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LP ESTIMATES FOR THE WAVE EQUATION AND APPLICATIONS

CHRISTOPHER D. SOGGE

In the last few years there has been a lot of work in proving estimates for Fourier integrals arising
in studying the wave equation. The purpose of this paper is to go over some recent developments
and applications.

We shall start out by going over ^-Sobolev space estimates for Fourier integral operators. These
arise naturally in harmonic analysis, for instance, in the study of maximal operators, as well as in
study of eigenfunctions and eigenvalues on manifolds. Sharp LP —^ Lp estimates for Fourier integrals
are usually harder to obtain than estimates involving different norms. The arguments involved often
involve making a "plane wave75 decomposition of the operator, obtaining simpler operators which
lend themselves to harmonic analysis techniques.

We shall also go over some recent joint work with H. Lindblad which involves mixed-norm
estimates for the wave equation and applications to semilinear wave equations. These estimates
strengthen earlier ones used by Grillakis and others. They are related to Strichartz's local smooth-
ing estimates and their proof is based on a proof of his restriction theorem using real interpolation,
rather than the more standard analytic interpolation arguments. The arguments rely on estimates
for "dyadic pieces" of the fundamental solution for the wave equation, which in turn follow from
stationary phase. Using the mixed-norm estimates we obtain sharp local existence theorems for
semilinear wave equations with rough data. Some of the existence results were also obtained inde-
pendently by L. Kapitanski.

1. LF —> LP inequalities and harmonic analysis

The type of Fourier integrals that arise in solving the wave equation (microlocally) take the form

(1) {^W= I e^^a(^0/(0^,
J^

where a 6 S^^^ x K^O) is a symbol of order fi (and type (1,0)) and the phase y is real, in
C^^ x R^O) and satisfies

(2) rank y'^ = n.

This of course forces the dimension d of the target space to be ^ n. The usual convention is that
the order of T is p, + (n — d)/4.

It has been known for some time that if d = n, then, in general, zero-order elliptic operators are
not bounded on V for p different from 2. For instance, if y = z • ^ + |^|, T is unbounded on Lp^
p ̂  2. This fact due to W. Liftman [20] and one can extend it and show that if d = n and

(3) rank y ' / c = k
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somewhere, then T is not bounded on V if it is elliptic and p, > -k\l/p - 1/2|. Since, generically,
k = n- 1 in (3), usually one must lose (n- l)|l/p- 1/2| derivatives in U\ which is in sharp contrast
to the case of pseudo-differential operators, where there is no loss of derivatives in 27 if 1 < p < oo.
One does not lose more than this, as seen in the following result of Seeger, Stein and the author [26].

Theorem 1. Let d = n and suppose that (2) holds. Then, if 1 < p < oo, T : 2^(R71) -» J^(R71)
iffi = -(n - l)|l/p - 1/2|. Also, if rank y^ = k, one can take ^ = -k\l/p - 1/2|. For elliptic
operators, all of these results are sharp.

If rank y^ = k, then the singular support of the kernel of T is a submanifold of R71 x R71 of
codimension n-fc, so this result says that the loss of regularity is related to the "size^ of the singular
support.

If the rank ofy?^ is not constant then the singular support of the kernel can be quite complicated,
and, for related reasons, it can be very hard to analyze the kernel using standard stationary phase
methods. One can get around this obstacle though by using plane wave ideas which have been used
extensively in harmonic analysis, going back to early work of Fefferman on the ball multiplier and
related problems.

In the present context, the idea is to break up the complicated operator T into pieces which
are much simpler and behave essentially as (translated) non-isotropic pseudo-differential operators
of type-1/2. Specifically, one first breaks up the operator dyadically. If 0 e (7o<)(R+) satisfies
E°°oo P^/23) = 1, T > 0, one lets

{^>fW = /^^^(KI/AX^.OAO^, A = V^ 1,

so that T = E^=i ̂  +-^(h where Jo is smoothing. The kernels of the F\ are essentially supported
on a A~1 neighborhood of the singular support, but they can be quite complicated as A gets large. To
get around this fact, one makes a further decomposition. Specifically, for a given A, let {x^^T^2

be homogeneous of degree zero, in C^R^O), and satisfy 1^X^(0 = 1, ̂  0, as well as

^(0=0 if I^-^I^CA-1 /2 , some ̂  € ̂ ^ and |J9^(01 ^ C^AH^Va, if ^ e ^n-1 .

