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LARGE ATOMS IN LARGE MAGNETIC FIELDS*

JAN PHILIP SOLOVEJ

I. INTRODUCTION.

In this talk we shall discuss the effect on matter, specifically atoms, of a very strong
magnetic field. We shall present results obtained in collaboration with E. Lieb and J. Yng-
vason. Details will appear elsewhere [LSY]. The motivation for studying extremely strong
magnetic fields of the order of 1012 Gauss is that they are supposed to exist on the surface
of neutron stars The heuristic argument usually given to explain these strong fields is that
in the collapse, resulting in the neutron star, the magnetic field lines follow the collapse
and thus become very dense.

The structure of matter in strong magnetic fields is thus a question of considerable
interest in astrophysics (see [R], [FGP] and references therein).

II. THE PAULI HAMILTONIAN.

To give the quantum mechanical energy of a charged spin-^ particle in a magnetic field
B, we have to make a choice of vector potential A(a;), x 6 R3 satisfying B = V x A.

The energy is then given by the Pauli Hamiltonian

JfA=((p-A(.r)).a)2 . (2.1)

Here p = —iV and a = (ai, 0-2,0-3 ), where

fO 1\ f0-i\ (^ 0\
^^[l o ) - ^^[i o ) ' ^(.O-lJ

are the Pauli matrices. The Pauli Hamiltonian acts in the space ^(R^C2). We can also
write HA = (p — A)2 — B • <r. In the case A = 0 we get as usual HQ = p2 == —A. We
shall here concentrate on the case where B is constant, say B = (0,0, B), with B > 0.
We choose A = ^B x x. In this case the spectrum of HA is described by the so called
Landau bands Cpy = 2Bi/ + p2, where p is the momentum along the field and v = 0,... is
the index of the band. The higher bands v = 1,... are twice as degenerate as the lowest
band v = 0.

As usual in the study of fermionic energies we shall be interested in the sum of the
negative eigenvalues of operators of the form H = H^ — V(x\ where V(> 0 for simplicity)
is an external potential. In this connection there is an important difference between HA
and the operator (p — A)2 which has no spin dependence. While the spectrum for (p — A)2

is (B, oo) the spectrum for HA is (0, oo).
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Indeed, one can estimate the sum of the negative eigenvalues of the operator (p — A)2 by
L fV(x)5/2 dx^ according to the standard Lieb-Thirring inequality (with a magnetic field
the proof of this inequality given in [LT] is still correct if one appeals to the diamagnetic
inequality, i.e., that the heat kernel with a magnetic field is pointwise bounded in absolute
value by the heat kernel without a magnetic field.) However, in the case of HA — V the
question is somewhat more subtle. In fact, if V G Z^/^R3) the operator (p — A)2 — V
has a finite number of negative eigenvalues, while the operator H^ — V can have infinitely
many negative eigenvalues (compare [I]). We can, however, prove [LSY]

THEOREM 1. There exist universal constants L\^L^ > 0 such that if we let ej^B^V),
j = 1,2,... denote the negative eigenvalues ofHp^-V with 0 < V 6 ̂ ^(R3) n ̂ ^(R3)
then

^ |ej(B, V)\ < LzB t V{x)3!2 dx + L^ I V{x^'2 dx . (2.2)
j J J

We can choose L\ as close to 2/37T as we please, compensating with L^ large,

The first term on the right side is a contribution from the lowest band v = 0. For large
B this is the leading term.

We now ask the question of a semiclassical analog of (2.2). Thus consider the operator

[(^p-6a(^)).a]2-^), (2.3)

where a(.r) = \z x x, z = (0,0,1) and 0 < v.
If one computes the leading term in h"1 of the sum of the negative eigenvalues of (2.3)

for fixed b one finds as in [HR] that there is no b dependence. In our case, however, we
shall not assume b fixed, or more precisely not assume that b is small compared with h"~1.
The reason for this is that in the application to neutron stars it is not true, as we shall
discuss below, that b <€ h~1.

The interesting fact is, however, that we can prove ([LSY]) a semiclassical formula for
the sum of the negative eigenvalues of the operator (2.3), which holds uniformly in b (even
for large 6).

THEOREM 2. Let Cj(/i, &, v), j == 1,2,..., denote the negative eigenvalues of the oper-
ator (2.3), with 0 < v e ̂ (R3) n ̂ (R3). Then

limfy;|e,(/i,6,z;)|/^scl(^&^)) ==n,—^o \' m / =1,

uniformly in b, where

1 r oo
E^(h, 6, v) = -^h-n j (v(a-)3/2 + 2 ̂ >(:r) - 2^y2) dx . (2.4)

I/=l

Here [t]^=tift>0, zero otherwise.

The formula (2.4) was already implicitly noted in [Y].
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For bh <C 1, the right side of (2.4) reduces to the standard semiclassical formula from
[HR],

^-'/«(^&.

