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Abstract
We present a rigorous derivation of the semiclassical Liouville equation for electrons

which move in a crystal lattice (without the influence of an external field). The approach
is based on carrying out the semiclassical limit in the band - structure Wignerequation.
The semiclassical macroscopic densities are also obtained as limits of the corresponding
quantum quantities.
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1 Introduction
When conduction electrons move in a solid, then quantum effects of the ions located at the
crystal lattice points have to be taken into account in the equations of motion. On a fully
quantum mechanical level of description (see e.g [1]) this is done by incorporating a lattice-
periodic potential V (generated by the lattice ions) in the (effective one-particle) Hamilton-
operator for a conduction electron

(i.i) ^=-^A,+y , x^si3.2m

Here m denotes the mass of the electron and K the Planck constant.

The electron wave function ^ then satisfies the IVP for the Schrodinger equation

(1-2) ih^t=Hzp, .reJR^X)
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i,{t = o) = ̂ , x e ̂
with the quantum position density

(1.3) n(x,t)=^{x,t)\2.

Note that in this paper no exterior (non-periodic ) field influences the motion of the considered
particle and we also do not take into account the Coulomb interaction among electrons .
Usually, the initial state ^/ is not known exactly and, thus, corresponding statistical mixtures
(so called mixed states) with given occupation probabilities for the set of possible states have
to be considered.
It is well known that the Hamilton operator (1.1) with the lattice periodic potential V induces
a direct sum decomposition of the space of states L2(Si3) corresponding to the eigenspaces of
the Floquet - eigenvalues of H (see e.g. [II], [4]). These eigenvalues {E^^, called 'energy
bands' in solid state physics, are periodic functions of the wave-vector k denned in the Brillouin
zone B of the crystal lattice.
On a semi-classical level of description, the Schrodinger equation is usually replaced by the
semiclassical Liouville equation for the phase space ( i.e. position-wave vector space) density
w == w(a;, k,t). When no exterior field is present and when the electron is known to 'move in
the m-th band' (i.e. the states of the statistical mixture belong to the m-th Floquet eigenspace)
then the semiclassical Liouville equation reads

/\ 4
(L4) -^ + ^VA(fc) • v,w == o, x e 1R\ k e B
subject to a periodic boundary condition in k and an initial condition

(1^) w(t = 0) = wj, x € 1R3, k € B.

The position density n and the current density J are computed as

(L6) ^M =4^3/w^ J^ = 4^3 j-^kEmwdk
B 7r B

and the electron energy density

(1-7) ^x)=^jEm(k)wdk.
B

In the physical literature (e.g. [1]) the equations of motion

(L8) :r=^VA(A:),

(1.9) hk=0,

which correspond to the semiclassical Liouville equation (1.4) are usually derived by tracking
the motion of wavepackets of the Schrodinger equation (1.2). This stationary phase method
does, however, not lead to a rigorous justification of the semiclassical Liouville equation and
of the semiclassical moments.
A rigorous derivation of the semiclassical transport equation (1.4), (1.5) was given by P. Ger-
ard in [10]. His very elegant approach is based on microlocal analysis of pseudodifferential
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operators. For a bounded sequence in L2 he constructs "the semi classical measure59 which de-
scribes the oscillations of the sequence. He proves that the measure associated to the sequence
of solutions of (1.2) satisfies (1.4), (1.5). In fact, it can be shown (cf. [6]) that the semiclassical
measure is nothing but the limit of the Wignertransform of the density matrix corresponding
to (1.2). This approach does, however, not provide immediate information on the macroscopic
densities and seems to run into difficulties when an exterior nonperiodic potential is present
in the Hamilton operator. In this paper we shall rigorously derive the semiclassical approx-
imations by a completely different approach based entirely on kinetic equations (cp. [6] and
[7] for the vacuum case). Using the above mentioned eigenspace decomposition of the space of
states we shall reformulate the IVP for the Schrodinger equation as a denumerable system of
Wigner-type equations. The basis for this reformulation lies in the appropriate definition of a
Wigner-type function for each band. These Band-Wignerfunctions are defined in analogy (i.e.
using Fourierseries instead of Fouriertransform) to the non-crystal 'whole space case5 (which
is presented e.g. in [2], [12], [13] ) and have similar properties as the semiclassical distribution
functions (solutions of the semiclassical Liouville equations ). In particular they allow the cal-
culation of the macroscopic densities in analogy to the semiclassical k- space moments (1.6),
(1.7).
The semiclassical Liouville equation (1.4) (1.5) is then obtained by introducing an appropriate
scaling (analogously to the one used in [10]), which assumes that the period of the potential V
is 'of order V (after appropriate scaling) and by carrying out the limit K —> 0. The convergence
of the quantum position-, current- and momentum-densities can then be concluded from the
convergence properties of the Band-Wignerfunctions (plus some additional compactness).
We remark that this approach (just as the one of P. Gerard) is not limited to a one-band approx-
imation. Initial wave-functions which belong to the direct sum of arbitary many eigenspaces
are admissible.
As already mentioned, this paper only deals with the case of a periodic potential in the Hamil-
ton equation. Most of the proofs are skipped here, we refer to [8] for a detailed analysis.

