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CHARACTERISTIC PROPERTIES OF DISTRIBUTIONS
ASSOCIATED WITH THE WAVE GROUP

D.G.VASSILIEV

Let us consider the spectral problem

(A) Av = X^v ,

(B) (B^v) = 0 , j = l , 2 , ,m,
QM

where A > 0 is the spectral parameter, A is a positive self-adjoint elliptic linear
differential operator of order 2m (m E N) acting on half-densities on a compact
n-dimensional (n > 2) manifold M with boundary 9M or without boundary
(9M =0 ) . The B^ are "boundary" linear differential operators describing reg-
ularly elliptic (see [1]) boundary conditions in the case 9M -^ 0.

Under our assumptions the differential operator A initially defined on

D(A) = [v € C°°(M) : (B^v)\ = 0 , j = 1,2, . . . , m}
\9M

has a self-adjoint closure A in L^(M) with a domain of definition

D(.4) = {^^(M) : (B^^)! =0, j=l,2,...,m}
l5A^

where ^^(M) denotes the Sobolev space of half-densities belonging to L^(M)
together with all their partial derivatives of order < 2m. It is well known [1] that
the operator A has a positive discrete spectrum 0 < v\ < 1/2 < ... accumulating
to -hoo (we numerate the eigenvalues taking their multiplicities into account). The
numbers \k = ̂  m , k = 1,2,... may be interpreted as the eigenvalues of the
operator ^(V^). It is also well known that the respective eigenfunctions (more
precisely, half-densities) vjc are infinitely smooth on M , satisfy (A), (B) and form
an orthonormal basis in L^{M).

Note that whereas A is an operator in the full sense of the word A is not really
an operator: it is more correct to call A a "differential expression". Nevertheless,
for the sake of simplicity we speak in both cases of "operators", distinguishing A
and A by different script.

This paper is devoted to the study of the operator exp^iU1'^2^),
t E (TL , T.4-). Information on this operator is essential for obtaining two-term
spectral asymptotics for the eigenvalue problem (A), (B), see [2-8].

Typeset by ^S-lfcX
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1. Functional spaces and basic notation. In this section we define precisely
the functional spaces of our distributions in order to prepare the ground for the
formulation and subsequent proof of Theorem 1.

Local coordinates on M will be denoted by x = {x^,x^... ,Xn) or by y =
{Vi , ? / 2 , . . . , t/n). In a neighborhood of 9M we will use only special coordinate sys-
tems of the type x = (^ Xn), where x/ == (x^, x^ . . . , a^.i) are coordinates on 9M
(the boundary coordinates) and Xn > 0 is the "normal55 coordinate in the sense
that 9M = {xn = 0}.

Following Schwartz [9, Sect. 3.7] and Hormander [10, vol. 1, Sect. 2.3] we denote
by £{M) the vector space of infinitely differentiable (up to the boundary!) complex-
valued half-densities v{x) on M equipped with the usual C^-topology defined by
l'r»<S e'OTVt't—'rt/'kffVIOthe semi-norms

' -ES "%,i'';fc.)i
P=l jcf|<fc

where k ranges over all integers > 0 and 1 = EJLi Xp(^), Xp C C°°(M),
^PPXp C M^\ is some partition of unity on M with local coordinates x in
coordinate maps M^\ We denote by £a(M) the subspace of £(M) consisting of
all the half-densities which satisfy the boundary conditions

(1) (5(^7)^=0, j= l ,2 , . ,m, r = 0,1,2,.,

the topology on SB^M) is taken to be the same as on £(M) . By £\M) , ^a(Af)
we denote the dual spaces of £(M) , £a(M) respectively (i.e. spaces of linear con-
tinuous functionals on £(M), ^a(M)) equipped with the dual (strong) topology
generated by the initial topology on £(M), SB(M) , see [9, Sect. 3.2, 3.3 and 3.7].
Obviously, £'(M) C ̂ (M) because SB(M) C £(M) . The value of the functional
(distribution) u on the test half-density v will be denoted by (u, v}^ with the
subscript x emphasizing the variable in which the distribution is acting.

Let T_ < r+ be real numbers, finite or ±00. In accordance with traditional
notation we denote by ^(TL , T+) the vector space of linear continuous functionals
on Go^r-. , T+). The value of the distribution / 6 ^(TL , 7+) on the test
function g € Q?°(7L , T+) will be denoted by (f,g),. For the sake of simplicity
we, following Hormander [10, vol. 1, Sect. 2.1], equip D^T- , T+) with the weak*
topology defined by the semi-norms

p/(T_,^+)^/-.|(/,^|
where g is any fixed function from Cg°(T. , T+).

