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Solvability and Asymptotic Behaviour of
Solutions of Ordinary Differential Equations with

Variable Operator Coefficients

V. Kozlov, V. Maz'ya

The present talk is based upon our recent and mostly un-
published work on the solvability and asymptotic properties of
solutions of ordinary differential equations with variable un-
bounded operator coefficients. The results obtained have direct
applications to partial differential equations, which are de-
scribed in the second part of the talk. A part of our results
appeared in the preprints [ I ] , [ 2 ] .

Let H Q , H , , . . . , H be Hibert spaces with the norms l l - l l g '

I M 11 » • • • > I M I p • we suppo8® that BO is dense in Hp,
H c H c . . . c HQ and | | u | | . ̂  | | u | | ^ for j = 0 , 1 , . . . , & - ! .

Introduce the operator pencil

^A(A) = Z A. ^ : H ^ H ( 1 )
(Kq^ ' q '

where A is a linear bounded operator from H into Hp. We assume
that the following two conditions on Jk(\) are fulfilled.

Condition I. The^operator ^|(X) is^Fredholm^for^every A€C and

it is invert^ble_at^least^for_one_value_of \.
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Condition II. There^exist_numbers 0 e(0,Tr/2) and p > 0 such

that_for_all

A C S ^ = { z f cC : (arg(±z)|^e |z| ^ p}

^S-^l^y^SS insguality holds

1 N^HIo.,, i c| |A(A)( ( ) | | V^CH . (2)
(Kq^ " q u &

Then JTCA) is the Fredholm operator pencil and its spectrum

consists of isolated eigenvalues {A } having finite algebraic

multiplicities with the only possible limit point at infinity.

Clearly, the set S contains no eigenvalues of Jt(\).
P > w

The items [3-7] in our list of references partially reflect

the development of the asymptotic theory of linear differential

equations with operator coefficients. In particular in [2] it is

shown that under Conditions I, II for solutions of the equation

v$4(D^)u = f on 3R1, (3)

where D = i 3/3t, the asymptotic formula

i\ t
u(t) = S P (t)e v + o(e" )as t -^ + oo, (4)

{v:ImA =k} vi ^ j

holds. Here P are polynomials in t with coefficients which are

elements of Jordan chains generated by X .

We characterize the behaviour of the solution u and of the

right-hand side f by the functions
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t+1 i 0 1 /I

I I " ! I , = ( J s l l D ^ - o i l ^ d T ) 1 7 2 ,
W~(t, t+l) t q=0 L !c' q

t+1 ,

' • f I l4(t,t-H;Ho) =^ ll f^ l lodT)1 7 2

and suppose everywhere that both functions are finite for each t€3R .

With any strip k^<Im A<k free of eigenvalues of JT(A) we connect

a class of solutions of the equation (3) with

k_t
lim e + | |u( | = 0. (5)
t^±" W (1,1+1)

For such a solution we obtain the pointwise estimate

°o k (r-t) m -1
I M | ^ i c { { e • (KT-I) " -Hf| | , .dr +

W^d^t+l) t L^(T.T+I,HQ)

t k (T-t) m -1
+ { e (l+t-r) ' | |f| | / ^dT

-00 L^(T,T+I;HQ) »

where m are the maximal lengths of the Jordan chains correspond-

ing to eigenvalues o f ^ c ( A ) on the lines ImA = k, (if there are no

eigenvalues on the line ImX = k we put m = 1 ) . This estimate is

equivalent to the following comparison principle for u(t) and for

the solution w(t) of the ordinary differential equation

m m m
(-1) -0^) 0,+k.) -w(t) = l|f||^(t,t+l;Ho) <6)

-k_t
satisfying w(t) = o(e ) as t ->• ± °°:

| u | | ^ bw ( t ) , b = const. ( 7 )
W~(t,t+l)
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The operator

AJ m m
JtO^) = (^ + k^) '(-^ - kj "

is the simplest model for^:(D ).

We turn to the ordinary differential equataion with variable

operator coefficients

L(t,D )u =f on 1R1. (8)

We confine ourselves to the following three topics connected

with (8)

(i) Uniqueness and solvability theorems.

(ii) Estimates for solutions.

(iii) Conditions ensuring the asymptotics (4).

The operator L(t,D ) will be considered as a perturbation of

J^(D ). Therefore we introduce the function

o)(t) = b | |L( t ,D )-j((D )|| , (9)
^(1,1+1)^(1,1+1;^)

where b is the constnat in (7).