Thus, the ̂  should be thought of as conic cutoff functions supported in cones of aperture w A~1/2.
Using these functions, we let

(4) (W)(^) = /^(^)^(^,0/(0^, a^.O = /3(|^|/A)^(Oa(^,0.

The point of this decomposition is that, in the right scale, ^ —^ y is essentially linear on supp a^.
Because of this and the fact that a\ has ^-support in a rectangle with n—1 sides of length w A1/2 and
one of length A, one can show that, for fixed y , the kernel, K^{z,y), of ̂  is essentially supported
in a rectangle of dual dimensions, that is, one with n — 1 sides of length A~1/2 and one of length
A-1.

Using this decomposition one can show that

JF: n1 -^L1 if ^=-(n-l)/2,

if 7i1 is the standard Hardy space. Since a classical theorem of Hormander says that zero order
Fourier integrals of this type are bounded on L2, the first part of Theorem 1 follows from applying
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the Hardy space interpolation of Fefferman and Stein. The other part of the theorem follows from
similar arguments.

If we take x = z^ and (p = x • $ ± ̂ |, with t fixed, then using Theorem 1 we can get sharp
estimates for the Cauchy problem

f Ou(t,x)=F(t,x)
y ) \ u(0,x)=f(x), 9tu(0,x)=g(x),

if D = (9/9t)2 - A is the d'Alembertian in R1-^. Specifically, if 0 < t < T, with T < oo, and
1 < p < oo, then

(6) \\u(t,')\\LP(^n)

< CT (ll/lk^) + lbllL^(R") + f \\F^ . )HL^.^) ds) , ̂  = (n - l)|l/p - 1/2|.

Here L^ denotes the ^-Sobolev space with ^ derivatives. This special case of Theorem 1 goes back
to Feral [23] and Beals [1].

The same result holds for the wave equation outside of a convex obstacle and this is due to
Smith and the author [27]. The plane wave decomposition and the analysis, though, is necessarily
harder due to the effects of diffraction. It would be interesting to know whether this estimate and
the estimates in the next section carry over to the setting of the wave equation inside a convex
obstacle. Recent results of Grieser [8] lead one to suspect that in this case the sharp estimates could
be considerably worse than those in the Euclidean or the diffractive case.

For applications it is often useful to have space-time estimates for n, rather than fixed time
estimates as in (6). It turns out that if p ^ 2, the sharp local space-time estimates are no better
than the ones obtained trivially from (6) via MinkowskPs integral inequality. On the other hand, if
p > 2, one can use the above decompositions and "geometric arguments," exploiting the curvature
of the underlying light-cones in (7) below, to see that there is a gain of regularity, "local smoothing,"
if one measures the regularity in space-time.

Theorem 2. Let n > 2. Then if p > 2 there is an Cp > 0 so that ifS = [0,1] x R71 is the unit strip
and if jip is £LS above then

/•i
MLP(S) < C( ||/||^ _^n) + ML^,^) + / 11^ • )HL^_^) d8 ) ,

t/0

provided tha,t e < £ p .

In (1 + 2)-dimensions this was first obtained by the author [29]. The proof was later simplified
and improved greatly in papers by Mockenhaupt, Seeger and the author [21], [22]. These results
say that in the important case of n = 2 one can take Cp = l/2p for p ^ 4, and Cp = i-(|- — ^) for
2 < p < 4. Slightly better results hold in higher dimensions. One might expect that one should be
able to take £p = 1 / p for p ^ 2n/(n — 1). This would be a sharp result and would have a number of
important applications in harmonic analysis.

This local smoothing phenomenon applies to a broader class of Fourier integral operators. If
d = n + 1, and if T is as above, there is local smoothing if (2) holds and if we have the "cone
condition," which says that the n-dimensional cones

(7) ^,={(^^,0)}c^:R l + n \o
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have the maximum possible number,n - 1, of non-vanishing principal curvatures.
The main applications of these results concern maximal operators. For instance, if one uses the

Sobolev embedding theorem they immediately give Bourgain's circular maximal theorem [3]:

IIs^ I j^ f^ + ̂ ) ̂ (y) I HLP(^) ^ Cpll/llLw, p > 2, / e s.

