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Abstract

We study properties of the Weyl symbols of functions of pseudodifferential op-
erators, especially of pseudodifferential operators with quadratic symbols.

1 Introduction.

The name “pseudodifferential operators” is usually used in two different (although related)
meanings. First, it is used to denote operators on L?(R™) defined by certain integral
formulas which stress the phase space properties of the operaror. The operators which we
call z- D-pseudodifferential operators are defined (at least formally) as

déd .
(@x(a, D)) @) = | Goan(a, b(u)e=%, (11)
The Weyl pseudodifferential operators are defined (also at least formally) by
déd :
(0 @.028) (0= [ s (58) vt 02

Essentially every operator on L?(R"™) can be represented in the above form. The func-
tions a; and a; are uniquely determined in the sense of distributions by the operators
themselves. We will call them z-D- and Weyl symbols respectively.

*Supported in part by a grant from Komitet Badaii Naukowych.
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In its second meaning the word “pseudodifferential operators” is used to describe
certain classes of operators whose definitions make use of the integral representations
(1.1) and (1.2). For example, a big amount of literature is devoted to the classes v of
pseudodifferential operators, which roughly speaking are defined as the operators whose
symbols belong to a certain space ST’ (see eg. [H61,Ta,Tr]).

It is probably the second meaning that is more commonly atributed to the word
“pseudodifferential operators” in the literature. In this paper though we will use the
first meaning. Moreover, we will concentrate our attention on Weyl symbols, which have
better “symplectic properties”.

The literature about pseudodifferential operators is vast. They are used extensively
in the theory of PDE-s (see eg. [H61,L,R0,Sj,Shu,Ta,Tr]). They express in a natural way
the principle of correspondence of the quantum and classical mechanics [We,FH,MaFe,Ro].
Nevertheless, in section 2 we give a short introduction to the subject. The introduction
is somewhat different from what one can usually find in the literature, because we are
not directly interested in standard classes of pseudodifferential operators. Instead, we try
to present various properties of symbols of pseudodifferential operators under as general
conditions as we can. We do not use asymptotic series, which are the usual tool in the
calculus of pseudodifferential operators. We use only exact identities.

Some of these identities are contained in the literature, especially in [H61,BeSh] where
one can find formulas which allow to go from the z-D-symbol to the Weyl symbol and
formulas for the symbol of the product of two pseudodifferential operators. We try to
give rather general conditions for these identities to be well defined.

The problem of computing the symbol of a function of a pseudodifferential operator
was studied eg. in [Se,CV,HR1,2,R01,2,Sh]. The approaches used in these papers were
based on the assumption that the pseudodifferential operator had a smooth symbol. Their
formulas were usually expressed in terms of asymptotic series. We avoid asymptotic
formulas and use just compact exact identities. We give examples when they can be given
an exact meaning for rather general classes of pseudodifferential operators.

Special attention we devote to quadratic Hamiltonians (pseudodifferential operators
whose symbols are quadratic polynomials). It turns out that the Weyl symbol of a function
of a quadratic Hamiltonian can be computed from an especially simple expression.

Suppose that F' is a function of (z,&) that depends just on z? + ¢2. Then there exists
a function f such that

F%(z,D) = f(z* + D?).

The converse statement is also true: functions of the harmonic oscillator have rotationally
symmetric Weyl symbols. It is possible to give quite simple formulas that make it possible
to go from f to F' and from F to f.

The above properties of the harmonic oscillator can be generalized to some other
quadratic Hamiltonians. For instance, functions of z? — D? have Weyl symbols that
depend just on z? — £2.
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We give a simple algebraic condition for a quadratic form p(z,§) on the phase space
to have the property that, at least formaly, for every f there exists f such that

f (1" (2, D)) = (f o p)" (2, D). (1.3)

We give a classification of all the real quadratic forms p(z, £) that behave in a similar way.
The above properties of 2+ D? and z?— D? were known before [U1,2], but it seems that
the full classification of quadratic Hamiltonians with this property is a new result. Note
also that in [HS1,2] B.Helffer and J.Sjostrand use similar ideas on the level of asymptotic
series.
Acknowledgements I would like to thank L. Hérmander for very helpful remarks about
the previous version of this article.

2 Basic pseudodifferential operators.

2.1 Symbols of an operator.

Throughout the paper X will stand for an n-dimensional vector space and X' for its dual.
Instead of X x X’ we will often write T*X. We will denote the natural symplectic form
on T*X by w.

