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Abstract

r\-z(x\+W^^
L- estimates are derived for the oscillatory integral J^ e

r^-.(----^^^^^^^^^
e.tPW .Uh PW ̂ ^^^ ̂  applied to the study of solut-
<A) °(l+;)^su£^ e îons, oK.e .enê d Sch^e, ,.
• f̂yP^dSSd senuUnea. e,uat,on«.
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The purpose of the work described here is to derive precise "uniform" estima-

tes for the solutions of initial value problems

z^9u/9t= P(D^+ V{x)u+ 7HP-^, mRx(0,r),

(1) u{x,0) = UQ{X).

In (1), z = /^l, D = z-^Q/Qx, p and 7 are real numbers, p > 1. The convolution

operator P(D) and the potential V[x) will be submitted to various conditions. Nat-

urally enough, our approach is to handle first the case 7 = 0 , 7 = 0 , then the case 7

= 0, and finally the "general" case.

The initial value problem

(2) z-^9u/9t= P(D)u

(3) u ^Q = UQ,

has the evident solution u = e v ^o? ie.,

(4) <^) = (2^-i ̂ e^(^+<p^))&o(0^.
"R

Actually (4) is the unique solution of (1)-(2) which is a smooth function of ( e R

valued in the space of tempered distributions of x 6 R. Our basic assumption is that
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the symbol P(^) has the following expression:

(5) W = [cW)+c,H{-^]\^ + 5(0,

where His the Heaviside function, ie., H{() = 1 if ^ > 0, H(() = 0 if ^ < 0, Co and

Co are real constants ^ 0, m is a real number > 2 and R{() is a real-valued C2 func-

tion in R\{0} such that, for some constant A > 0 and all ^ e 1R\{0},

(6) \R\ <A(1+|^M, |^| <A(l+m"-2), 1 |̂ <A(l+|^ |m-3) .

Our guiding philosophy has been to trade off freedom in the choice of the

phase function for greater flexibility in that of the amplitudes. It has seemed

convenient to incorporate into the amplitude the exponential of the lower order

terms in the phase function. To compare our results to those of [KENIG-PONCE-VEGA,

1991] one may rightly say that our phase function is quite special, but our ampli-

tudes are more general. Thus our approach to the Fourier integral (4) is to regard

^+f[coXO+CoX-0]1^11"
as the phase function, whereas exp(ztR^)) is regarded as an amplitude. This leads

to the study of oscillatory integrals

K^t)=f^xx+^aWX,

in which x e K, tis a number > 0 and 2 < m e R. The amplitude a(\) will always be

of class C2, with its derivatives of order < 2 submitted to growth conditions. These

allow a(^) to be "oscillatory", ie., of the kind e^W with p(A) a real polynomial of
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degree < m—1. Alternatively, a(\) could be a constant coefficient "symbol" of order

< ^m—1. Here are the precise admissibility requirements:

(^c) a is a complex-valued C2 junction in K+ that satisfies the following condition:

V j, k 6 ff+, 0 < j < 2, 0 < k < 3, 3 constants M^ > 0 such that, in R+,

(i) \a\ < Moo+ Moi^"1-2)72, Moi=(H/m=2;

(n) | a^ | < Mio + Mn^m-2 + M^\ (m-4 ) ' 2^ M^ =0 ifm< 4;

(m) |a^^| < M2o + M2ifAm-3 + M22<2A2(m-2) + M^^-^ /2,

M2i = 0 ifm < 3, M23 = 0 z/m < 6.

The amplitude a is said to be of type {0} if'Moi = M^ = M^ = 0; of type (7) if

MOI + Mi2 + M23 ^ 0 and if there are finitely many points 0 < Ai < - - - < A» < +00
N

5'uc/i (/ia< neither the real part nor the imaginary part of a. changes sign in any one

of the intervals (0,AJ, (Aj,AjJ (1 < j < N), [A^+oo).

The method used to estimate 1^(2^)1 for t > 0 is a special case of the sta-

tionary phase method. It differs, depending on whether x is > 0, in which case the

phase has no critical point, or < 0, in which case the phase has the critical point

(l^l/f)1^111-^. (See [PHONG-STEIN, 1992] for applications of the stationary phase

method to Fourier integrals whose phase functions are homogeneous polynomials).

The following estimate is valid in both half—lines x > 0 or x < 0:

THEOREM 1.— Suppose a is an admissible amplitude^ either of type (0) or of type (7).
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Then, for all x 6 1R and all t > 0,

|^m(a^)| < CmlMoo^-17111 + Miof-2'" + Mzo^371" + Mn + M^ + M^t1^ +

(Moi+Mis+Afas)^2].