If the singular support of T is a hypersurface, the above local smoothing estimates are non-trivial.
On the other hand, if the singular support is a submanifold of higher codimension, one presently
does not have results which improve those obtained trivially from an application of Theorem 1. In
particular, one would like to prove that there is local smoothing for the conormal Fourier integral
operator of order -1/2 - 1/4 which which sends functions, /, of R3 to the 4-dimensional space of
lines t € Gi(R3) in R3:

{^f)W= I Pfdcr, peCo°(R3).
h

Locally (after making a change of variables), this operator can be written as in (1) with ^ = -1/2,
and both (2) and (7) will be satisfied. The L4 local smoothing theorem for averaging over families
of curves in the plane suggests that there should be an improvement of up to 1/8 of a derivative
over the easy consequence of Theorem 1 that T : ̂ (R3) —^ Z^/4(Gi(R3)). This 1/8 local smoothing
would improve Bourgain's lower bound for the Hausdorff dimension of Besicovitch (3,1) sets, i.e.,
compact measurable sets in R3 containing a unit line segment in every direction. Specifically, the
best estimate now [4] is that such a set must have dimension ^ 3—2/3, while the 1/8 local smoothing
estimate would have as an immediate corollary that these sets always have dimension ^ 3 — 1/2. An
early work of John [13] says that this local smoothing question is related to the problem of showing
that there is local smoothing for solutions of the ultrahyperbolic equation. These problems seem to
be harder than their hyperbolic counterparts because of the fact that the cones in (7) that arise are
homogeneous extensions of non-convex, ruled surfaces.

2. Mixed-norm inequalities and semilinear wave equations

In this section I would like to describe some ongoing joint work [19] with Hans Lindblad con-
cerning mixed norm estimates for the wave equation and applications to existence problems for
semilinear wave equations.

It has been known for some time that non-trivial space-time estimates for the wave equation
lead to good existence and scattering theorems for semilinear equations. This goes back, among
other places, to pioneering work of Segal, Strauss and Strichartz. See Strauss [32] and Struwe [35]
for historical background. In the case of the Laplacian one has the very favorable estimates of
Hardy-Littlewood and Sobolev:

IMIi^) ^Cp,g| |An| |LP(R"), K p < g < o o , n ( ^ - ^ ) = 2 , u ^ S .

Additionally, if x! = ( x ^ , . . . , Xn) and

11/llL.L^R-) = ( I00 ( / l/^l,^)!^^)^^)175,
* ./—oo Jysn~l

there are related mixed-norm estimates for the Laplacian:

IM|L^,(1R») < Cg,s,p,r||Au||^^(Rn) ,

(n - 1)(^ - ^ ) + ^ - ^ = 2 , K r<5<oo , 1 < p < q < oo , u6<?,
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(cf. [30, p. 25-26]). Unfortunately, nothing this strong holds for the d'Alembertian. However, we
do have control over certain mixed-norms and this leads to a sharp existence theorem for semilinear
equations.

Theorem 3. Let n > 2 and let u solve the inhomogeneous Cauchy problem (5). Then there is a
constant Cq depending only on q so that

ll^ll^^ao^xM^+IK^^Ik^c^iiFii^^^^ + ll/ll̂ .) + Hffll^-i(^)),

if we have the gap condition n(1-1) 4 - ^ - ^ = 2 , and

(•) i-^A.-'p^T,^^-}),.^ {[ t '7 1^'"^3
I I 2 7 | < 4 5 ^ - ^ -

J f n ^ 4 tie inequality also holds if the gap condition holds and

(") r = 2 , .=(^^T, 7 = ^ ( i - t ) . 0 ^(") r = 2 , .=(^fcy, 7=^(i-1), 0<7<.&

or

(m) ^ = 2 ' îp^^rpp 7^-f, ^T<7<1.