Generic elements of X, X’ and T*X will be denoted by z, ¢ and z respectively.

The spectrum of an operator B will be denoted o(B). If B is self-adjoint then Eq(B)
will denote the spectral projection of B onto the set ). D will denote the operator :—.V.

We will study properties of certain operators acting on L?(X). A large class of such
operators can be described by functions on T*X called symbols. There are various pos-
sibilities of doing this: the most popular ones are what we call z-D-symbols and Weyl
symbols.

Let S'(X)®S’(X) denote the space of sesquilinear forms on the space of Schwartz test
functions S(X). We will view S'(X) ® §'(X) as a kind of an extension of the set of linear
operators on L%(X). We will treat all the elements of this space as “pseudodifferential
operators” and we will define their symbols.

Let A € §'(X) ® §'(X). Then we say that a; € §'(T*X) is the z-D-symbol of A if
for any ¢,9 € S(X)

(6149) = [ Gpion(a, Ode) ()= (2.1)
We will write
A = ay(z, D). (22)

We say that a; € S'(T*X) is the Weyl symbol of A if for any ¢,¢ € S(X)

(#1Aw) = [ S 0, (TEL, ) Bappiet= (23)
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We will write
A = dY(z, D). (2.4)

Using basic properties of the Fourier transform on §’(7*X) and the Schwartz’s kernel
theorem (see eg. Appendix to chapter V3 of vol I of [RS]) we easily see that every
element of §'(X) ® S(X) possesses a unique z-D-symbol and a unique Weyl symbol.
Conversely, with any symbol in §'(T*X) we can associate a unique z- D-pseudodifferential
operator and a unique Weyl pseudodifferential operator. Note also that the maps from
S'(X) ® §'(X) to S'(T*X) that to a form assigne its z-D- and its Weyl symbols are
homeomorphisms.

The following well known identity [Ho1] allows one to go from the z-D-symbol to the
Weyl symbol: ‘

e2D=Degy = q,. (2.5)

Note that 2.5 makes sense for symbols in §'(T*X).

2.2 Special classes of operators

Let us describe some classes of operators whose symbols have special properties.
The operators whose z-D-symbols are polynomials (both in z and in £) form an alge-
bra. This algebra is equal to the class of operators whose Weyl symbols are polynomials.
The set of Hilbert-Schmidt operators is exactly equal to the set of operators whose
symbols (both Weyl and z-D-) are square integrable. This follows from the following well
known identity:

drd¢

TAA= [ olaoF

/ d:z:d{ o) (2.6)

Let Co(Z) denote the space of continuous functions on Z that go to zero as |z| — oco.
For 1 < p < oo we define

JP(LX(2)) == {B € B(L*(Z)) | ||, := (Tx| B")"/* < o0}.

J°(L*(Z)) will stand for the set of compact operators on L?*(Z) and we will write || B||o
to denote the usual norm of B.
The following nice properties of Weyl symbols follow easily from [G].

Proposition 2.1 Suppose that the numbers 1 < p,q < oo satisfy p™! + ¢~ = 1.
a) If aV(z, D) € JYL*(Z)), then a € Coo(Z). If aV(z,D) € JP(L*(Z)) for 1 < p < 2,
then a € LI(Z) and

lally < (27)*/7||a" (2, D). (2.7)
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b) If1<q¢<2andac LZ), then aV(z,D) € JP(L*(Z)) and
lally > (27)*"/7||a" (z, D). (2.8)

Proof. Let 6,, denote the deltafunction concentrated in (y,n) € T*X. Then
63%(:17, D) is a unitary operator. (In fact, it is equal to €**"7 P,e~**" where P, is the inversion
centered at y). The family 8", (z, D) depends weakly continuously on the parameters y, n
and goes weakly to zero as the parameters go to infinity. Hence the fact that a € C(Z)

and (2.7) with p = 1 follow from the following identity [G]:
a(y,n) = (2r)*Tr (a¥ (2, D)8} (2, D)) . (2.9)

(2.7) with p = 2 follows immediately from (2.6). Now to obtain (2.7) we apply the
complex interpolation between p = 1 and p = 2 (see eg. vol. II of [RS]).
The estimate (2.8) for ¢ = 1 follows from the identity [G]:

(2, D) = [ dydna(y, n)s}}(z, D). (2.10)

Therefore to obtain (2.8) it is enough to apply the complex interpolation between ¢ = 1
and ¢ =2. O

2.3 Symbol of the product and the symplectic invariance of
Weyl pseudodifferential operators

There exists a number of apparently different formulas that can be used to compute the
product of two pseudodifferential operators. Namely, if

a”(z, D)o (z,D) = " (z, D), (2.11)
then (at least formally)

(z,€) = et PP PePa(z, €)b(y, M=y (2.12)

—a (:v - %Dg,g + %DI) b(z, €) (2.13)

=a" (m - -;—Dg,ﬁ + %Dx) b(z, &) (2.14)

_b (m + %De,g - %DI) a(z, €) (2.15)

1 1
— W (:1: +5De - §Dz) a(z, 6). (2.16)
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(2.12 can be found e.g. in [H61]; other expressions follow immediately from 2.12).