By C°°((T^ , T+) x My; ̂ (M,)), ^((TL , r+) x My; <^(M,)) we shall de-
note the class of distributions from ^(My), ^(M,.) respectively infinitely dif-
ferentiably depending on (t,y) e (T- , r+) x My as on a parameter (the sub-
scripts x and y are used to distinguish the two copies of the manifold M).
By C°°(M^ x My, ̂ (T- , T+)) we shall denote the class of distributions from
P^T- , T+) infinitely differentiably depending on (x, y) 6 Afr x My as on a pa-
rameter. Here infinite differentiability is understood in the strong (Frechet) sense
with account of the respective topologies in £\M^), ^(M^,), ^(T- , T+).

XV-2



We shall use the notation "/ = 0(|A|~°°) as A -^ -oo" to describe the fact
that the function /(A) E C^QR) vanishes faster than any given negative power
of | A | when A -^ -oo . More generally, we shall use this notation for "functions"
f(\,x,y) depending on additional parameters x 6 Mr, y € My to describe the
fact that / as well as any given derivative of / with respect to x , y vanishes
faster than any given negative power of |A| as A —^ -oo uniformly over My x My .

By f^\(') d^ W"1 f^^PW^di we shall denote the inverse Fourier
transform.

2. Main result. The main result of this paper is the following abstract theorem
which plays a fundamental role in the asymptotic analysis of higher order (m > 1)
spectral problems. It allows us to avoid the consideration of an ill-posed Cauchy
problem (in the variable t ) for the equation D^u = A^u (Di dl{ -i9/9t); see
[6-8] for applications of this theorem.

Theorem 1. Let 7L < 0 < 7+ be real numbers, finite or ±00, and let

(2) u(t^^y) € G°°((T_ , T+) x My; ̂ (M^)) nC7°°(M^ x My; ̂ (T- , T+))

be a distribution which behaves as a function in the variable t and as a half-density
in the variables x , y .

If

(3) u(t, x^ y) - exp^M^2^)^, x, y) € C^OT- , 7+) x M, x My)

then

(4) D^u - A^u € C°°((T. , T+) x M^ x My),

(5) Wu) GC^aT-^xcM^xMy), ^=l,2,...,m,
oMjc

(6) F^W = 0(|A|-°°) as A ̂  -oo

forany g(t)eC^{T.,T+).
Inversly, if (4), (5) hold, (6) holds for some g(t) € Cy{T. , T+), g ^ O , and, in

addition,

(7) (B^A^u) = 0 at t=0, j = 1,2,. . . ,m, r = 0 , l , 2 , . . . ,
dMs:

then (3) is fulfilled.

Before proceeeding to the proof of Theorem 1 let us explain in what sense for-
mulas (2)-(7) should be understood (recall that we are dealing with distributions!).

Firstly, (2) means that for any v(x) € SB(M^) , g(t) € Cg°(T^ , T+) we have
the equality

T+

{ u , v } ^ g d t = ( u , g ) t v d x
T- M,
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over all y 6 My .
By exp^iM^2771)), ^ G (T- , T+), we denote the bounded operator L^(M) ->

L^{M) (called the unitary exponent) defined by the series

+00 ______

(8) exp^-U^2^) = ̂ exp(-i^) Vk(x) \ (.) v^y) dy
fc=l ^

where Ajb are the eigenvalues and Vk are the orthonormalized eigenfunctions of the
problem (A), (B). In accordance with (8), by ^(-itA^^^uiQ.x.y) we denote
the formal expression

+00 ______

(9) exp^iMy^^O^t/) = ̂ exp{^it\k)vk(x){u^x^)^k{x)}^
k=l

Note that if u(0,x,y) = 6(x - y) then (9) is the Schwartz kernel of the uni-
tary exponent. The formal expression (9) can be understood in the sense of
G°°((r^ , 7+)xMy; ^(Af,))- distributions as well as C°°(M^xMy', ̂ '(T- , r+))-
distributions. In the first case the value of the distribution exp^iU^2^)^, x, y)
on the test half-density v(x) € SB(M^) is defined as

(10) (exp(-^Uy(2m))tl(0^^),^;),
+00 -

= ^exp(-^Ajb) j Vk(x)v(x)dx{u{0,x,y),Vk(x))^ .
^=1 M.