Also, if n > 2, 2i2d^1 <g<ooand7=^- - "^ 1 -

IHI^ao.TixR^+IIP.r-^^La^i,, , +|Kr,.)||^
L n—l ([0,.T] XM" )

<^(11/11^(M») + MH.-W + III^"172^2^^]^-

Here -ff7 denotes the homogeneous Sobolev space with norm \\f\\n-, = || |-Da;|'l'/||L2^ and

\\u{t, •)||^ = |K(, •)||̂ ) + ||W, •)||^-^).

One could restate the conditions on 7 in the three cases in terms of a condition on q (or p). In
case (z) it would read:

( 3 < g < o o , n=2
2 < g < o o , n=3
2(n+l)(n~l) 2(n-l)

(n-l)2+4 ^ 9 < yi-,3 ?

while in the other two cases it would become 2 < q < 2^n+l^n~ l^ and 2^z—!-^ < o < -22-, respectively.' •z ^7i--l)-+4 Ti—o •1 ^ n—3 / r v

The special case where 7 = ^, p == r = 2^^ and g = 6 = 2(^±p- is due to Strichartz [33],
[34]. When n > 4 the inequality corresponding to case (in) in the corollary is slightly stronger
than Grillakis5 inequality [9, Corollary 1.4]. Using these strengthened estimates one can use his
arguments to show that in dimension n = 6 one does not need to assume radial symmetry to obtain
classical solutions to wave equations with critical (repulsive) nonlinearities and smooth data. This
result and, in fact, the existence of smooth solutions for n ^ 7, though, was also obtained by Shatah
and Struwe [25].
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In the following two figures we graph (1/p, 1/g), where p and q are pairs of exponents occurring
in the above mixed-norm estimates.

1/q Mixed-norm Inhomogeneous Estimates, n=2,3

(1, 1/2)

(1/2,0) (2/3,0)

1/q Mixed-norm Inhomogeneous Estimates, n>3

1/2
(1/2, (n-3)/2n)/

((n+3) / 2n, 1/2 )

((n+1) / 2(n-l), [(n-1) +4] / [2(n-l)(n+l)])
'->-< (n+3) / 2(n+l), (n-1)/ 2(n+l))

([(n+if-S] /'[2(n-l)(n+l)], (n-3) / 2(n-l))
- 1/p1/2

Using the form of the fundamental solution of D one sees that, in order to prove Theorem 3, it
suffices to make appropriate mixed-norm estimates for operators of the form

{W°'F){t,x)= I t e^^-^F^s,^)^'Ol^-^ a<n,
7jRl+"
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or for related operators sending functions of n- variables to functions of (n+ 1)-variables. The proofs
only use the Hardy-Littlewood theorem for fractional integrals, the M. Riesz interpolation theorem
and pointwise estimates for the dyadic parts of the kernels:

K^x)= f ^^1/?(|^|/2^),^,
J^ Kr

if/? G CyOR7^) is as before. The pointwise estimates, which are related to Hiiygen's principle, are
the following:

\Iq^x)\^CN\r^l\t\-:^l(l+\\\t\-\x\\)~N,N=l^..., \=V.

These follow easily from stationary phase. The large negative power of \t\ in higher dimensions,
which is related to the fact that the fundamental solution becomes more and more singular as n
increases, accounts for why the favorable range in case (?) gets smaller and smaller as n grows.

Using Theorem 3, Lindblad and the author obtain sharp results concerning semilinear Cauchy
problems of the form

(8)
Ou = F^(u)
u(0,x)=f(x), 9tu(0,x)=g(x),

where, for a given K > 1, F^ is assumed to be a C1 function satisfying

(9) |F^)|^C|<, |F^)|^q<-1.

With this notation, our main result is the following.

Theorem 4. Let n ^ 2 and set

^o = (̂ t)0.̂  , if n ̂  3, and KQ = 3 for n = 2.