In the variable coefficients case the role of the equation (6)

is played by

(M(3^) - o))w = h on 1R1. (10)

We shall suppose everywhere that either

m "L/k " k \ m + m
sup o»(t) < m, m (——-—L} " (11)+ •• v m -r m f

or
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( m , l ) ! ( m - 1 ) ! m̂ +m -1
^ .^^ < ( m . + m ^ 2 ) ! ̂  - k-) ' •
ffi1

Each of these conditions guarantee the existence of the Green
function g ( t , r ) of the equation (10) and the convergence of the

Neumann series
00

g ( t , T ) = E \ g(t-T^)aj(T^)g(T^-T^)...u(T^)g(T^-T)dT^,..dT^,
k=0 ̂ k

where g is the Green function of the unperturbed equation ( 6 ) . The
constants on the right in ( 1 1 ) and (12) are best possible.

It can be shown that g is positive, which implies the positivity
of 80)-

We state a theorem on the unique solvability of the equation ( 1 0 ) .

Theorem 1. ( i ) . If

^ ̂  g^(0,r) | h ( T ) | d T < oo (
JR

ŝs-̂ ŝ-iŝ ss??!
w(t) = \ g ( t ,T)h(T)dr

IR1

satj.sfi.es^the^eguatj.on^ (10 ) and
gjt.T)

w(t) = o(sup (Q^)) as t ->• ± ».

T €]R1 "

( i i ) If a solution w of (10) with h = 0 satisfies

g (t.T)
OJw(t) = o(lim (o ^J as t ^ ± oo

T-^±°° 0)

then w = 0.
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By introducing special assumptions on the equation ( 8 ) we can
obtain an explicit information about its solutions. We show it by
three examples of estimates for the Green function g .

Li)

Theorem 2. Let m = m^ = 1 and^let

sup o)(t) < (k, - k^ ) /4.

Then

g^^) i ^Pi" I a^(s))ds} for t ^ T,

where

^(T) ^

sup aj(x) if T ^ 0,
X^T

sup a)(x) if T < 0,
X<T

and a^(o) are^the_roots_of^the^eguat^on

(a - k^)(a - k ^ ) + a = 0, k < a^(o) < a^(o) < k , .

Theorem 3. Let a)(t) ^ yt ^E.l^Fgg.B03^^? t» where Y > 0

and 0 < a ^ min{m >m }. Then for positive t ,T

.t+i^i -CXlS^^'^ i ^r+l) "exp{-J a,(Ys ")ds}. t ^ T.^T+laj

9??? a^( a) ^ES.^he^roots^of^the^eguation
m . m

(-a-hk ) (a-k ) -o = 0, k <a ( o ) < a . ( o ) < k j

and

^ = ±

1 - m m,/m -1/m,
——(\ - k,) + ± Y ^
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Theorem 4. Let

00 1/m
J oj ~(T)dr = °°.

Then for gostive t,T

t 1/m^
g ( t , r ) ^ C exp{-k^(t-T) + c| \ 0 "(s)ds|}, t ^ T.

By analogy with the constant coefficients case we obtain the

following comparison principle for solution of the equation (8).

Theorem 5. Let

^^^NL^T+IV^"- (17)
1R

Then-there-exlsts-a-s^lutl^^-^f ̂  l̂̂ YISS

||u|| ib w(t),
w'd^t+i)

where w is the solution of (10) with

h ( t ) = l | f | l^( t , t+l ;HQ)

mentioned in Theorem 1.

(18)

(19)

A direct consequence of (14), (18), (19) is the inequality

""'^t,^)^^^1""^—^-
1K

which along with Theorems 2-4 lead to explicit estimates for

IHI ,
w'd^t+i)

Moreover from (20) and Theorems 2-4 one obtains two-weighted

estimates for solutions of (8), i.e. the estimates of the form
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l l 1 1 ! ! & i l c| | f | | . (2i)
WCir;^) L^IRSHQ;!-)

0 1 1

where W (3R ;-y) and L-(]R ;HQ;r) are the spaces with the norms

I I " ! I „ i = (I ^(t) S I ID^T)! ! 2 dT)172 ,
W~(]R1^) ^1 O^q^ T &-q

1 1 " 1 1 1 = ( J r^TXiuCT)! )^) 1 7 2 .
L^lRSH^r) ^1 0

We restrict ourselves to the following example.

Theorem 6. Let m = m^ = 1 and

o)(t) ^ a|t|'1 for^large t.

T^^-^S-SY^Y f L^(3R ;HQ;r) tA^^A^^A^Jl^A^J^^

u W^dR1;^), where

k t a k t a+1
Y(t ) = e ± |t| ±, r(t) = e ± |t| ± ,

a^ > -1/2. This^solution^satisfies (21).