2 Preliminaries: Schrodinger Operators with Periodic
Potentials

Let an), 0(2), 0(3) be a basis of JR3. Then we define the crystal lattice by

(2.1) L = {a(i)ji + a(2)J'2 + ci(3)J3 |.h J2J3 € 2Z}

The dual basis vectors 0^,0^,0^ are determined by the equation

(2.2) a^a^ == 27r S^m ; ̂  m = 1,2,3

and the dual lattice L* ('reciprocal lattice5) reads

(2.3) L' == {a^'i + a(2^ + 0^3 lji^'2^3 € ^}.

The basic period cell of the lattice L is denoted by
3

(2.4) C := {^ti0(i) |0 < ti,<2^3 < 1}
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and, as usual ([I], [11]), the Brillouin zone B is the Wigner - Seitz cell of the dual lattice L* :

(2.5) B := {k € JR^ \ k is closer to zero than to any other point of L*}

Note that

(2.6) \C\ \B\ = (27T)3

holds, where |.| denotes here the volume. For the following let V == V{x) be a real-valued
potential on iR3 with the properties

(Al) (z) V € L°°(JR3)
(Al) (%%) V is L — periodic^ i.e. V(x + /^) = V(x} on JR3 V/^ G ̂ .

For Q? € (0, ao], o;o > 0 fixed, we define the Hamiltonian

(2.7) H-^-^+V^)
L^ Oi

which we will regard both on L2^) and on L2(]R3) . Obviously, H0 is obtained from H1 by
the rescaling of the position variable x —^ E, where a is the scaled Planck constant. For k G B
we define the operator H1^) as H1 with the periodicity conditions :

(2.8) ^{x + fi) = e^(a;), x € 5?, ^ e L

(2.9) ^(^+^=^^(^. ^ e ̂ €^=1,2,3aa*^ C/a*^
It is well known [11] that each ^{k) has a complete set of eigenfunctions ^ = ^^(^5 A:),m €
IV, (orthonormed in ^(C)) with eigenvalues Ei(fc) < E^k) < E^k) < < Em-i(k) <
Em{k) < • • • (counted with multiplicities). For every fixed m € ^V the function Em. ==
Em(k) is continuous on B and the eigenfunctions can be chosen measurably in k G B . Also
Em{k) m^0 oo uniformly for k 6 B .

The set
(2.10) {Em{k)\keB}C]R,
is called the m-th (energy) - band of H1 and the eigenfunction ^rn is called the m—th Bloch-
function. Note that ^/rn can be written as the product of a plane wave and a lattice periodic
function.
We now set
(2.11) ^{x,k):=a-^m{^.k) . ^ e ^ & e B .