Assume that F^ satisfies (9) forKQ<K<ooifn=2 or 3, or KQ < K < n±l for n > 4. J fn>4 and
. ^ Ti ——"0

K > ^-3 w^ may also take F^ = ±u^, provided that ^ is an integer. Suppose that the initial data
satisfy f e ^(R^, g € ^-l(]Rn), with 7 satisfying

{ ^+1 _ 1 Kn < K < n+3

(10) ^^= .4 ."-",/:> I?-"
2 - K-I ' " K ^ n-1 •

Then there is a 7* > 0 and a unique fweaic) solution u to (8) verifying

^^([o,?.];^^")) n C'0-1^,!*];^-1^")) n £^([o,r,]xR"),

^^^^(^fcr^^^
7* is depends only on the size of the norm of the initial data, while for K ^ n±l this is not the case.
where q = "^(/< - 1) and s = q if K > ̂ , while s = ^_^_^ JfK<^. For a given K < ̂ ,

^ n-l

On the other hand, if^,^ ̂ , one can take T^ = oo provided that norm of the data is small, i.e.,

11^11^(R") + ll5||^-l(Rn) < C ,

XV-7



where e > 0 depends only on K and the constant in (9).

An equivalent way of stating the local existence part is that for data / C H^(R3), g c .ff7-1^3)
there is local existence for (8), provided that

f 1 + (n+i4)^ ^ if 7o < 7^1 /2 ,
(10') / .=.^

I 1+^ if 7^1 /2 ,

with 70 = j^y, n ^ 3 and 70 = 1/4 for n = 2. The different behavior for 7 smaller and bigger
than 1/2 is related to the Strichartz-1/2 local smoothing estimate for the wave equation we referred
to before. It is interesting to note that, since 1/2 = 7(^) ^==^ ^ = f^, the change of behavior
takes place at the conformally invariant nonlinearity (e.g. F^(u} = dd^""1^).

For the local existence results, we can also take 7 > 7(/^) in (10) if we use assume that the data
belong to the inhomogeneous Sobolev spaces H^ and jn~1, respectively. Under this assumption we
can also of course assume that K is smaller than the number given in (10'). Moreover, if we assume
that the data belong to the inhomogeneous Sobolev spaces we need only assume that (9) holds when
\u\ ^ 1. On the other hand, assuming that the data belong to the homogeneous Sobolev spaces and
that (9) holds for small u as well is necessary for the global existence results. Finally, if n > 4 and
K > ^±!? we have to assume that K is an integer and that F^ is a pure power for technical reasons
based on the fact that our proof requires a certain amount of regularity of F^ if ^ is larger than Il±3.

These results generalize those in Lindblad [18]. There it was shown that for n = 3 and Du =
F^(u) with K = 2 there is local existence if 7 > 0. On the other hand, it was shown that if F^ = u2

this problem is not well-posed for £2, i.e. 7 = 0, so it is interesting that for n = 3 and K > 2 one can
obtain sharp endpoint results. It is also worth noting that in the range K > ̂ j- the existence is just
what is given by the trivial scaling argument, whereas in the lower range K < n±l one needs more
regularity than predicted by the scaling argument. This argument relies on the fact that if u solves
(8) with data /,ff, then Us = e^'^u^t/e^ x / e ) solves the same equation with data fe = 5~^2"T/(al/e),
9e == e^'^^g^x/e). If, say the lifespan of u were T, then the lifespan of u^ would be Tg = eT. On
the other hand,

\\fe\\H./\\f\\H. = IM^-i/NI^-i =E^-^-\

and so if 7 were smaller than ^ - -^-, one would have both the norm of the data and the lifespan
going to zero with £. If / and g had compact support one could thus add up suitable translates of
dilates of the data, obtaining new data for which there is no local existence.

Proving that the problem Du = ̂  is ill-posed in II^~£, e > 0, is more delicate if KQ <
^ < f^irf- However, it turns out that there are sequences of data (/j.ffj) € C^° with fixed compact
support so that the .fl^W-6 x J^W-^-i norms of (/p gj) go to zero, while at the same time Tj -^ 0,
if Tj is the supremum over all times T such that there is a solution uj C C°°([0,r] x R^) with this
data. Somewhat stronger versions involving the lifespans of H^~6 extensions of the uj hold as
well. T,

