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Abstract
We consider Yang-Mills fields in Minkowski space-time. We present a

survey of results about the global existence and asymptotic properties of
large-amplitude solutions. We point out recent results concerning the time
decay of spherically symmetric solutions in the large amplitude sector.
Some open problems are also discussed .

1 Introduction
In this paper we discuss the role of the large-amplitude solutions of the classical
Yang-Mills equations in Minkowski space-time. The aim is to give an updated
account of the known results concerning the global existence and asymptotic
behavior of these solutions.

We shall consider Minkowski space-time jR34'1 with coordinates (<, a*) =
(a*0,..., x3) and endowed with the flat metric T] = —dt2 + dr2 + r^d^ls2' We use
Einstein ^s convention of raising and lowering indices thoroughly. The gauge
group is a Lie group G and we denote its Lie algebra by Q and the Lie alge-
bra commutator by [.,.]. The gauge group G is asssumed to be compact and
semi-simple. In particular , the Lie algebra Q admits a Killing form, namely a
bilinear symmetric positive definite form that is invariant under the Ad action
. In the sequel we will often write \5 for this bilinear form. Also, we fix a basis
Ta,a=l,2,...,N of G which is orthonormal with respect the Killing form.

*To appear in Seminaire de L'Ecole Politechnique , Proceedings of Colloques de Equations
aux Derivees Partielles, Saint-Jean-de-Monts , jun 1991. This work has been supported by
Sonderforschungsbereich 256 of the Deutsche Forschungsgemeinschaft.
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The Yang-Mills equations in Minkowski Space-Time ^3+1 for a ^-valued
Yang-Mills potential A : R3^1 -^ A^ are:

^ == 0 (1.1)

*F^ = 0 (1.2)

Here A = A^dx^ == (A^Ta)^^ and F denotes the Yang-Mills curvature of A,
namely the 2-form FA : R^ -* A2^ defined by F^ == Q^Ay - 0^A^ + [A^, A^].
D denotes the covariant derivative D^ = (^ 4- [A^,.] and we will also refer to it
by the use of semicollon "'^. The tensor * F denotes the Hodge dual of F.

There has been a lot of research on the associated euclidean version of the
system . In that case the Yang-Mills equations become a non-linear elliptic
system. Here the underlying metric has Lorentz signature and the equations are
hyperbolic. We look for the dynamical developments of initial data defined on a
space-like submanifold. The Yang-Mills equations allow an infinite-dimensional
group of transformations known as gauge transformations and are degenerate.
After fixing the gauge system 1.1-1.2 becomes a non-linear hyperbolic system
of partial differential equations containing quadractic non-linearities. In three
space dimensions this leads to the development of singularities unless a certain
algebraic condition, called null condition, is satisfied by the non-linearities.

The Yang-Mills equations are supposed to be a model for the fundamental
par tides that form matter. The main interest in such system is that one
believes that classical solutions can help explain the full quantum theory , at
least in the semi-classical limit, and that many of the quantum features would
survive in the classical level. The importance lies in the fact that this leads to
predictions that cannot be reached by standard perturbative approaches like for
example, the problem of color confinement . Here one deals with configurations
which , due to the presence of Yang-Mills color charges , strongly interact in the
infrared region. This means that in this region a significant role will be played
by field oscilations of large amplitude, for which the non-linear character of the
Yang-Mills equations is dominant. Thus, the problem of color confinenment
is closely connected with the quantization of large-amplitude oscillations (see
[4] for more details). From the mathematical point of view one asks if the
solutions to the Yang-Mills equations exist globally in time and investigates
their asymptotic behavior. The question of global existence has been solved
already and one obtains global solutions in H9 (cf. [3] ) but no information
about the asymptotic behavior of its solutions could be inferred from the proof.
The advantadge of the method is that it allows general configurations admitting
Coulomb charges .