The scaling argument mentioned above implies

(2.12) H^^k) = Em(km.,k)

(2.13) Wx + a^ k) = e^^x, k), x € JR3, /. € L
/)<&» ^ma

(2.14) —^(x + a^ k) = ̂ ^——(x, Jfc), x € iR3, /z € 2., ^ = 1,2,3
oa^ c/a^

Obviously , the set { ^(.,fc) } is orthonormed in L2(aC) .
The following decomposition Theorem is obtained from [II], Theorem XIII.98, by rescaling
x - . ^ .
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Theorem 2.1 For ^ € L2^3) set

(2.15) ^(^m):^ J ^{x)W^(x,k)dx , f c € B , m € W
j?3

77ie7» (/ie following statements hold :

(i) ^) = - E î ; ̂ (A;, m)^(.r, A;) ̂ , a- € IR3

• ' B

(") miw = |^E^i/|^(A;,m)|2^
J3

(m) H^{k, m) = Em{k}^(k, m), k ^ B . m ^ J N

(iv) The mapping ^ : ^(JR3) -^ ©^^(B) 15 one-to-one and onto.

(v) Let ^1,^2 € 2y2(^3) . r/ien the Plancherel formula

(2.16) / ̂ i(^)N^) ̂  - — E / ̂ (A;. ̂ )^(^. ̂ )^
R3 1 ^ 1 me^^

holds .

Here ©^ H denotes the denumerable direct sum of the Hilbertspace H and ??-'5 denotes complex
conjugation.

The subspace

(2.17) S^:=[—fa(kWx,k)dk | a^L\B}\
l1"1^ J

of ./^(IR3) which is invariant under the action of H" (cf. Theorem 2.1 (iii) ), is called the m-th
band space. Obviously S^ and .5'̂  are orthogonal for mi ^ m-i .

The action of the Hamiltonian in the subspaces is described in :

Lemma 2.1 Let-^ € S^. Then

(2.18) {H^x} = ̂  £^W{x + a/x)
lt€L

where €m(p') are the Fouriercoefficients of Em(k) :

(2.19) E^k)=^^We•^.
^eL
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3 The Quantum Band - Problem
We now consider the Schrodinger equations

(3.1) |̂̂  = -^A^ + V{^^ x € JR3, t > 0

(3.2) ^(o-,<=0)=<^), .ceiR3

for ^, m 6 iV, where we prepare the initial data u?^ as follows :

Let (2^(.,m) € -^(-B),^ and m € W , be a double sequence (m... 'band-index', /...'mixed
state index') with the property

(A2)(z) ^f^(k,m)^{k,m)dk=8^ Vm,^,^ € ^V

(A2)(«) ^B ^(a•)=^/^(A,m)^(a>,fc)^
jy

Obviously the function o^ lies in the m-th band space 5^.

From Theorem 2.1 we conclude

(3.3) / ̂ m^^dx == 6^6m,m2 V^i, i^m^m^ € W
JR3

The sequence o;̂  of initial data is orthonormed in JL2(JR3) and therefore the solutions
^w(-^) remain orthonormed for all times t > 0. Moreover ^^(.,t) 6 S^ for all t > 0 follows
from Theorem 2.1 (iii). Also this Theorem implies the existence of functions ̂ (.5 m, t) G ^(-B)
with the properties

(3.4) ^(x, <) = — / ̂  ̂  <)^(^. k) dk, x C JR3, t > 0
' l B

(3.5) ^(fc, m, t) = f ̂ (x, t)^(x, k)dx, k € B, t > 0
i?3

(3.6) —/^(^m,<)%A:,m^)^ = ̂  Vm,4^2 € W,< > 0
1 'B

From Lemma 2.1 we conclude that the IVP for ^^ can be written as

(3.7) ^°^^=^^W^^ xe]R\t>0
oi neL

(3.8) ^(x,t = 0) = ̂ (x\ x e iR3.
For the definition of the mixed state densities we prescribe a sequence of a - dependent occu-
pation probabilities A^ of the sequence of states u}^ . We shall use the following assumptions
(cp. [7])

(A3) (Q \^ >0 W, m € W
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(A3) (u) E^=i E£i ̂ m<D . where J9 is independent of a € (0, ao].