In the second case the value of the distribution exp^iMy^^t^O, x, y) on the
test function g(t) € Cy(T- , T+) is defined as

(11) (exp(-<My(2m))^(0^,^/)^)t

+00 ^+

= ^Vk(x) exp(-U\k)g(t)dt(u(Q,x,y),Vk(x)}^ .
Jk=i y/

Elementary integration by parts

(12) / Vk(x)v(x)dx = A;3 [ Vk(x)(Aiv{x))dx^

Mx Af^

T+ T+

(13) fexp(-it\k)g(t)dt == (zAfe)-3 [ exp(-it\k) (9s, g(t)) di
T- T-.

(obviously we used (1) in deriving (12)) with arbitrary s 6 N proves that the
quantities f^ Vk{x)v(x)dx, f^ exp(—it\k) g(t) dt vanish faster than any given
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negative power of \k as k —> 4-00 , and, consequently (since we a priori know from
classical works on one-term spectral asymptotics the rough estimate \k > ck2171^,
c > 0), faster than any given negative power of k . On the other hand, in view
of standard embedding theorems and of the fact that a distribution from ^(Ma.)
always has finite order (due to the definition of the topology on £3 (My))? the quan-
tities Vk(x), {u(Q,x,y) ,Vk(x)}y grow not faster than some fixed positive power
of k . This argument shows that the series (10), (11) are absolutely convergent.
Moreover, this convergence is uniform over (TL , 7+) x My , My x My , and does
not suffer as a result of differentiation with respect to (t,y), ( x , y ) ' , see a more
detailed discussion after Lemma 8.

Thus, the left-hand side of (3) can be understood in the sense of
C°°{{T. , T+) x My, ̂ (M,))- distributions as well as C°°(M^ x My; Z>'(7L , re-
distributions. The C°° -inclusion here means that there exists a w(t,x,y) G
C°°((r^ , T+) x M ^ x My) such that

{u(t, x, y) - exp^U^2^)^, x, y) , v),, = f w(t, x, y) v(x) dx ,

M^

T+

(u(t,x,y) - exp^itA^^u^x.y)^^ = fw^x^y)g(t)dt
T-

for v(x) E SaW, g(t) € ̂ (T- , r+).
The expressions (B^ u) , and, consequently, the inclusions (5), are under-

9M,
stood in the sense of C°°(9M^ x My', ̂ (TL , T+) ̂ distributions:

(14) ( (̂ ) QM,,
^ ̂  (B^{u,g}t)

9M..

for g(t) C C§°(T^ , r+). When (6) holds we shall denote the infinitely differentiable
"functions" (B^u)

QM,
by ^(l,.^,?/), j==l,2, . . . ,m.

The expression D^u — Aj;u , and, consequently, the inclusion (4), can be un-
derstood in the sense of C°°((T^ , T+) x My; ^(Ma,) ̂ distributions (if we already
know that (5) holds) or C°°(M^ x My-, V(T- , T+) ̂ distributions. In the first case

{D^u^A.u^ ̂  D^{u,v}^ - {u,A;v). - f^ f h, {C^^dx'
•?'=1 9M^

for v(x) 6 ^B(Ma,); here the C^ are "boundary" differential operators defined
uniquely (for a given set of B^ ) by Green's formula

f(Au(x))v(x}dx - f u(x}(Av(x))dx = ̂  f (B^u)

M M j=l QM

XV-5
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V^ 6 ^(Af), Vv E fa(M). In the second case

(P^~A^^)< ̂ (^Z^^f -A,(n^),

for g(t) 6 (7§°(TL , T+). In both cases the subscript x is used to emphasize the
variable in which the respective differential operators are acting.

The expressions (B^A^u) appearing in the left-hand side of (7) are un-
9M^• " -"- 3C __ __

derstood in the sense of C°°(9M^ x My; V(T- , 7+) ̂ distributions similarly to
(14):

( (B^A^u)
QM,

,g}t^ (BWA^u,g},)
QM^

for g(t) € Cg°(T^ , 7+). It is easy to see that if (4), (5) hold then

(15) (B^A^u)
QM:

e C°°((T, , T+) x QM^ x M y ) ,
j = l , 2 , . . . , m , r = 0 , l , 2 , . . .

so the equalities (7) can be understood in the classical sense. We shall denote the
infinitely differentiable "functions" (B^A^u) by b j r { t , x ' , y ) .