It was proved later in [1] (see also [2] ) the existence of global large solutions
together with the characterization of the asymptotic behavior in time. The
proof relies on the use of conformal compactification method of Penrose and
a careful analysis of the conformally-invariant Yang-Mills equations on the so-
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called Einstein Cylinder [-7T/2, ?r/2] x 53. When translated back to Minkowski
space the conditions on the initial data imply a fall-off at space-like infinity
which amounts to H212 regularity . Here H916 denotes the weighted Sobolev
spaces H8^:

11̂  = (E I^^F^dx)^
i^OJ

where a2 = 1 + H2. The major drawback though is the strong fall-off rate
of the Cauchy data, requiring for example that the electric field decays like
E(0,x) = 0(|.c|~4) as \x\ —)• +00. This excludes configurations containing
Coulomb charges , dipoles and quadrupoles.

Other results , which correspond to configurations decaying as slowly as to
allow dipoles, require Spherical symmetry requirements. We shall review the
results in the next section, ae

2 The Spherically Symmetric Case
A remarkable feature of the Yang-Mills equations is that they admit a large class
of non-trivial spherically symmetric solutions. By this we mean invariance under
the combined effect of a rotation and a compensating gauge transformation.
Remark that the latter is not the case of classical electrodynamics so that the
existence of such solutions is strictly tied to the non-abelian character of the
theory. In fact these solutions present a remarkable non-trivial mixing of internal
and external degrees of freedom. For the gauge group SU(2) one can write down
the solution very easily. In the so-called canonical gauge the solution is:

yd

Ag = ̂
r

A? = ^^iL^-^+fLzl,^
r2 r v - r2 r r

where <^,/i and /s are functions of t and r. This class is called the class of
canonical gauges. Its elements are completely regular except at the central line
r=0.

The Yang-Mills equations written in terms of the constitutive functions of
the Ansatz becomes a very complicated system of equations: 1

ad)/!-^/!)-^/!^^)-^/!^-/!2-^) = 0

Qd^-h^+^-A^-^a-A2-^) = o
_____________ ^+2(/i/2-/2/0 = o

lWe denote by D(I) =9^-9^ the D'Alembertian in 1-d , by A(3) the standard Laplace
operator in 3-d and by D^) the D^Alembertian in 3-d.
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AO^-^^+^+^/I^-^A) = 0

One would like to study such systems of equations. Not much is know in
this important sector of non-abelian gauge theory except for a result due to
Glassey and Strauss [5] . They consider in their paper special solutions which,
after using all gauge degrees of freedom, have the form:

Ag = 0

A? = a^r)^

The Yang-Mills equations reduce then to a single scalar wave equation for a:

2 3
D(3)a + -^a - -a2 + a3 = 0

The equation presents a singularity along the central line r=0 and much
of the analysis contained in [5] concerns this problem. They also obtain time-
decay estimates for configurations allowing dipoles. The main deficiency though
is that it adresses a small class of solutions and rely heavily in the special form
of the Ansatz.

What we would like to show now is how it is possible to extend the result by
Glassey and Strauss so that the entire spherical symmetric sector of the Yang-
Mills theory is covered. One observes again that the field equations cannot be
significantly reduced then and a more elaborate geometric analysis is needed.
Before we proceed we would like to recall some facts concerning the notion of
symmetry in gauge theories (see [8] and references therein for details ).

Definition 2.1 Consider the principal bundle E == JZ3"^1 x G and an action
50(3) x E —»• E of the rotation group. Ifw is a connection 1-form on E then we
say thai u) is spherically symmetric iff s* a; = u} for every element s in S0(3),
where s* is the pull-back induced by the bundle automorphism s. : x »—^ s.x

In terms of the coordinates of the base space, this amounts to the fact that .after
the application of the symmetry generator, the connection can be brought to
the original form by means of a compensating gauge transformation.

