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Solvability and Asymptotic Behaviour of
Solutions of Ordinary Differential Equations with

Variable Operator Coefficients

V. Kozlov, V. Maz’ya

The present talk is based upon our recent and mostly un-
published work on the solvability and asymptotic properties of
solutions of ordinary differential equations with variable un-
bounded operator coefficients. The results obtained have direct
applications to partial differential equations, which are de-
scribed in the second part of the talk. A part of our results

appeared in the preprints [1], [2].

Let Hy,Hy,...,H, be Hibert spaces with the norms ||'||0,

||'||1,---,||‘||£. We suppose that H is dense in H,,

H <H _, c...c H) and Hu||j < ||u||j+1 for j = 0,1,...,2-1.
Introduce the operator pencil

Fny= oA, A :H »H (1)
0<q<2 2-q 2 0

where Aq is a linear bounded operator from Hq into HO. We assume

that the following two conditions on JQ(A) are fulfilled.



r (A1l

cllﬂ-(x)¢||0 VOCH,. (2)
0<q<2

L-q <
Then 54(A) is the Fredholm operator pencil and its spectrum

consists of isolated eigenvalues {/\v}veZ having finite algebraic

multiplicities with the only possible limit point at infinity.

Clearly, the set Sp contains no eigenvalues of 54()).

»0

The items [3-7] in our list of references partially reflect
the development of the asymptotic theory of linear differential
equations with operator coefficients. In particular in [2] it is

shown that under Conditions I, II for solutions of the equation
g 1
(Dt)u = f on R, (3)

where Dt = i—l 3/3t, the asymptotic formula

ix t
v

u(t) = T P (t)e + o(e-kt)as t > + o (4)

v
{v.ImAv-k}

holds. Here Pv are polynomials in t with coefficients which are

elements of Jordan chains generated by Av.

We characterize the behaviour of the solution u and of the

right-hand side f by the functions

V-2



t+1

[ull =(]
t

Il t19 =

[ IDda(o] 12 a0,

Wﬁ(t,t+1) q=0

t+1 ’ 1/2
[1£1] ] = ([ |1£(0)]]|5d7)
Lz(t,t+l,HO) : 0

and suppose everywhere that both functions are finite for each te ]Rl.

With any strip k_<Im A<k _ free of eigenvalues of J4(A) we connect
a class of solutions of the equation (3) with
k_t

lim e ' ||ul| . = 0. : (5)
+>too W (t,t+1)

&

t

For such a solution we obtain the pointwise estimate

o k (1-t) m -1
< (14t-t) f dt +
I Iul ‘wz(t’t.{.l)— C{{- e T ifl HLZ(T’T+1;HO) T
t k,(t-t) m, -1
+ [ e * (1+t-1) |

[1£]] . )41
L2(1,1+1,H0) s

where m, are the maximal lengths of the Jordan chains correspond-
ing to eigenvalues of SQ(A) on the lines Im\ = kt (if there are no
eigenvalues on the line ImA = ki we put m, = 1). This estimate is
equivalent to the following comparison principle for u(t) and for

the solution w(t) of the ordinary differential equation

( 1)m'(a +k )m+(a +k )m' =
) £ 5 gtk w(t) = HfIILz(t,t+1;HO) (6)

-k_t
satisfying w(t) = o(e ' ) as t » t w:

[ lul]

0 < bw(t), b = const. (7)
Wi(t,t+l)



The operator

m

M, " :
(8,) = (3, + k) "(-3, - k)

is the simplest model for.fé(Dt).

We turn to the ordinary differential equataion with variable
operator coefficients

L(t,Dt)u = f on IRl. (8)

We confine ourselves to the following three topics connected

with (8)

(i) Uniqueness and solvability theorems.
(ii) Estimates for solutions.

(iii) Conditions ensuring the asymptotics (4).
The operator L(t,Dt) will be considered as a perturbation of
JL(Dt). Therefore we introduce the function

w(e) = bl [L(e,0)- A , : (9)
: W(t,t+1)-L, (¢, t+1;H,)

where b is the constnat in (7).

In the variable coefficients case the role of the equation (6)
is played by

(M(3,) - wv = h on r!. (10)

We shall suppose everywhere that either

m, m_[k, - k_\m+m
sup w(t) < m +m_ (?i—:f;r> * (11)

+

or
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(m -1)'(m_-1)! m +m -1
(k, - k_)

[ w(t)dr <

ﬁﬁ

(12)
~ )1

(m+ + m_ 2)!

Each of these conditions guarantee the existence of the Green
function gm(t,r) of the equation (10) and the convergence of the

Neumann series

g, (t,T) = [ g(t-rl)m(rl)g(rl-Tz)...m(rk)g(tk-r)drl,..drk,

k=0 ]Rk

where g is the Green function of the unperturbed equation (6). The

constants on the right in (11) and (12) are best possible.

It can be shown that g is positive, which implies the positivity

of B,

We state a theorem on the unique solvability of the equation (10).

Theorem 1. (i). If

[1 g (0,7) [n(1)[dr < = (13)
Rl

w(t) = | gw(t,T)h(T)dT (14)
IR1
satisfies the equation (10) and
gw(t,T)
w(t) = o(sup . E;TE:?T) as t > t =, (15)

T€R

. gw(t.T)
w(t) = o(lim §_T57?7) as t > t ‘ (16)

Tt
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By introducing special assumptions on the equation (8) we can
obtain an explicit information about its solutions. We show it by

three examples of estimates for the Green function 8,

Theorem 2. Let m,=m_ =1 and let

sup w(t) < (k, - k_)2/4-

Then
t
g, (t»1) < exp{- [ ui(Q(s))ds} for t 2 T,
T
where
sup w(x) if v > 0,
Q( T) = XZT

sup w(x) if 1 < 0,
x<1

and a (o) are_the_roots_of_the_equation

(¢ -k )(a-k)+0=0, k<al(s)< a (o) < k.

