XO = /(O
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^ /(O - /(-O i.e. /(^) is a Fourier transform of a real-valued function.

As in [ER1] denote by Ha,N the closure of (^(R") in the norm

(io) 11/11,. = ̂ (i + |̂  (1/(^-^' + |/(oi)

and denote by ff;^ the subspace of H^,N consisting of functions satisfying /(^) = /(^).

Let Py be the extension of Pyf to R" by defining

(n) A/XO = (^/)(-0 when ^R?.

Then Py is a linear bounded operator from Ha pf onto jy x,.a.N'

Consider the case n >. 3 dimensions. (The case n = 2 need a special consideration.)

It was proven in [ER1] that there is an open dense set 0 C HQ,N such that Or = OHff »,

is also an open dense set in H^ and such that

(12) 6(0 = S(q)

is analytic map of 0 into Ha,N. Therefore

(13) Sr(q) = P^S{q)

is a real-analytic map of Or to H^ j^.

Moreover the following result holds:
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THEOREM 1. There is an open dense set 0;. C Or in H^ such that the map P^S(q)

is a local homeomorphism in H^ ̂  in a neighborhood of any q € 0'.

Note the result above shows that the data 6(Q on 7^ are still overdetermined since on

the plane ^ • v = 0 one only uses the combination 6(^) + b(-^).

The proof of Theorem 1 follows the same steps as the proof of Theorem B in [ER1]. First

we show that the Rrechet derivative of d(P,S(q)) is a Redholm operator of index zero for

any q € 0, and it is invertible when \\q\\^ is small. Since P^S(q) is a real analytic map

we get that P^S(q) is a local homeomorphism for any q belonging to an open dense set of

the connected component of Or containing zero potential. It was shown in [ER1] that 0 is

a connected set in Ha,N but Or is not a connected set in H^. To prove that P^S(q) is

a local homeomorphism for any q belonging to an open dense set 0;. C Or we shall follow
an approach similar to [ER3]:

Consider equation (3) for z = k + ir, k € R1 , r € R^:

(U) .(,c,̂ ).̂  ̂ V^-^-^-O.

It follows from [ER1] that solution h(^^k) exists for any real k assuming that q € 0.

Therefore the scattering amplitude is defined for all 6 e S'""1, w € S'""1 k € R1:

(15) a^k)=Cn,kh(k0,k^k)

where q € 0 and

^((a^r-
In particular the backscattering amplitude

(17) W <Q = a( ,̂ -6, k) = Cn,kh(k0, k0, k)
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is a function^on -̂i x ̂ . Note that &((?, 0) = C.,̂ (0,0,0) is independent of 0.

Denote by S^-1 the closed half-sphere u,. v > 0. In the case of complex-valued potentials

<?(̂ shall consider the inverse problem of recovering g(Q from the restriction of ̂ , k)

to 5."-1 x R1 . More precisely, denote by P^ the foUowing operator acting on functions

c(^), e € ̂ -1, fc 6 R1 , such that c(^,0) is independent of 0:

(18) (P^cX^^^^^+l^..)^-^,-^) -c(^,^)) ,

where

0 = (^ . v)v + ̂  .

For any g(Q € 0 C ̂ a,N define the following map:

W W^Pi^k), BeS^, J f c € R 1 ,

where b(0, k) is the backscattering amplitude.

THEOREM 2. Denote &i(Q = (P^b^k) where ^ = ̂ . J/^) € 0 C ̂ .̂  ^en

&l(0 € H^,N. Moreover ^1) w an analytic map from 0 to H^,N and the Frechet derivative

dSv ts a Fredholm operator of index zero for any q € 0.

Since dS^ is invertible for small ||g||,̂  and 0 is connected we obtain the following

theorem:
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THEOREM 3. There is an open dense set Oi C 0 such that S^^q) is a local homeomor'

phism in a neighborhood of any q € Oi.

Consider now the case of real-valued potentials. If g(^) € Or = 0 n H^ ^ than taking

the complex conjugate of (14) we get

(20) %C^)=^^-C,-fc).

Therefore if q € Or we have

(21) &(^T) = C^k h(k0^ke,k) = Cn^kh(-k0, k0, -Jk) = b(0, -k).

Hence

MO=^M)+^(^^)(&(-^,-^J)-&(^,^

(22) =&(0,-fc)+^(^.^)(&(-^,fc|^l)-6(^,-^l))=&i(-0,

Therefore &i (^) € ̂  ̂  and Theorem 3 implies the following result:

THEOREM 4. The restriction of the map S^ to Or = 0 n H^ ̂  is a local real analytic

homeomorphism in H^ jy in a neighborhood of any q € 0\ n H^ ̂ .

Note that Oi n H^ ̂  is open and dense in H^ y/. Now we shall show that for q € Or

the restriction of the map &i(0 = P^S^q) to R^ coincide with the map PvS(q) (see (7)).