9 Mx
Finally, the expression f^^gu} is the G00^ x My; x My)- "function55 (more

precisely, function in the variable A and half-density in the variables x , y ) defined
^ ̂ W = (^)-l{u(t^^)^xp(itX)g{t))t .

3. Proof of Theorem 1. If (2), (3) hold then (4)-(6) are obviously fulfilled.
So we have to prove only the inverse statement of Theorem 1. It is convenient to
split this proof into several parts which we shall consider as separate lemmas.

Lemma 2. Let hjr{t^') € (^((TL , T+) x 9M), j = l ,2 , . . . ,m,
r = 0,1,2,. . . , be a set of functions" which satisfy 6jr(0, x ' ) = 0. Then there
exists w(t,x) 6 C°°((r- , T+) x M) such that

(16) (B^A^)
9M

= bjr , j = l , 2 , . . . , m , r = 0 , l , 2 , .

(17) ^ f-,t=0 0.

Proo/ of Lemma 2. In order to simplify notation let us renumerate our boundary
"functions55, boundary operators and their orders with one index k = j -+- mr:

6,̂ , ̂ f b^ '̂+mr) dif ^^A7', m,̂ , d£f m, + 2mr,

j = 1,2,..., m, r = 0,1,2,... Here 0 < mi < m^ < ... < mm < 2m — 1 are the
orders of B<1), BW,... ̂ (m).

Let us consider some local coordinate system a* == (x^Xn) and some compact
-/? C (?M which lies inside the chosen coordinate map. Without loss of generality
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we shall assume that supp^ ^ K for all t 6 (TL , T+) and k == 1,2, . . . ; the
r/

general case is reduced to this one by a partition of unity.
Each operator B^, k •= 1,2, . . . , can be represented in the form B^ =

^O^ - B^\ CA,(.C') ^ 0 , where £?W is a "boundary" differential operator of
order m^ without the leading conormal derivative:

mfc-l
aw = y BW^ ./ ^ a'n

p=0

Here the B^) are dinerential operators in x/ of order < nik—p. Without loss of
generality we shall assume that Ck(x1) = 1; the general case is reduced to this one
by an obvious renormalization of the operators B^ and the functions" b]e{i^x1).

Let us construct w as a formal Taylor expansion in Xn

f^ ymk
(18) W^-^W^)^.

Substituting (18) into (16) we obtain an infinite system of differential equations:

(19) wi = & i ,

Jb-l

(20) Wk = ̂  (B^^) w/) + fcfc , fe = 2,3,
7—1/=!

Due to its triangular structure this system is solved explicitly: (19) gives wi and
(20) gives a recurrent procedure for the determination of wje, k == 2,3,. . . Note
that we have w^l^o = 0 and suppWfe ^ K for all t 6 (T- , T^.) because the bjc

X ' "

possess these properties.
It is known that given an arbitrary formal Taylor expansion (18) one can con-

struct an infinitely smooth "function" w with such Taylor coefficients and with
support lying in our coordinate map. Moreover, as in our case the Taylor coeffi-
cients vanish at t == 0, w can be chosen to vanish identically over M at t = 0.
(These simple statements are proved analogously to [11, Proposition 3.5].)

Lemma 2 is proved.

Lemma 3. Let t- < 0 < f+ be finite real numbers and let a(t^x) E
C°°([t^ , <+] x M) be a function" which satisfies

(21) (B^rJ = 0 , j = l , 2 , . . . , m , r = 0 , l , 2 , . . .
\oM

Then there exists w(t,x) 6 C°°([t^ , t^.] x M) such that equalities

(22) D^w = Aw + a ,
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(23) (B^A^,) - 0 , j = l , 2 , . . . , m , r = 0 , l , 2 , . . . ,
uM

and (17) hold.

Proof of Lemma 3. Set

+00

(24) w(i,x) = ̂  Uk(x)(wk(t) - wjk(O) cosAfcf) ,
Jk=l

w 2m

(25) "^)=E«'^)+ E w^)'
(=1 )=OT+1

(26) w^) = -^^yexp(ir^)a.(r)</r,>2m-l / exp^r^fc,j
v" tl

(27) ak(t) = [ a ( t , x ) v k ( x ) d .a(i, a*) Vfc(-r) da?.

M

(28) An = Ajb exp(i7r(/ - l)m-1), I = 1,2,. . . , 2m.