PR Ry = Dy «uipunin g - - -

and 0 < a min{m_,m_}. Then_for positive t,t

q t
t+1, '+ -Qa >
gm(t,t) < c(;;I) exp{-{ ai(ys )ds}, t 2 T.

Here a (o) are_the_roots_of_the_eguation

m_ m_
(-a+k+) (a-k_) -0 =0, k_<a_(o)<a+(c)<k+

and

. - +1 - m, G -k )m;/mt Y-l/mt
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Theorem 4. Let

© 1/m,
[ o T(1)dt = =,

t 1/m
t
gw(t,T) <C exp{-ki(t-T) +c| [Q (s)as|}, t % T.
T
By analogy with the constant coefficients case we obtain the
following comparison principle for solution of the equation (8).
Theorem 5. Let

i 1gm(0,r)||f||L2(T’T+1;HO)dT <
R

h(t) = ||£]]| .
Lz(t,t+1,H0)

mentioned in Theorem 1.

A direct consequence of (14), (18), (19) is the inequality

o]

<b [ g (t,0)]]f]] g 97>
wh(t,t+1) 1 ¢ L, (t,T+13Hy)

R
which along with Theorems 2-4 lead to explicit estimates for

IIUHQ .
W (t,t+l)

Moreover from (20) and Theorems 2-4 one obtains two-weighted

estimates for solutions of (8), i.e. the estimates of the form

o

(17)

(18)

(19)

(20)



[ul] < el |£]] (21)
R 1

R5v) L,(R™3Hy5T)

where Wz(]Rl;y) and LZ(IRl;HO;Y) are the spaces with the norms

Hell , | =U ¥ 1 [ph]? a?/?,
W(R ;v) Rr! 0<q<2 2-q

Hell  ,  =(J P@lu@] 22,
LZ(IR ;HO;I‘ IR1

We restrict ourselves to the following example.

Theorem 6. Let m =m_ =1 and

k. t a k.t o +1
e P |t S, r(e)=et |t] T,

<
~~
rt
N’
n

PPt g . L e T T TS

This theorem is precise, i.e. if T is prescribed as above then
the exponent a + in the definitionon y cannot be enlarged even in the
case w = 0.

Now we formulate a uniqueness theorem for the equation (8) simi-

lar to Theorem 1 (ii).

Theorem 7. If a_solution u of (8) with f = 0 satisfies
g, (ts7)
[ lu Wl(t,t+1) = o(iizm g;raj;y) as t + + o, (22)
then u = 0
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Under additional requirements to the function w the condition (22)
can be made more explicit and some specific corollaries can be de-
duced from it. For example, the following variant of the Phragmen-

Lindeldf principle holds. (The notations are the same as in Theorem 2).

Theorem 8. Let m, = m_ = 1 and

Tim w(t) < (k, - k )%/4.

t>too
If u is_a_solution of L(t,D Ju = 0 for t > t, then either
t
lim exp{[ a_(2(s))ds} ||u|| | >0
trteo 0 Wo(t,t+l)
or
- t
lim exp{[ a, (2(s))ds} [ |ul | 0 < =,
trteo 0 Wi(t,t+l)

In the next theorem we give a condition which implies that the
principal terms in the asymptotics are the same as in the constant
coefficients case.

Theorem 9. Let m, be_an_integer 2 m,_ and

+o0 mo-l
fu(t) t dt < . (23)

-(k_+e)t
lul] < ce
Wi(t,t+l)
with_some positive e. Then
it -k t 2m -1-m
u(t) = z e Pv(t) + o(e t ) (24)

{v:ImAv=k+}

______________________________________________________ )
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We remark that in the case of the equaiton (M(at)-w)u = 0 the
condition (23) is also necessary for validity of the asymptotic
formula (24). Therefore in general (23) is best possible.

We turn to some applications of previous results to elliptic

partial differential equations.

First, consider two elliptic differential operators

A(x,D.) = I A(x)Dz, A(D) = T AaD:
|a|=2m |a|=2m

with measurable and constant coefficients respectively.

We introduce the continuity modulus of the coefficients

of A(x,Dx) at a point x,€R"

0

p(t) = z sup |Aa(x3*Aa|.
|a|=2m 1<|x-x0|<2p

Theorem 9 yields the following description of the asymptotics

of solutions of the equation
A(x,Dx)u =0
in a neighbourhood Be(xo), ueHzm(BE(xo))-

If

ép(T)Q%<°°

degP, )= 2m such that

---------------------------- 2m’ 2m seSses==s

u(x) = P, (x) + o(|x - x 2my as x > x

o! o

More restrictive conditions of the Dini type appear for even n
and 2m > n, when one studies the asymptotic behaviour of a funda-

mental solution l& of the operator A(x,Dx) near Xx,. Namely, if
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[ o(1)(log 1) L < =
0 T

then

3? (x) = G(x - xo) + o(|x - XOIZm-n)

One more application of Theorem 9 concerns a variant of the

Giraud theorem on the sign of the normal derivative. In

B: = {x:|x| < &, X > 0} we consider the uniformly elliptic equation

= 2
BX-(aij(x)ax.u) 0 (25)
1 J
with real measurable bounded coefficients. Let

n
o(t) = ' §=1 sui |aij(x) - éijl'
1,3 x"B-r

By u we denote a function in Hl(B:), satisfying (25) and the Dirich-

let condition
u=¢ on {x:|x| < e, x = 0}, (26)
where ¢ is a smooth function.

c = lim x Y{u(x) - ¢(0)}.
|x[»0 "

Furthermore, if u(x) > ¢(0) on B_ then c > 0.
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