Some of these results were also obtained independently by Kapitanski [15] using a different
proof. Also following [18], he obtained the local existence results in Theorem 4 when n > 3 and
^o < ^ < ^j-. The results for n > ̂ j and the global existence results are new. Moreover, the
uniqueness in Lq and the ill-posedness results are new.
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Our results also improve some in Beals and Bezard [2]. In this paper, they showed that for
n > 5 there is local existence for F^u) = u2 provided that 7 == (n - 3)/2, while our results show
that^this is the case if 7 = 1/4, when n = 4, or (n - 4)/2 if n ̂  5. Notice that for this quadratic
nonlinearity the existence results improve in some sense as the dimension increases, since when n < 5
the nonlinearity is in the "subconformaP9 range, while for n > 5 it is in the "superconformal range".
This applies to other nonlinearities too since the "superconformal range" [-^.oo) -^ (l,oo).

In higher dimensions there is a third range of ^. Here the relationship between K and 7 is less
favorable than the above one corresponding to KQ < K < ̂ . This is related to the fact that in
Theorem 3, the TT^R71) estimates for the (linear) wave equation are less favorable for 7 smaller than
7o = l̂3!) ? compared to 7 > 70.

Theorem 5. Let n > 4 and suppose that n^3 < K < ^ = ff)^ ^Ppose further that
/ € ^^(R71), ff € ̂ ^(R^ with 7 satisfying

(11) 7 = -yf/^ - ^±1 - (^+l)(n+5) ^ 1v / 7 ^^ ~ 4 4 27i/c-(n+l) •

Then there is &T^ > 0, depending only on the size of the initial data, and a unique (weak) solution
u to (8) verifying

UCL^^T^II^)) n ^([o.r^jr^R71)) n £?^([o,r,] xR 3 ) ,„,«,, = ii.̂ iii ,̂ ., ̂ ^ ,̂ ,, p^ .̂
As before, we can restate things in terms of 7. Specifically, if / € -fl^R71) and g C ^^"^R71),

there is local existence for (8) provided that

(11/) ^="^(l+(^a). i f 0 < 7 < i f ^ .

Also, if 7 > 7(/^), we have local existence and uniqueness if we assume that the data belong to the
inhomogeneous Sobolev spaces JP and TP'"1, respectively. Finally, for the border case where K, = /^
if 7 > 7(^0) = l̂3!) ? there is local existence and uniqueness for / 6 ^^(R71) and g e ^^""^R71).

Theorem 5 is stronger than corresponding results in Kapitanski [15]. In particular, for L2 data,
i.e. 7 = 0, he shows that there is local existence if K, < 2d— which is smaller than our power n±l.

To close, let us sketch the proof of the H 1 / 2 existence theorem for the conformally invariant
equation in R14"3,

Du = ±u3,

with data / € 271/2, g € H ~ ~ 1 / 2 . To prove that there is local existence or global existence for small
data for this equation, we use standard iteration arguments and Strichartz^s estimates.

More specifically, we first set ^_i = 0, and then define Um^ m = 0,1,2,.... by

r aum = ±<_i
I t^(0, x) = f(x) , 9tUm(0, x) = g{x) .

Then, we need to show that there is a 0 < T^ < oo and a function u as in Theorem 4 so that

(12) Um -^ u, and u3^ -^ u3 in T>\ST^ .

XV-9



Here 5r, == [0,T^\ x R3 if T^ is finite and R^3 if it is infinite. This of course implies that u is a
weak solution of the Cauchy problem.

The main step in proving this is to use Strichartz's special case of Theorem 4 that we referred
to before to see that the nonlinear mapping sending Um. to Um-\-i is a contraction in ^(-Sy) if either
T or the size of the data is small enough. To see this we use this estimate and Holders inequality
to get

IK+l - ̂ +l||^(5T) ^ C\\U^ - ̂ ||L4/3(^) ^ C\\Um - Uj\\^(Sr) (IM^^) + INl]̂ )) .