Recall that by Ajk and Vfc , fc = 1,2,. . . , we denote the eigenvalues and the or-
thonormalized eigenfunctions of the problem (A), (B). Due to the boundary condi-
tions (21) the quantity ak(i) defined by (27) vanishes faster than any given negative
power of k as k -^ -hoo uniformly over [<- , t^.]; the same is true for any given
derivative of ak(t) with respect to t. An elementary analysis of formulas (25),
(26), (28) shows that this rapid decay property is inherited by the terms of the
series (24): this series converges absolutely, uniformly over \t- , <+] x M , as well
as the series of any given derivatives with respect to i, x. Thus (24) defines an
infinitely smooth "function" which can be differentiated under the ̂ ^ sign.

Straightforward substitution shows that the constructed w satisfies (22), (23)
and (17).

Remark 4' Lemmas 2, 3 and their proofs remain true if the 'functions" bjr and
a depend smoothly on the additional parameter y G My . In this case the resulting
w will also smoothly depend on y .

Lemma 5. It is sufficient to prove the inverse statement of Theorem 1 with

(29) D^u = A^u,

(30) (^)u)- = ° ' J = l , 2 , . . , m ,
\oMx
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instead of (4), (5), (7).

Proof of Lemma J. It follows immediately from (13), Lemma 2 and Remark
4 that we can turn (5), (7) into (30) by adding to u an infinitely smooth with
respect to all the variables "function75 which vanishes at t == 0 . Obviously such an
operation does not spoil (2), (4), (6) and it also has no influence on the formula (3)
which we are proving.

Take now arbitrary finite real numbers f- , t^. such that

(31)) IL < t^ < 0 < 4 < 7+ .

Formulas (4), (30) imply that the "function" a(t, x, y) d£f D^u - A^u satisfies the
conditions of Lemma 3. It follows from Lemma 3 and Remark 4 that we can turn
(4) into (29) by adding to u an infinitely smooth with respect to all the variables
"function95 which satisfies (23) in the variable x and which vanishes at t == 0 . Such
an operation does not spoil (2), (6), (30) and it does not influence the formula (3)
which we are proving, only the time interval becomes smaller ((<- , t+) instead of
(T- , T+)). Assuming that the inverse statement of Theorem 1 with (4), (5), (7)
replaced by (29), (30) is true, we have

(32) u(t, x, y) - exp^U^^^O, x, y) € C^((t, , f+) x M, x My) .

As t- , t+ are arbitrary numbers satisfying (31) formula (32) implies (3).
Lemma 5 is proved.
Thus we have reduced the proof of Theorem 1 to the proof of the following

statement.
Let u(t,x,y) be a distribution of the class (2) which behaves as a function in

the variable t and as a halt-density in the variables x , y and which satisfies (29),
(30) and (6) for some g(t) € C§°(T^ , T+), g ̂  0. Then (3) is fulfilled.

Set

(33) Uk(t, y) = {u(f, x, y), Vk(x)),..
In view of (2) we have

(34) Uk(t,y) GC^TL.r^xMy).

Moreover, formulas (29), (30) and (33) imply D^Uk = \kUk , and consequently
2w

(35) uk(t,y} = ̂ uu(t,y) ,
1=1

2m

(36) tife/O, y) = uki(0, y) exp(-^) = ̂  hip (-A^-P D?-1^^, y ) .
p=i

Here ||a?p|| is the symmetric 2m by 2m matrix with elements

dip = exp(iv(l- l)(p- l)m~1), l , p = 1,2,.. .,2m,

and ||6/p|| = ||a?p||""1. The AH are defined by (28). Note that formula (36) allows
to express the functions Uki(t, y) in terms of derivatives of the function Uk(t, y ) ;
with account of (34) this gives Uki(t, y) € ^((r- , T+) x My).
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Definition 6. Consider a sequence of "functions" (more precisely, functions in
the variable t and half-densities in the variable y )

wk(t^y) e c^aT-.r-^xMy), A - = i , 2 , . . . ,
and let 1 = Y^p^Xp{y}, Xp € C°°(My), supp^p C Mf\ be some partition of
unity on My with local coordinates y in coordinate maps My . We will say that
this sequence increases slowly if for any real numbers t^ , <4- satisfying (31),
any multiindex a > 0 and any integer r > 0 there exists a natural s such that
k-^^^Xpiy) M^ t/)) -^ 0 a« A -^ +00 uniformly over t € [t- , 4]. 2/ € ^(p).
p == 1,2,. . . , q. We will say that this sequence decreases rapidly if for any real
numbers <- , <+ satisfying (31), any multiindex a > 0, any integer r > 0 and any
natural s ks911^9^(^p(y}wk(t, y)) —> 0 as k -^ +00 uniformly over t 6 [t- , ^+],
t /GM^, p = l , 2 , . . . , < ? .