Note that the same superscript a denotes both the a. -dependence due to the scaling and
the a- dependence stemming from the initial data.

We now define the m-th band mixed state position density.

(3.9) <^t):=f^\W^t)\2
i=i

and the total charge density :

00

(3.10) n^x^-.^^n^t).
m=l

Then the total charge is bounded uniformly in a :

(3.11) [n^x^dx = EE^m^ D.
f^ "1=1 ̂ =i

(we used (3.6), (A3)(ii)).
Since the usually defined current densities are extremely impractical in calculations where the
band structure is involved, we make use of the arbitrariness of their definition (based on the
macroscopic conservation law). The following definition of the current densities is convenient
for the band-structure set-up.
Let ^ A " denote the Fourier-transform of a function with respect to x :

m = — / /(^-^ dx, w = f f^- d^.
v / k3 R3

We remark that in the sequel we shall not distinguish between a function in -^(I?) and its
L*— periodic extension to L^(IR^)^ except that we denote the argument by k and ^ resp.
We now define the m-th band current density J by its Fourier-transform :

00 r } . -r
(3.12) J^t):=^\^jj^kE^+(s^l)a^ds^^^

1=1 i% °

and the total current density

(3.13) ^^=E^(^)-
m==l

Our definition of J^ is motivated by the macroscopic conservation law and relies on the regu-
larity of the energy bands. Indeed we have :

Lemma 3.1 :

(0 ira.^)llLoo(^) < (^l|V2UL-(B)E£l >?m V< > 0,

(n) ^< + divJ^ = 0 holds in J9'(^ x (0, oo)).
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Other important quantities are the m-th band energy density

(3-14) ^ t) := Re (f; \^Kn{^ t}{H^J{x, t))
^=i

and the m-th band energy

(3-15) W^^rnj^^H^J^dx .
<=1 ^3

Application of Lemma 2.1 and Theorem 2.1 give the equivalent representation :

(3-16) ^) = T-lE^ I E^(k}\^m,t}\2 dk.
1^1 <=i ^

Since e^ is a constant of the motion we obtain

(3.17) ^(<) = —f;^ f E^k^^m^dk \ft > 0
\IJ\ e=i •B

The total energy is defined in the obvious way

(3-18) e°(<) ••= E ^(<)
m=l

and we have 1 oo oo
(3.19) ^M^iRiEZ^/^WI^^m)!2^ VOO .

l-^lm^fcl g

4 Band - Wignerfunctions
We set up the density matrix for the m-th band

(4.1) ^(^^<)=EA?m%.(^WJ^^ ^eiR^X)
^=1

and define the m-th "Band-Wignerfunction" w^ by the coordinate transformation

( A r»\ a a

(4.2) r = x + ̂  , s = x - ̂

restricting ^ to the lattice L and by successive 'discrete5 Fouriertransformation :

(4.3) w^ k, t) := ^ z^x + °-^ x ^ ̂  ty^, x e JR3 ,k € B.
^L z z

A discussion of this definition of a "Wignerfunction" in the general context of phase-space
formulations of quantum mechanics is given in [9].
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The initial m-th Band-Wignerfunction w^^x.k) is defined by replacing ^(.,f) by the
initial wave functions c^(.) in (4.1) , i.e. w^ = w^(t = 0).

For the following analysis we define the space of test-functions on JR^ x B :

B := {y(x,k) = ̂  y(^)e^ 6 /^Co^))}
^L

(in analogy to the analysis of the whole space case in [6] ). It is an easy exercise to show that
B is a separable Banachalgebra. We equip B with the norm

IHI^|5|Elly(-^)lkoo(^)
P.€L

and we easily obtain
Proposition 4.1

IKWII^ < E^m < D Vmew, voo.
^=1

A somewhat better bound, i.e. an L2 -estimate, on the Band-Wignerfunctions can be ob-
tained by also assuming

(A4) ^E^=iE^i(ArJ2 < D , where D is independent of a € (O.ao].