Of course, one needs some assumptions on a and b to make sense of above expressions.
For example, 2.13 and 2.14 are well defined if a is a polynomial and b belongs to S(T*X)’.
Later on we will give more general conditions that guarantee their well-definedness.

Now we would like to make some comments on the symplectic invariance of the Weyl
calculus. The facts that we will recall below are well known and can be found eg. in
[Ho61,Le].

First of all note that the formulas 2.12-2.16 can be written in a manifestly symplecti-
cally invariant way. Let us do it for instance for 2.14 and 2.16:

o(z) = ¥ (2 %wD,)b(z) (2.17)

(4 %tz)a(z). (2.18)

Recall that z = (z,¢{) and w = (_01 (1))

Let Sp(T*X) denote the group of linear symplectic transformations of 7*X. If a €
S'(T*X) and v € Sp(T*X) then we set

Ta(2) = aly712).
It is easy to see eg. from 2.17 that if a, b and c¢ satisfy 2.11 and v € Sp(7*X) then
v*a% (z, D)y*b" (z, D) = v*c" (z, D).
Thus the transformation
a¥(z,D) — v*a"(z, D),

preserves the multiplication and restricted to B(L?*(X)) is a homomorphism.
It is well known [H61,Le] that this transformation can be implemented by a unitary

operator. To see this consider v € Sp(T™*X) for which there exists a quadratic form p on
T*X such that

v*a = exp{p, - }a, (2.19)

where {-,-} denotes the Poisson bracket. (Such 7 generate the whole Sp(T*X)). The
identity 2.19 can be “quantized” as described in the following proposition [Le]:

Proposition 2.2 Let v € Sp(T*X) and p be a quadratic form p on T*X such that 2.19
holds. Then we have for any a € §'(T*X)

(exp{p, }a)" (=, D) = ¢ =P)a¥ (a, D)e~?" =) (2.20)
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Proof. To see 2.20 it is enough to check that

d d . .
27 (exp{rp,10)" (2, D)jrmo = e @DV (g, D)D), (2.21)

In fact, by 2.17 the Weyl symbol of [pw(a:, D),aW(:c,D)] equals

Pl (z - %wDZ,) a(z) —p" (z + %tz) a(z) = i{p,a}(2).

Therefore 2.21 is true. O
Let us come back to the question when the formal identities 2.12-2.16 for the product
of two operators are correct. It turns out that each of the following two hypotheses
guarantees that 2.14 and 2.17 have a rigorous meaning.
Hypothesis 2.3.1
1. be §'(T*X)
2. a"(z, D) maps S'(X) continuously into itself.
Hypothesis 2.3.11
1. 8% (z, D) is Hilbert-Schmidt.
2. a¥(z, D) is bounded on L*(X).
Assume first I. Note that the following identity is true:

1 1 i : - i
a” (:c - -2-D5,§ + -Q-D:c) = e2D=Dei=t W (g D )emi#¢e™3D=De (2.22)

(This identity can be easily deduced from 2.20). By 2.22, if a"(z, D) maps continuously
S'(X) into itself then o' (z - %tz) maps S’(T*X) continuously into itself. Hence c is
well defined as an element of S’(T*X). We leave to the reader the proof that ¢ actually
satisfies 2.11.

Consider now II. Note first that b6 € L?(T*X). By the identity 2.22 the boundedness
of a"(z, D) on L?(X) implies the boundedness of a" (z - %tz) on L*(T*X). Hence c
is well defined as an element of L*(T*X). (This reflects the obvious fact that the product
of a bounded operator and a Hilbert-Schmidt operator is Hilbert-Schmidt.)