Since 6(0, Jb) = &(0,-Jb) when g(Q € Or we obtain from (18)

(23) (P^W, fc) = &((?, fc) + ̂ (^ • ̂  (& (-j^ , k0^ - b (^ , fc^))
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Denote ^ = < .̂ Then ̂  == ̂  and ̂  € R? when k >. 0, tf € 5?-1. Comparing (23) and

(7) we obtain

(24) W0(0 = (P^XM) for ^k6,k^O,0€~S]F1

Therefore

(25) P.W=p^b(e,k), ^=ke

for any 9 € Or and Theorem 1 follows from Theorem 4 with 0',. = Oi n .ff».

§2 A new well-posed inverse scattering problem in two dimensions

The singularity of the backscattering amplitude at k = 0 makes the inverse backscatter-

ing problem in two dimensions more difficult than in n ̂  3 dimensions.

One way to overcome this difficulty was proposed in [ER2]. It was shown there that for a

dense open set of g(^) € Ha^ we have

(26) ^=2^^^1^^

where ^(<) is the same cutoff function as in (7), So > 0 is small, ft ̂  0 is a constant, &o(0 €

Ha,N and &o(0) = 0. It was proposed in [ER2] to consider ft and &o(0 as "coordinates" of

the backscattering amplitude b(() and it was proven that the map g($) -» jx(\^\6o1 )+&o(0

is a local homeomorphism in Ha,N in a neighborhood of any q € Oz where Os is an open

dense set in Jfa.N. In this section we consider another inverse scattering problem in two

dimensions.

Fix ko > 0 and denote

(27) e=|(M-fcouQ,
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where 0 and u are unit vectors in R2. Denote by ^-L the rotation of ^ by the angle ^

clockwise.

For any ̂  0, |^| ^ k we define

(28) M+ = ̂ + v t̂ii2 —^+ = -(+ v l̂ip ̂

(28') ^-^-^""iip^' fcou?- = -^ - ŷ o2 - Ki2 ̂  •

Then |0±|== 1, |u?±| = 1. Vice versa any two vectors fco^» ^o^ where \0\ = |u>| = 1, 9 ̂  u?,

can be represented either in the form (28) or in the form (28') where ( = ̂ (^ - ̂ o^).

Let h{^ (, k) be the solution of equation (3) for k > 0. It was proven in [ER1] that

(29) ^, C, <•)=/»(-€, -^ A-), V ($, C, k).

It follows from (29) that

h(M, k^, ko) = /i(^ + ̂ fe2 - |^|2 — , -$ + ̂ 2 - |$|2 — , fco)

= h ̂  - f̂co2 - IC12 ̂  ,-^ - ̂ o2 - Kl2 ̂  ̂ o) ,

where 6 ̂  u>, $ = ^(fco^ - ̂ o^) and either (28) on (28') holds. Note that fc(M, ̂ o^, <;o) is

a single-valued function of $ = KM - ̂ ) for 0 < |̂ | < fco- Let ^(<) be the same cutoff

function as in (7) and QQ be a fixed unit vector, \9o\ = 1. Denote by &2(0 the following

function:

(31) W=C2,kM^-U(\) for |$ |>fco,
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W) = C2,fco(^(M, kow, ko) - ̂  (- \9 - w\\ /i(M, M, ko)

+ X [2 \Q - ̂ N h(kQ0o,ko0o,ko) for |̂ | < Jko where

(3r) ^ = ;)(M - kow) for a; ̂  0 and ^ = 0, ^- = 0 for u» = 6
" 1^1

Here €2,1,0 = ̂  (^) e'? is the same as in (16), n = 2. Note that 62(0 is equal to

the backscattering amplitude for k > ko and it contains less information than the full

scattering amplitude for k = ko: we have subtracted the forward scattering amplitude

C'2,fco^(M, M, fco) in the neighborhood Jo; - 9\ < 5. Although h(ko0, kou, ko) is a discon-

tinuous function of ^ at ^ = 0, 62(0 is continuous with respect to $ at ^ = 0. Moreover

62(0 € H^,N assuming that g(Q € ffa,N, 0<a<l ,^>0.

THEOREM 5. There is an open dense set U in Zfa,N(R2) x ̂ .^(R2) such that/or any

pair (q,q1) € U, 62(0 = 62(0 t'mpJtM g = g\ Moreover, /or (9,9') 6 U and q - q' small

in Hc,,N(R2) we have

ll9-9'l|^,N< C'||62-62||^,

i.e. the map q -¥ 62(0 M well-posed.

Note that one can modify 62(0 by taking ̂ (^-o;|) J^^ ̂ (M, M, ko)p(0)d0 instead

of ^(21^ - ̂ l)/t(<;o^o, feo^o, ̂ o). Here p(6) is arbitrary such that f^,^ p(0)d0 = 1.

Another inverse scattering problem for potential without compact support in two di-

mensions was studied in [No].
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