Then as in [7] for the whole space case we have

Lemma 4.1 Let (Al) - (A4) hold. Then

(4.4) IKWII^S^) < ^(l+||^||ioo^)^f;(A^)2 < K
a ^==1

(4-5) E i . || E |p——IKWIII^XB) < K.
m==l 1 + \\^rn\\Loo(B)

It is well known that the 'full space5 Wignertransform of an arbitrary positive definite den-
sity matrix is not non-negative everywhere. However, an appropriate averaging of the Wign-
erfunction over sufficently large phase space regions smoothes out those oscillations which are
due to the uncertainty principle and gives a non-negative function (see [2], [13], [12], [6], [7]).
We shall now discuss the band-analogue of this so called Husimi-transformation (cp. also [3],
[5] and references given in [5]).

Lemma 4.2 Set
(4.6) F^k) :== ̂  e-tl^2^ , k € B

P.CL

(4.7) Ga(x):=-———exp{-w)^ x e I R 3

(27ra)2 2a
and define the m-th hand Husimi - function by

(4.8) w^ := (w^F" )*,(-.

Then w^jj = w^fj{x,k,t) is non-negative almost everywhere on JR3 x B x (0,oo).
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The most important consequence of Lemma 4.2 lies in the fact that weak limits of Band-
Wignerfunctions are non-negative :

Lemma 4.3 Let wj^^Wm be accumulation points ofw^ and, res?., w^ in the B* — weak^
- weak and, resp., I/°°((0,oo);Z?*)~ weak * topologies. Then

(4.9) wi^rn > 0 on ]R3 x B, Wm > 0 on IR3 x B x (0, oo),

in the sense of measures.

We now derive an evolution equation for w^ :

Lemma 4.4 The m-th B and-Wigner function w^ solves the initial value problem:

(4.10) ^<(.. MK. E W^ + ̂ k' '\- <^ - ̂ t-" = 0
/-t€.£/

forx^JR3, k ( ^ B , t>0

(4.11) <(:r,M=0)=<,J^), x e l R ^ k e B

(4.12) w^ i5 periodic in k.

The proof is a simple computation using the definitions (4.1), (4.3), the Schrodinger equation
(3.1), (3.2) and the representation (2.18), (2.19) of the Hamilton operator acting on *%.

It is the k -moments which give the Band-Wignerfunctions a physical meaning. From the
definition (4.3) and from t he Fourier inversion formula we obtain the zeroth order k - moment

(4.13) ——fw^k,t)dk=n^t)
B

and, thus, for the total density

(4.14) E——lw^k^dk^n^x^
m=l l^ljg

The representation of the m-th band current density J^ (defined by its Fourier-transform
(3.12) ) is not completely straightforward. We obtain

Lemma 4.5 The representation

(4.15) J^t) = —, E A(^)J / /^<^ + ̂ k,t)dkds
^€J^ -1 B

holds.
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The m-th band energy density is related to the Band-Wignerfunction as follows (cf.(3.16))

(4-16) ^(^ ̂  ••= ̂  ( E ̂ Wx + a^ ̂  t) )
P.CL

The computation of the m-th band energy gives

(4-17) W == —— / /^nW<(^ k, t)dkdx
Rl B

and for the total energy

(4-18) ^(<) = E — / fE^k)w^ k, t)dkdx.
m=l W^ ^

5 The Semiclassical Limit a —>' 0
The scaling which leads to the Hamilton operator (2.7) is based on the assumption that the
characteristic periodicity length of the lattice potential is of the same order of magnitude as
the approprietly scaled planck constant . Hence the usual classical limit is combined with a
homogenization limit. In this section we show that this semi-classical limit a -> 0 gives the
free-streaming semiclassical Liouville-equations.
As before we employ the assumption (Al) (on the lattice potential V), (A2) (on the initial
wave function ) and (A3) (on the occupation probabilities of the initial states).