Lemma 7. The sequence Uk(i^ y ) , A* == 1,2, . . . , increases slowly.
Proof of Lemma 7. Suppose that the statement of Lemma 7 is false. Then there

exist real numbers t- , t^. satisfying (31), a multiindex a > 0 , an integer r > 0, a
coordinate map M^ with local coordinates z/, a cut-off function \p(y) € C°°(My)
with supp^p C My\ and sequences ks E N , is G [f-, ^+], y, € supp^p,
5 = 1,2,.. . . such that ks —^ +00 and

(37) (M~3 (^^(Xp(y)^(^y)))!^, ,^^0

as 5 -^ +00. Without loss of generality we shall assume that is —^ t E [^- , ^+],
Vs •^ V ^ supp ̂ p as « —» +00; this can always be achieved by extracting subse-
quences in view of the compactness of [t- , t+] x supp \p . Let us introduce the set
of half-densities B == ^ (^s)^ ^(a*) ^ 5 == 1,2,. . . ^ . Obviously B is a bounded
set (see [9, Sect. 3.2 and 3.7]) in &(M). Denote by u(t,x,y) the distribution
defined by the formula (u, v}^ = <9^(Xp(!/) W, a*, y) ^ v(x)}^), v(.c) E ^a(M^).
Due to (2) we have u(t,x,y) € G°°((r- , r+) x My; ^(Ma.)). So, in particu-
lar, u(<, .c,y) is a continuous function of the parameters t , y at the point < = t ,
y = ^f in the sense of the ^(Mr))-topology which means (see [9, Sect. 3.3 and
3.7]) that (u{t, x, y) , v(x))^ -^ {u(t, x, y) , v(x))^ as t -^ t , y -^ y uniformly over
all v(x) E B, where B is an arbitrary bounded set in ^(M). But this contradicts
(37).

Lemma 7 is proved.
Lemma 8. For any I = 1,2,. . . , 2m the sequence Uki(t,y), k = 1,2, . . . ,

increases slowly.
Proof of Lemma 8. Lemma 8 follows immediately from Lemma 7 and formula

(36).
Lemma 8 allows us to represent our distribution u(t, a*, y) in the form of a series

of smooth "functions"
4-00 2m

(38) u(t, x, y) = S£ uk^t'y)vk^'
k=l 1=1
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with the values of this distribution on the test "functions" v(x) E SB(M) ,
g(t) € CS°(T^ , T+) given by the natural formulas

+00 2m
(39) {u(t, x, y), v )^ = ̂  ̂  ̂ , y) y ^(a.) ̂ ) ̂  ̂

^=1 /=i ^

+00 2m ^

(40) W^t/),<7)t = ̂  ̂  vj,(x) f Uki(t,y)g(t)dt.
Jk=l /=l ^

It follows from Lemma 8 and formulas (12),
T+ T+

(41) j ̂  y) g(t) di = (iXki)-9 f Uki(t, y) (9tg(i)) dt
T- T-

(cf. (13)) with arbitrary s 6 N that the series (39), (40) converge absolutely,
uniformly over (7L , T+) x My , M^ x My , as well as the series of any given
derivatives with respect to (t,y), (a?,t/). This justifies the representation (38)
in the sense of C°°{(T^ , T+) x My, ̂ (M,. ̂ -distributions as well as C^iM^ x
My; 'D^JL , ?+^-distributions.

Lemma 9. For any / ^ 1, m+1 the sequence uu(t, y ) , k = 1,2,.. . , decreases
rapidly.

Proof of Lemma 9. Assume m > 2 (otherwise none of the / = 1,2,. . . , 2m
satisfy the condition / -^ 1, m + 1). Let us consider first the case 2 < / < m.
Having fixed / and arbitrary s, r, a, \p (in the notation of Definition 6) set

M<- , 4) d=£f max k8 \9^(xp{y) u^ y))\
t€[t-,t+], y^M^

where t. , t^. are arbitrary real numbers satisfying (31). Set e == (T+ - <+)/2.
Due to the exponential behavior of the 'function5' Uki(t,y) in the variable t (see
(36)) we have

(42) fik(t. , 4) = exp(-^Afe sin(7r/m))^(<_ , <+ -h^) .