This theorem is precise, i.e. if F is prescribed as above then

the exponent a^ in the definition on Y cannot be enlarged even in the

case o» = 0.

Now we formulate a uniqueness theorem for the equation (8) simi-

lar to Theorem 1 (ii).

Theorem 7. If.absolution u of (8) w^th f = 0 satisfies

g (t»r)
|u| | = o(ljjn ^ J as t ^ ± oo,

W^t.t+1) wo V0^
(22)

then u = 0.
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Under additional requirements to the function a) the condition (22)

can be made more explicit and some specific corollaries can be de-

duced from it. For example, the following variant of the Phragmen-

Lindelof principle holds. (The notations are the same as in Theorem 2) ,

Theorem 8. Let m = m = 1 and

ITm o)(t) < (k, k )2/4.
t-^+co

If u "-S-̂ 111^1?^ L(t ,D )u = 0 for t > t/. then^either

t
lim exp{f a (ft(s))ds} ||u|| > 0
t-H^ 0 " W (t,t+l)

or

__ t
lim exp{f a (^(s))ds} | |u| | < <».
t-^~ 0 W (t,t+l)

In the next theorem we give a condition which implies that the

principal terms in the asymptotics are the same as in the constant

coefficients case.

Theorem 9. Let m.. be an integer, m.. ^ m and

•^ m -1
Jo)(t) t dt < oo. (23)

Let also u be a solution of L(t,D.)u = 0 for large t and let------ -—-----.- .—--->-,--_ -^ -------.w- «----.--

-(k_+e)t
I I11! I o 1 ce

Wd^+l)

yi^-SS^-S031?^® e' Then

iA t " ĵ.11 2m ,1 -m- .
u(t) = Z e v P (t) + o(e t ") (24)

{v:ImA^=k^} v

y^??? P are-EolYnomla^sA^t-v;.^o.is.e.-coe^3:cients-are-elements 0^

Jordan_chains_of_the_gencil yc ( A ) corresgonding_to_the eigenvalue A .
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We remark that in the case of the equaiton (MO )-u)u = 0 the
condition (23) is also necessary for validity of the asymptotic
formula ( 2 4 ) . Therefore in general (23) is best possible.

We turn to some applications of previous results to elliptic
partial differential equations.

First, consider two elliptic differential operators

A( x , D ) = Z A (x) D a , A(D ) = S AD01
x |a|=2m a x x |a|=2m a x

with measurable and constant coefficients respectively.

We introduce the continuity modulus of the coefficients
of A ( x , D ) at a point x.e.IR11

A \J

p ( x ) = S sup |A (x^-A | .
|a|=2m r<|x-XQl<2p a a

Theorem 9 yields the following description of the asymptotics
of solutions of the equation

A(x,D )u = 0
J\

^

in a neighbourhood B ( x . . ) , uCH "^(B ( x . . ) ) .

If

I p ( r ) ̂ < oo
0 T

then there exists a polynomial P^ ,degP^ )= 2m such that" " " " " " " " - " " - " " " " 2m Zm ---------

u(x) = P^ ( x ) + o ( | x - x.J ) as x ̂  x . . .Zm u u

More restrictive conditions of the Dini type appear for even n
and 2m ̂  n , when one studies the asymptotic behaviour of a funda-

mental solution "y of the operator A ( x , D ) near x/.. Namely, ifx u ~"~
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f p(r)(log r) -1 < oo
0 T

then

^(x) = G(x - XQ) + o(|x - Xpl2111'11),

where

G(x) = Ixl^^x/lxDloglxl + P(x / |x | ) )

is^ J-he^ junjî mejiJLjil_ _s_oJ.jiJbjLj)ĵ  of A(x^D).

One more application of Theorem 9 concerns a variant of the

Giraud theorem on the sign of the normal derivative. In

B = { x : | x | < e, x > 0} we consider the uniformly elliptic equation

3 (a (x)3 u) = 0 (25)x^ ij x^

with real measurable bounded coefficients. Let
n ~

p(r) = Z sup |a. .(x) - 6 . . | .
, ,sl 4. ^J ^J1>J 1 XC.B '

By u we denote a function in H (B ), satisfying (25) and the Dirich-

let condition

u = ^ on { x : | x | < e , x = 0 } ,

where <^ is a smooth function.

We prove that under the Dini condition
J P(T) ̂  < oo
0 T

there exists a finite limit

c = lim x'^^x) - <()(0)}.
IxkO n

Furthermore, if u(x) ^ <()(0) on B^, then c > 0.

V-11
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