It is a well known property of the energy bands Em that there exists a closed set F^ C B
of measure zero, such that the periodic extension of E^ to ̂  is an analytic function in
^k ~ UveL^Em + cr). The sets Fm are analytic manifolds of dimension < 2 and the sets
B -Fm have a finite (m -dependent) number of topological components. We refer to [14] for
details. Using this we prove in [8] :

Theorem 5.1 Let (Al), (A2), (A3) hold and let a € (0,ao] be a sequence with limit zero.
Then there exist subsequences of {w^gjy, {w^}^n (denoted by the same symbol) such
that

(5-1) w^ "^ wi,^ >0 in B*weak *, Vm 6 JN

(5.2) w^ °̂  w^ ^ 0 in Z°°((0, oo); B*} weak *, Vm € W

The limits w^ = Wm(x,k,t) are the unique solutions in D^[]R^ x (B - F^} x [0,oo)) of the
I v I. S

o

(5-3) -Q^m + VA(fc) • V,W^ = 0 ,

(5-4) ^m(<=0)=W^,

(^•5) Wro is L* — periodic in k

Also, the m-th band position densities satisfy (for the considered subsequence):

(5.6) <a:^nn^:=..y>w„(,<;,.)(^ mr»((0,oo);Co(^)*)weaA;*, Vm € W
WB' 'B
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Note that the unique solution of (5.3) - (5.5) reads

(5.7) Wm(x, k, t) = wi^{x - ̂ 7kEm(k)t, A;); x e JR^ ,k € JRi - \J (Fm + a), 00.
<r€L*

Clearly, if the whole sequence of initial data w^ converges to w^, then the whole sequence
of Wignerfunctions w^ converges to the measure Wm given by (5.7) , i.e. to the unique solution
of the free streaming m-th band semiclassical Liouville equation.

However, we remark that taking out the zero- Lebesgue-measure-set Fm may have impor-
tance since the measures wj^(a*,.) may be supported in F^. No assertion is made on the
evolution of this part of the initial measure wj m'

A stronger result can be proven if the assumption (A4) on the occupation probabilities is
added. Then the limiting Wigner-measure is an i^-function and, thus, absolutely continous
with respect to the Lebesgue measure. Taking out the set Fm then is of no importance anymore.

For the setting of L2 -convergence for an arbitrary number of occupied energy bands we
define the Hilbert space H of sequences {fm}m^N with values in L2(]R^ x B) equipped with
the scalar product

oo ^
({/mM^mJmeiv)^ := ^ .. ..3————(/m, ffm)L2(^xB)

m=l 1 ' ll^w ||^oo(5)

Theorem 5.2 Let the assumptions (Al) - (A4) hold and let a e (0,ao] be a sequence with
limit 0. Then there exist subsequences of {w^^meN, {w^m^N (denoted by the same symbol)
such that
(5-8) {^rnlme^v ̂  {^z,m}m€iv ^ Hweakly

(5.9) {<}meJV ̂  {wm}m^ iri r"((0,oo);^)weaA:*

The limits w^rn and wi are nonnegative a.e on JR^ x B and, resp. , JR^ x B x (0,oo). The
functions Wm are the unique solutions in D^(JR^ x~B x [O.oo)) of the IVP (5.3) - (5.5). Also,
the m -th band position and current densities satisfy

(5.10) < ̂  nm := —— f Wm{k) dk in 2.°°((0, oo); L\1R^)} weak *
B

(5.11) ^ ̂  J^:=——JVkE^(k)wmdk mJ^aO.oo);^2^)) weak *
' 'B

for all m € IN (and for the considered subsequence). Also the macroscopic conservation laws

r\

(5.12) .n^ + divJm = 0 in D\JR3, x (0, oo)) m € IN

hold.
The energy density €m(x,t) converges, too :

(5.13) C "̂  em = ——jE^k)wm{x,k,t)dk in ^((O,^);^2^)) weak *
' 'B
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