According to Lemma 8 and Definition 6 there exists a natural s such that
(43) k-5^- , <+ -h e) -^ 0 as Ar -^ +00.
Combining (42) and (43) we get

(44) ^k(t- , 4) < c ̂ +J exp(-5 Afc sin(?r/m))
where c = max^-5^^, , ^4. + ^)) . As the right-hand side of (44) contains an

exponential term which is obviously stronger than the term ^+J , it follows from
(44) that f^k(t- , 4) vanishes as k -^ +00. This means rapid decrease in the sense
of Definition 6.

The case m+2 < / < 2m is handled similarly by estimating ^k(t- , 4) through
M^--^4), ^=(<--7L)/2.

Lemma 9 is proved.
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Lemma 10. The sequence ixjb(m+i)(<, y) , k = 1,2,. . . , decreases rapidly.

Proof of Lemma 10. As in the proof of the previous lemma let us fix arbitrary
s, r, a, ^p. It follows from (6) that

(45) k^iXkYQ^ [^(y) f ̂ >W^t^.y)]vk(x)dx} - 0 as A -. -oo
\ J I
\ M. I

uniformly over y C M^, fe C N; here uniformity over k is established by integra-
tion by parts in the variable x (similarly to (12)) with account of the boundary
conditions (30). Substitution of (38), (36) for u(t,x,y} turns (45) into

/ 2 m \
(46) k^iXkYO^ Xp(y)E^(A^)bW]^(0^)) -0 ^ A-.-oo.

\ 1=1 )

Let us choose and fix some p. E M such that ^~-l^[^)] -^ 0 (such a ^ exists
because g ^ 0), and let us relate A and k by the condition A = ^ - A j k . Then
(46) takes the form

2m

(47) S^^) "̂  ° as ^-^+00,
/=!

where

(48) g^y) = ^(iA,)- ̂ -A.-^)^)] (^(Xp(^) ̂ (0, t/))) .

Formula (48) can also be rewritten as

T+

gu(y) = exP(^7^r^- l)m 1) j exp^(^ - A,))^) (Q^^^u^y))) dt;
T-.

in the case / ^ 1, m + 1 the integral in this formula is easily estimated with the
help of Lemma 9 which gives

(49) g^(y)^Q 35 fc-^+00, / ̂  1, HI + 1 .

Let us examine now formula (48) in the case / = 1. As Ajki = \k the se-
quence f'^^_^_^[g(t)} decreases rapidly (the usual property of the Fourier
transform of a Cy-function), and the presence of slowly increasing factors JS^,
(iAjfc)^ 9^(Xp(y)uki(0,y))) (see Lemma 8) in the right-hand side of (48) cannot
spoil this rapid decrease. Thus

(50) g^(y)^Q as k-^-^oo.
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Formulas (47)-(50) and Afc(m+i) = -AA. imply that

^(m+i)(t/) = k^iXkY ^[g(t)} (9^(xp(y) ̂ (m+i)(0, t/))) - 0 as k -^ +00 .

Dividing the latter formula by the non-zero constant .̂ 7^ [<?(<)] and multiplying
it by the function exp(it\k) (which obviously has unit modulus) we arrive at

(51) ^(^^(Xp(2/)^(m+i)(^2/)))-0 as fc-^+oo.

Formula (51) is uniform over y E M^ because the initial formula (45) had this
property and all our arguments leading from (45) to (51) preserved uniformity in
y . Moreover, as the time dependence in z<A;(m+i)(^?/) is trivial (purely imaginary
exponent) formula (51) is uniform over all t E M. So (51) means rapid decrease of
the functional sequence ^A;(m+i)(<, y ) , k = 1,2, . . . , in the sense of Definition 6.

Lemma 10 is proved.

Now it only remains to rearrange (38) as

(52) u(t^^y) = exp^itA^^x^y)
+00 2m

+ ̂  ̂ (uu(t,y) - tiki(0,y)exp(-it\k))vk(x) .
fc=l /=2

Due to Lemmas 9, 10 the infinite sum in the right-hand side of (52) defines a
C°°((T^ , r+)xMa.x My)- "function". So the inclusion (3), and with it our Theorem
1, is proved.
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