2.4 Symbol of functions of pseudodifferential operators.

Next we would like to study the Weyl symbols of functions of pseudodifferential operators.
Formally we have:

f(p" (z, D)) = F"(z,D)
where

F(z,§) = f (p (rc - %Dg,ﬁ + %Dz)) 1, (2.23)

where 1 is the function on Z equal to 1.
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The identity 2.23 can be written in a symplectically invariant way

F(z)=f (p (z — %wDZ)) 1. (2.24)

Of course, in practice one needs to specify various assumptions both for f and p for
2.23 or 2.24 to make sense.

For instance, it is correct if f is a polynomial and p" (z, D) maps continuously S’(X)
into itself. In this case it follows immediately from 2.17 if we take into account that the
Weyl symbol of the identity is 1.

Below we list various hypotheses under which the identities 2.23 and 2.24 are well
defined and correct.

Hypothesis 2.4.1

1. pY(z, D) is Hilbert-Schmidt.

2. f is analytic on a neighborhood of o(p" (z, D)).
Hypothesis 2.4.11

1. pY(z, D) is Hilbert-Schmidt and normal.

2. f is defined on o(p" (z, D)) and

IF(A) = FO)l < CAlL

Hypothesis 2.4.1I11
1. p"(z,D) maps continvously S'(X) into itself and for some N € N the operator
N
(pW(x, D)) is Hilbert-Schmidt.
2. f is analytic on a neighborhood of o(p" (x, D)) and for some M € N
f(u%)

M
N

u —
u

is analytic at infinity.
Hypothesis 2.4.IV

1. p¥(z, D) maps continuously S'(X) into itself, is normal and (pW(x, D)) N is Hilbert-
Schmadt.
2. f is defined on o(p" (z, D)) and satisfies

[fFI < oM.

In fact, let us assume I. Then we can write

FO) = £(0) + Af(N),
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where f is analytic. Thus

F(2) = §(0)+ F (o (= = 30D:) ) p(2). (2.25)
By 2.22 we have
f (pW (z - %wDZ)> = e?iD’Dfe"’”Ef (pW(.’E,Dx)) e~iwte=5DaDe (2.26)

But f (pw(a:,D)) is clearly bounded on L?(X). Hence 2.26 is a bounded operator on

L*(T*X). Note also that p € L?(T*X). Hence F makes sense as a constant plus a square
integrable symbol.

The case II is very similar. We also use 2.25 and 2.26 and note that f (pw(m,D)) is
bounded.
To deal with III it suffices to write

FO) = XMENF (V) a7,
where f is analytic. Let p denote the symbol of <pW(:L', D)) _N, which belongs to L?(T*X).

Clearly,

also belongs to L?(T*X). Hence

= () (-0
is in §'(T*X).

The proof of the well-definedness of IV is similar.

3 Functions of quadratic Hamiltonians.

It is well known that quadratic Hamiltonians (pseudodifferential operators whose symbols
are quadratic polynomials) have special properties. For example, if p is a quadratic
polynomial on 7*X and then 2.24 can be simplified:

Fo) =1 (p(e) + iDsz"’waz) 1. (3.1)

To see this note that by 2.24

F(z)=f (p(z) - %Vp(z)tz + iDzwvzwa2> 1. (3.2)

XII-9



We easily compute that the following commutators vanish:

[p(2), Vp(2)wD.] = Vp(2)wVp(z) = 0

and
[D,wV2pwD,,Vp(z)wD,] = 2D,wV*pwVipwD, = 0.

We commute Vp(z)wD, in 2.25 to the right and use Vp(z)wD,1 = 0. This yields 3.1.
Let us consider more closely the case of the harmonic oscillator. To simplify we will
assume that we have just one degree of freedom (the generalization to n degrees of freedom
is obvious).
Let us denote
h :=z%+ D?

1
H:=z"+¢& + (D2 +D})
and
L :=2D¢ — ¢D,.

Let us remark that H commutes with L. Moreover, h is unitarily equivalent to H restricted
to the kernel of L (the rotationally symmetric subspace). The spectrum of h, and also of
H, is equal to {1,3,5,7,...}. We will denote by ¢, a (unique up to a phase) normalized
rotationally symmetric eigenvector of H with eigenvalue 2n + 1.