(Recall that we are counting the spin which accounts for the 2 in front of the sum in (2.4).)
For bh ^> 1, the sum in (2.4) is negligible, and we are left with the first term.

Formula (2.4) (with h replaced by 1) can be compared with the Lieb-Thirring inequality
(2.2), which holds even outside the semiclassical regime. The two terms in (2.2) correspond
to respectively the b —» oo (first term) and b —> 0 (last term) asymptotics of (2.4). A
natural question, which is similar to the so called Lieb-Thirring conjecture, is whether the
semiclassical constant 1/37T2 is the optimal value for L\ in (2.2) rather than as proved
2/37T.

III. THE ATOMIC HAMILTONIAN.

The Hamiltonian describing an atom with N electrons and nuclear charge Z in a con-
stant magnetic field B = (0,0, B) is

^N=E(^)-zla•^l)+ E i^-^r^ (3-1)
i=l Ki<j<N

N
acting in H = A-L^R3; C2). We shall here give a short sketch of what we call the Thomas-
Fermi theory for (3.1). The goal of this theory is to approximate the ground state energy

E{N, B, Z) = infspec^N . (3.2)

Furthermore, in the case where H^N) has a (normalized) ground state ^ G 'K, i.e.,
H(N)^ = E(N^ J3, Z)^, we also want to estimate the density

p^{x)=N j ||̂ (;r, 0:2,... ̂ N)!!^^...^^. (3.3)

The first step in studying (3.1) is to replace the repulsive two-body term, ]^<y \Xi —
Xj\~^1, by a so called self-consistent mean field potential of the form V^ p * |:r,|'~1. (This
replacement is as in standard Thomas-Fermi theory (see [L]) and shall not be discussed
here.) The question is how to find the appropriate self-consistent density p. It must of
course be an approximation to p^.

It should be noted that as we replace the two-body potential by a self-consistent one-
body potential we must also subtract a term ^ f p(x)\x — y\~~1 p(y) dxdy from the Hamil-
tonian. With this term our new Hamiltonian is

^{H^ - V{x,)) -^f p(x)\x - y\-lp(y) dxdy , (3.4)
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with V{x) = Z\x\~1 - p * |a;|-1. The ground state energy of the operator in (3.4) (without
the extra term) is the sum of the N first negative eigenvalues of HA — V.

We assume now that V is such that we can estimate the sum of the negative eigenvalues
by the semiclassical formula (2.4). We of course have to verify this assumption. Unfortu-
nately, this verification relies on properties of the density p, which we shall only know at
the end of the analysis. This somewhat backwards reasoning is typical for self-consistent
mean field theories like Thomas-Fermi theory (see [L]).

In Thomas-Fermi theory there is a standard way ([L]) of approximating the expectation
value of the kinetic energy operator ^^ H^ by a functional of p using semiclassical
formulas like (2.4). In our case we replace ̂ ^ H^ by fwa{p(x)) dx, where WB is the
Legendre transform of the convex function

v ̂  ̂ B{V^ +2 i> - ̂ y2) (3-5)
v=\

which is derived from (2.4) (without h). Here we point out that WB is convex (by definition)

and Wfi(t) ~ ̂  for small t (t ^ 53/2), wait) ~ <5/3 for large t (t > B3/2).
The ground state energy of (3.4) should then be well approximated by

^MTF(/>) = j w B ( p ) - fV(x)p(x)dx - ~ I p{x)\x - y^p^dxdy
t t _ ^ t (3.6)

= j WB{P) - j Z\x\ ^(x) dx + ̂  / p(x)\x - y\~^p{y) dxdy .

We call this functional the Magnetic Thomas-Fermi Functional. It is studied in
detail in [LSY] (see also [FGP] and [Y]). We now choose our density p to be the unique
minimizer for SMTP constrained to the set f p < N. We denote

EMTF(N,B,Z) = inf{£MTF(p) | t p < N} .

Knowing p we can now prove that -EMTF^, -B, Z) is really a semiclassical approximation
to the true ground state energy for (3.4). To do this one should first realize that it follows
from the study of ^MTF with our choice of p that the potential y(a;) = Z\x\~1 - p * \x\~1

will have the following behavior in Z and B

V(x) = Z^v{Z^x) if B <, Z4/3

V(x) = Z^B^v^Z-^B^x) if B > Z4/3 ,
(3.7)

where v is a function which does not depend significantly on B and Z.
Concentrating on the case B > Z4/3 we see by a simple rescaling that the Hamiltonian

HA — V(x) from (3.4) is unitarily equivalent to the operator

Z4/5^2/5 [{{hp - 6a(.r)) -«r)2 - v(x)] , (3.8)
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where
h = (B/Z3)175 and b = (^/Z)175 . (3.9)

In the case when B < Z4/3 we get Z4/3 in front of [ ] in (3.8) and

/i=Z-1/3 and 6 = B / Z . (3.10)

When h is small we can study (3.8) by semiclassical methods. Indeed, using (2.4) we can
now prove that if Z is sufficiently large and B/Z3 sufficiently small, EMTF approximates
the true ground state energy (3.2) as well as we please.