When the amplitude a is of type (0) the constant Cm depends only on m; when a is of

type {?) it also depends on the number N of changes of sign of .%<ea, and JS%a, in
A A

(0,+oo).

It is important to note that the constants Mjk in (^r) are allowed to depend on

x and t. In our treatement the latter are simply real numbers {t> 0) and the depen-

dence of the constants is easily tracked. As a result the constants c^ in (5), as well

as the "remainder R, are allowed to depend on {x,t). Of course, in this case the

integral (4) does not represent any more the "fundamental solution" of the initial

value problem (2)-(3). One must make use of the eikonal and transport equations;

but under suitable hypotheses these will define phase and amplitude functions with

the desired properties - also in the variable coefficients situation.

Applying estimates such as that in Theorem 1 to linear pseudodifferential ini-

tial value problems, yields various global growth (or decay) and regularity proper-

ties of their solutions. By adapting ideas of [TOMAS, 1975] and [KATO, 1989] to derive

global (in space—time) estimates of solutions of homogeneous and inhomogeneous

initial value problems:

(7) z^9u/9t= P(D^>+ / mRxR,, u\^ = 1,0 mK.
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THEOREM 2- Suppose P(Q = [cW)+CoH{^)] I ^ I m (2 < m e R). Le^p, r be positive

numbers such that 2 < p < oo, 1/p + m/r = 1/2.

I. Let u denote the solution of (7) when f = 0. I/UQ e LP' (1/p + t/p' = 1)

(/ien, for all t > 0, u( -,() 6 LP and

ll<•'()llLP(R)<c71-2/p(-2/^llu°llLP/(R)'

wz(/i a positive constant C that solely depends on m and on c^.

II. If UQ € L^R) the solution u of (7) when f E 0 fteto^ to L^R Î̂ IR)).

Moreover,

IHlL ÎR ÎR)) ^ ̂ INIî

with a positive constant C\ that solely depends on m, Co.

III. Let a, b be two numbers^ 1 < a < 2, I/a + m/b = m + ^. T/ie solution v of

(7) ^en ^ o = 0 belongs to L ÎR Î̂ R)) iffe. Lb(IR^;La(IR)). Moreover,

IHlL îl̂ lR)) ^ ^^HL^IR^L^IR))

w(/i a positive constant C^ that solely depends on m, c^.

COROLLARY.— Let P be as in Theorem 2. There is a constant C > 0 (depending only

on m and on Co) such that, for all UQ 6 L^R),
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|r i^Mipd^T'^cfri^)!^1'2,
^IR2 J ^[R J

w/iere ^ Z5 ^e solution (7) wAen / = 0 and p = 2(m+l).

This generalizes the result in [STRICHARTZ, 1977] in the case P(^) = -^2 (then

(2) is the Schrodinger equation) and the result in [KENIG—PONCE—VEGA, 1991], in the

case P(^) == ^3, ie., (2) is the Airy equation.

When acting on the Sobolev space H^R) (with s 6 R arbitrary) the operator

e^ ^ ) is unitary. Thus one cannot expect any gain of L2 differentiability in

a—space. Nevertheless, one may regard the corollary to Theorem 2 as not only a

result on the global decay of the solution u{x,t) but also on its increased "regularity"

in comparison to UQ — in so far that the elements of L^ m+l) can be said to be "more

regular" than those of L2 (recall that 2(m+l) > 6). The remarkable fact, however, is

that, for t > 0, the solution v(x,t) is truly more regular (with respect to the variable

x) than the initial value UQ — in the customary sense of the term "regular". Indeed,

the following is true (cf. [KENIG-PONCE-VEGA, 1991]).

THEOREM 3.— Let P be as in Theorem S. Let UQ € L^R) and u be the solution of (7)

with f = 0. 7/0 < 0 < (m-2)/4, then | D | P^( - ,t) 6 L°°(R) for a. e. t > 0, and there is a

constant C> 0, independent O/UQ, such that

[/JI^-'^ILW] "m + [/"I0! "-"'^••^ILW] l't<- ^"'"IlLW-u\ u\
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Thus the solution v(x,t) is differentiable with respect to x, in the L00 sense, up

to order (m-2)/4, for a.e. t > 0. Compare this with the local result that UQ e L2 =>

y ( ' , t ) 6 HI[^ ^(R) for a.e. < > 0. We refer the reader to [BEN-ARTZI-DEVINATZ,

1991], [BEN-ARTZI-KLAINERMAN, 1992] and [CONSTANTIN-SAUT, 1988] for a discussion

of local smoothing in the L2 sense (and in any number of dimensions).