Theorem 3.1 1) Let f be a function on the spectrum of h such that
fen+1) <c@n+ 1) (3.3)

for some ¢, N. Then the Weyl symbol of f(h) is rotationally symmetric. More precisely,
if we set

F(z,£) = f(H)1 (3-4)

then F is a rotationally symmetric distribution in S'(R?) and

F%(z,D) = f(h). (3.5)

2) Let F € S'(R?) be rotationally symmetric. Then there exists a function f on the
spectrum of h such that

F"(z,D) = f(h). (3.6)

Moreover,

-
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Proof. 1 =2 is a special case of 3.1 with hypothesis IV.
Let us show the implication 2 = 1. )
Any F € S'(R?) is of the form H-NF for some F' € L?(R?). If F is rotationally

symmetric then so is F. The vectors ¢, span the rotationally symmetric subspace of

L*(R?). Hence
F(z,6) = Zlf¢n(y,n)F(y,n)dydn¢n(x,§)

in the sense of the L? convergence. Consequently,

F(z,¢) = i/¢n(y,n)F(y,n)dydn¢n(x,€) (3.8)

n=1

in the sense of distributions. Clearly,

T _ E{2n+1}(H)1
#nl:8) S &n(y,m)dydn’
Hence by 1)
8 (2, D) = —— (%) (39)

[ $a(y,m)dydn’
Now 3.7, 3.8 and 3.9 imply 3.6. O

Theorem 3.2 Let p(z,¢) be a quadratic form on T*X. Then the following conditions
are eqivalent.

1) The set of operators of the form f(p" (z, D)) where f is a polynomial is equal to the
set of operators of the form FY(z, D) where F(z,£) = g(p(z,&)) and g is a polynomial.
2) There ezists ¢ € C such that

(Vpw)?® = cVpw. (3.10)

Proof. Let us prove that 2) implies 1). Let A be the space of all polynomials on 7*X
of the form g(p(z)) for some polynomial g and let B be the space of all polynomials F' on
T*X such that there exists a polynomial f and f(p" (z,D)) = F¥(z, D). Note that

(+(2) + § Do9*poD. ) g(0(2)

1 , 1
= p(2)9(p(2)) + 7TV’ pwVp)g (p(2)) + 7 VP(2)wVpoVp(2)g"(p()).  (3.11)
Clearly, the first two terms on the right of 3.13 belong to .A. If 3.10 holds then

Vp(2)wVipwVp(z) = 2VipwV2pwVipz = c2V?pz = 2cp(z). (3.12)
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Hence 3.12 belongs to A, and so does 3.11. Moreover, 1 € A. Clearly, B is the smallest
linear space containing 1 and invariant with respect to the operator p(z) + iDszprDz.
Thus A4 D B.

One can show the opposite inclusion with help of the induction. Suppose that we
know that the elements of A of degree less than 2n belong to B. Note that by 3.1

(»")" (2, D) = (¢ (2, D)* = ¢" (2, D) (3.13)

with degg < 2n — 2. The polynomial p” belongs clearly to A. The Weyl symbol of
(p" (z, D)™ belongs to B C A. Therefore, ¢ € A. Hence by the induction assumption,
q € B. Consequently, p* € B. Thus A C B.

This ends the proof of the implication 2 = 1.

To see that 1 = 2 we compute

(¢ (2, D))’ = F*(z,D)

where
3 1
F(2) = p*(2) + p(2)Tr (V2poVpw) + 5 Vp(2)wVpo V().

The first two terms of the right hand side belong clearly to \A. The third term belongs to
A if and only if 3.10 is true. O

Note that any quadratic form p on T*X can be associated with a unique bilinear
symmetric form on 7*X which we will denote P. P can be identified with a linear map
from T*X to (T*X)'. Then we can write p(z) = (z, Pz) where (-,) is the natural duality
on T*X x (T*X)'.

The symplectic form w can be identified with a linear map from 7*X to (7*X)’. This
map is invertible and its inverse will be denoted w™!. The condition 3.10 is equivalent to

(w'P)’ = w'P. (3.14)

Note that the operator w™! P is sometimes called the fundamental matrix or the Hamil-
ton map [Ho1].

It is possible to classify symmetric forms in a symplectic space (see [Wi,A ;H62]) Based
on this classification we can give a list of all possible types of forms satisfying the condition

3.14.

Theorem 3.3 Let P be a real symmetric form on T*X that satisfies 8.14. Set X := /|c|.
1) If ¢ < 0, then there exists a linear symplectic transformation and an integer k < n
such that p is reduced to the form

k

AY (& +2d). (3.15)

=1
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2) If ¢ > 0, then there exists a linear symplectic transformation and an integer k < n
such that p is reduced to the form

A (€ — ). (3.16)

i=1

3) If ¢ = 0, then there ezists a linear symplectic transformation and integers k,m such
that p is reduced to the form

k

D (bsiv1Taiss + Esipatairs) + Y, £ (3.17)

i=0 j=3k+4
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