Taking j == —1 yields

(13) ||^m+l \\L^(ST) ^ ll^m+1 - UO\\L^(ST) + \\^O\\L^(ST) ^ ^ll^ml^^) + ||^o||L4(5T) •

The first estimate in Theorem 4 implies that the UQ is in L4 with a norm which is dominated by a
fixed constant times the norm of the data. Therefore if we assume that the latter is small or if we
take T to be small enough we can assume that

II^HL^^T) ^ ̂

with CQ > 0 as small as we like. Moreover if this number is small enough, (13) and induction imply
that

||^m+l||L4(5T) ^ 1 ||^m||L4(5T) + IMlL^r) ?

yielding ||^||^4(5^) ^ 2^o- On account of this we get the first part of (12) since if 2Ce^ < 1/2, and
if we take j = m — 1 above we find that

\\Um^l - Um\\L^(ST) ^ ^ll^m - ^m-1 HL^) ?

which of course implies that Um converges to a limit u in L4 and hence in T>'. The fact that u^
converges to u3 follows from this and

ll^3 - ^m\\L^I\ST) < ̂ Ih ~ ̂ L^ST) • ( IMIL(^) + ||^m||l4(^) ) .

In fact, since we have just seen that the L4 norms of u and the Um are bounded by a fixed constant,
this inequality together with the convergence of Um to u in L4 implies that u^ converges to u3

in £4/3 and hence in P'. Finally, the remaining fact that the H1!2 norms of u{t^ • ) are uniformly
bounded for 0 < t < T, follows from another application of the special case of Theorem 3 which is
due to Strichartz.

The proofs of the other existence results follow similar lines. In each case, using Theorem 3,
one shows that, if ||^o||.L<»(5'T) ls small enough, with q = -^(/^ - 1), then the mapping sending
Um to Um-}-i is a contraction in the space L^L^ST^ with s = q in the superconformal range, and
s = 4g/(n — l)(g — 2) in the subconformal range.

The proof that there is a unique solution with the above properties follows the same lines. For
instance, if u and u both solve the conformally invariant equation in ST^ C R14"3 with data in
^^(R3), one argues as above to see that

11^ - ̂ \\L^(ST) ^ ill^ - ̂ ^(ST) .
provided that T > 0 is small enough. This of course implies that u = u in 67, leading to the
uniqueness.

The same argument gives a more general result concerning uniqueness for the Cauchy problem
with H 1 / 2 x H-1/2 data.
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Theorem 6. Let n ̂  2 and suppose that V e .L^QO.r] x R71) and that (/,ff) e .ff1/^71) x
fj -1/2 (R71). Then the equation

r Dn = y^
1 <0,aQ=/( ;K), ^<0,:c)=^)

has a unique (weak) solution u € ^([O^xR71; ̂ ^(R^nC^QO.rlxR71; ̂ -^(R^). Moreover,
t f0< t < T,

||^,.)||^2exp(Jf / / \V(s,x)\^dxds) . |KO,.)||^ 7-1/2,
JO JR"

wAere Jif is a constant depending only on the dimension.

This follows from the above type of arguments using Strichartz's estimates. If one uses the more
general results in Theorem 3, one can improve on this. For instance in (3 + l)-dimensions one gets:

Theorem 7. Suppose that V e ^([O.T] X R3) and that (/,ff) e JT^R3) x .ftP-^R3), with
0 < 7 < 1. Then the equation (14) has a unique solution u belonging to £°°([0,r] x R3; TT^R3)) H
C^QO.r] x R3; jr^-^R3)). Moreover, if0 <t <T, there is a universal constant K^ so that

||<t,.)||^2exp(^ / / ^x^dxds) . \\u{0^)\\^
Jo JR3

One can also improve Theorem 6 somewhat in higher dimensions. However, the range of 7 is
smaller, due to the fact that the range of 7 in the favorable case (z) of Theorem 3 gets smaller with
increasing dimensions.

These results greatly improve the regularity assumptions for the data of other uniqueness the-
orems for singular hyperbolic equations, for instance in [28], and this is of course important for
nonlinear applications. The natural assumption for the potential is the same as in [28] and this
also turns out to be important for applications. For instance in the (3 + 1)-dimensional case, if
0 < 7(/^) < I? one immediately gets the uniqueness part of Theorem 4, since if u and u both
solve both solve (8) with the same data, then u — u must vanish identically since it has zero data
and 0(u — u) = Vu^ where V = (F^(u) — F^(u})l(u — u) is in L^^ST^)-, due to the fact that
t^ez2^-1)^).
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