When P(A) = d"1 (0 f c 6 R), a homogeneity argument shows that the right-

hand side, in the estimate in Theorem 1, can be estimated by Ct"1^. Inserting

derivatives or, which amounts to the same, an amplitude of the kind AP, leads to the

following statement:

THEOREM 4.— Let P be as in Theorems S and 5. Assume that the initial value UQ in (3)

belongs to L^R). Then, ifO < 0 < i(m-2), |D|Pi<-,() 6 L°°(IR) for every t + 0. More-

over, there is a constant C > 0, depending only on P, such that^ for allt > 0,

(8) IK-.OIlLoo^^^^hollLi^).

(9) IIIDI^^^^-^IIL^^^'II^IILW

The inequality (8) generalizes the well known decay estimates for the Schro—

dinger and Airy equations. For the "generalized" Airy equation, ie., P(^) = |^|20^

(^ < a e R), the decay estimate has been proved in [SIDI-SULEM-SULEM, 1986]. The

estimate (9) is also proved in [KENIG-PONCE-VEGA, 1991] . It shows another aspect of

the smoothing effect of the differential equation in (7).

The preceding statements are valid for a homogeneous symbol P of degree m.
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Adding lower order terms R (satisfying (6)) limits the validity of the estimates to

finite intervals 0 < t< T < +00. Such estimates make it possible to handle the pre-

sence of a potential V e L^R), by a simple argument of the Picard-Ovcyannikov

type. Here one seeks a solution of the initial value problem

(10) t-Wu/ot = P(D^)u + V[x)u in RxRxR,, u(a;,o) = u^(x).

THEOREM 4.- Let P be given by (5) and (6), and suppose V 6 L^R). Ifuo € LI(R), the

initial value problem (10) has a unique solution u whose trace v(',t) belongs to L°°(R)

for each t> 0 and satisfies an estimate \\v(',t)\\-riB < C^T)^'^ ifO < t< T < +00.

The solution u is a continuous junction in RxR^; it satisfies the following estim-

ate, for some constant C > 0, independent o/|| V\\-r ^ \\uo\\-r ^ and oft > 0,

IK-,()HL<° < C^^^l+t^^ex^W^l+t^^

with 7 = m/(m—l).

The preceding results enable us to apply to the semilinear problem (1) the

methods of [KATO, 1989] and of [TSUTSUMI, 1987a, 19876]. We must make the hypo-

theses that the potential Vis real-valued and belongs to L^R), and that P(D ) +

V[x), which is formally self-adjoint on «9(R), generates a unitary group of operators

on L^R).

THEOREM 5.- Ifl < p < 2m+l, then to each UQ € L^R) there are constants T, C > 0,

1-10



depending only on the symbol P, on || V|[-r ^m\ and on H^olly sfnn? 5<uc^ ^IQ^ (1) ^a5 a

unique weak solution u[x^t} in Rx[0,r), having the following properties:

(%) The map t -» ^(- ,<) € L2(IR) 15 continuous on [0, T) and (̂a;,0) = ^0(2:).

(n) J/a, b are positive numbers such that 2 < a < oo, 1/ma + 1/b = l/2m,

thenu^. L^O^iL^R)) and

rp

[/o H-^II^R)^]17'^!!^^)-

It follows from (n) that v( • ,Q e L^R) for a. e. (e (0, r).

In order to obtain strong solutions one needs to impose further restrictions on

the potential V. On the other hand, one can then remove the upper bound on the

power p > 1:

THEOREM 6.— Let k > 1 be an integer and assume V 6 C^R), and moreover that every

derivative 7U) of V of order'} < k belongs to L^nL^R).

Then, to each UQ 6 H^R) there are constants T, C > 0, depending only on P,

on Max (II ̂ (J) llTifro^ll ̂ (J) llToof[R^) an<^ on IÎ UHWP suc^ ̂ ^ ̂  ^as a un^(lue
u S JS-"^

strong solution v(Xft) in Rx[0, T) with the following properties:

The map t-^ u{-,t) 6 Î k(R) is continuous on [0,T) and u{xfl) = UQ{X). More-

over,

^P^||<-,()||gk(R)<^ll^o||Hk(!R)-
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