THEOREM 3. For ail sequences Nn, Bn and Zn such that Zn ~> oo, Bn/Z^ ̂  0 and
Nn/Zn is bounded away from zero, we have

E(Nn,Bn,Zn)/EMTF{Nn,Bn,Zn)^l BS n -^ 00 . (3.11)

Furthermore, if Nn < Zn, then H(Nn) has a ground state ̂ . The corresponding density
p^ defined by equation (3.3) is well approximated by the unique minimizer pn for EMTF
in the following sense. If\^ C§°(R3) then

Zn1 f^M - Pn(x))xW3 + Z^By)x)dx - 0 . (3.12)

(The above scaling of\ should be compared to equation (3.7).) We emphasize that from
the uniqueness the minimizer p is spherically symmetric.

Notice that from equations (3.9) and (3.10), hb = 1 if B = Z4/3, which when compared
to equation (2.4) explains why the behavior in (3.7) changes at this point. Indeed, when
B >- Z4/3 all electrons are in a certain sense confined to the lowest Landau band. This
result which is given in the next theorem is completely independent of the semiclassical
analysis.

THEOREM 4. If 11̂  is the projection in U = AJD^R3; C2) onto the subspace where all
electrons are in the lowest Landau band we define the confined energy

Eo{N,B,Z) = m{specnTl^H(N)H^ . (3.13)

Then ifN < \Z for some fixed X > 0 we get

Eo{N, B, Z ) / E ( N , B, Z) ̂  1 if Z ^ / B ̂  0 . (3.14)

The proceeding analysis gives the following different regimes in B and Z.

1) B < Z4/3, Z large (i.e., hb < 1, h small):

The effect of the magnetic field is negligible. We get standard Thomas-Fermi theory with
wa(/>) ̂  />5/3.
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2) B - Z4/3, Z /arffe (i.e., hb ̂  1, h small):

The magnetic field becomes important. The function WB is complicated because we have
a finite number of terms in (3.5). The density is still almost spherical and stable atoms
are almost neutral (see [Y]).

3) Z4/3 < B < Z3, Z large (i.e., hb > 1, h small).

The magnetic field is increasingly important. Most electrons will be confined to the lowest
Landau band. The function WB is simple since there is only one term in (3.5), wa{p) ~
p3 / B 2 . The density is almost spherical and stable atoms are almost neutral. Furthermore,
the atom is getting smaller. The atomic radius behaves like Z1/5^"'2/5 (compare (3.7) and
(3.12)).

4) B-Z3 (i.e., h^l).

In this regime one can no longer use semiclassics. The functional SMTP from (3.6) is not
a good approximation to the energy and we have no description of the atom in this case.

5) B>Z3.

However, in the case when B ^> Z3 and Z is large we can find a new functional of p very
different from ^MTF which approximates the energy. We shall discuss this in the following
section. In this super strong case it turns out that the atom becomes very cylindrical in
shape.

We end this section by a short discussion of which regime is relevant in the case of
neutron stars. Since the natural unit of magnetic field is (2m)2e3c/h3 = 9.4 x 109 Gauss.
we get in our units where all relevant physical constants have been suppressed that the
magnetic field on the surface of a neutron star is in order of magnitude B ^ 102. Thus for,
say, iron with Z = 26 we have bh = (B/Z4/3)3/5 ^ 1. To make a quantitative evaluation we
would of course have to really estimate error terms in the analysis. Qualitatively, however,
(all relevant constants are of order 1) it seems unreasonable to assume bh <€ 1 in this case.
Thus the magnetic field will almost certainly have a significant effect.

IV. THE SUPER STRONG CASE B > Z3 .
We shall here present the correct energy functional of the density when B ^> Z3, and

very briefly indicate what is involved in proving the correctness of the approximation.
The correct functional is now

WP) - J (J^VP^ -J-^p(x)+^Jp(x)\x-y\-lp(y)dxdy, (4.1)

with the condition that

/ •D

p{x)dx3 < — for all (a-i,^) . (4.2)
Z7T
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The claim is that

Ess{N) = mf{£ss{p) | I P < N , p satisfies (4.2)} (4.3)

is a good approximation to the energy in a certain regime of B and Z with B :» Z3.
In understanding this the first step is to recall that from Theorem 4 all electrons are

confined to the lowest Landau band. In the lowest band the degeneracy is such that we
have B/27T states per area perpendicular to the field B. Thus given any infinite cylinder
parallel to the field and of base area 27T/B. If there is more than one electron in such
a cylinder, they will have to occupy orthogonal states in the parallel direction, but this
one can prove costs too much energy if B > Z3. This shows that (4.2) must hold. The
functional (4.1) now follows because in each infinite cylinder with only one electron, the
electron can be treated as a boson, i.e., we can neglect the exclusion principle and that is
^y Ess is reminiscent of (bosonic) Hartree theory. (For details see [LSY]).
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