Consider now the canonical action of S0(3) on the base space -R3"1"1. The
problem one encounters is that there is no canonical procedure to uniquely lift
the 50(3)-action on Minkowski space to the whole of E. It can proved that
all possible lifts of the action will be in correspondence with homomorphisms
A : 577(2) —> G . One says that this mapping determines the type of spherical
symmetry of the gauge field FA . Degenerate cases will correspond to configura-
tions which are either reducible to abelian (7(l)-gauge fields or to classical con-
figurations for which no compensating gauge transformation is required. This is
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the case when A is the trivial homomorphism. The non-abelian configurations
described here correspond to the case when A is an embedding of the rotation
group into the gauge group. This can only happen of course when G admits
an SU(2) subgroup. The symmetry definition can be unravelled to produce an
explicit Ansatz for the gauge potentials. The usual construction displays the
potentials in the so-called abelian gauge. Despite its structural advantadges, the
abelian gauge is unfortunately a singular gauge. Besides the obvious problem
at the origin, the potential has on this gauge string singularities . For the sake
of the global existence argument one needs a gauge in which the potentials have
good space-regularity . In particular, one must be assured that there exists a
gauge in which the string-singularities disappear. This gauge is called in the
monopole literature the canonical or the no-string gauge. The existence of the
canonical gauge is tied to the existence of su(2)- subalgebras. It can be written
down as follows:

N
Ao = ^/(<,r)p, (2.1)

/=!
N

A* = ^^l(i^)fpi
/=!

1 N

-h ^(autT^, p/]€^^ -h a^P}, p,]) - T,}e^ (2.2)

Here an and a^ are functions oft,r alone , T,- == A*(O(,)) with A : 577(2) —> G
a group homomorphism defining the spherical symmetry type of the Yang-Mills
potential and pf is defined in terms of su(2) representation matrices :

m=/j

^ = E ̂ (£)^
m=—Zj

The functions YJ^ are the standard spherical harmonic functions on the sphere
and y1^ are a basis for an su(2) representation of dimension 21 + 1 labeled by
the third eigenvalue. 2

2^.e. the matrices y^ are defined by:
1.

^3,^]=-*m^
2.

3

][̂ ,[L ]̂] =-/(/+ i)y^
fc=i
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There are some subtleties associated with this kind ofAnsatz. Observe that
the solution is everywhere regular except at the origin r == 0, the question of
regularity at the central line becoming therefore very important. It will actually
follow from our theorem that the solution will be bounded near r == 0.

Despite its good regularity properties the Ansatz 2.1-2.2 is not adequate for
the point of view of partial differential equations. One needs a characterization
of the invariance condition in terms of gauge-invariant differential operators. By
commuting these operators with the equations of motion one can set-up energy
estimates that will lead to the preservation of the Ansatz by the non-linear flow.
Define the operators:

Co^=Co^+[Ti^}

It can be proved that the symmetry condition is equivalent then to:

Co^F+[T^F]=0

The operators satisfy the commutation rules [Co/^^o/ J ~- ^jk^o^) = ^
when applied to the spherical symmetric configurations. Physically, Co^ mea-
sures the orbital angular momentum, while pi,.] measures the isospin contri-
bution to the total angular momentum.

Finally, we remark that the Yang-Mills equations contain quadratic terms.
In three space dimensions this kind of terms could lead to singularities, unless
a certain algebraic condition, called the null condition, is present. On this case
this condition is satisfied and is a consequence of the tensorial covariant nature
of the equations .

Our main result ([6]) (in colaboration with V. Georgiev ) consists of:

THEOREM Lei (E(0),A(0)) initial data for the Yang-Mills equations sat-
isfying the constraint equations and the spherically symmetric Ansatz S.l-
S.S. Assume that the conformal energy:

Eo= I (l+|.c|2)|F(0,.c)|2d.c (2.3)
Jp3

is finite EQ < 4-00 and the initial data satisfy the estimate:

|F(0, .)|i := sup^(sup,(l + l.cD^+ ÎCTO, x)\) < +00 (2.4)

It follows that the solution exists globally and satisfies the decay rate:

\F(t,.)\^^Co(l+t)-1 (2.5)

with Co depending only on the conformal energy EQ and the norms \F(0, ,)[i.

Remarks :
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1. We assume that the initial data satisfies the constraints Div^E == 0,
DivAH == 0 . These equations are preserved by the non-linear flow.

2. The global existence part of the theorem follows from [3]. One has only to
remark that the Yang-Mills flow preserves the canonical class of potentials
2.1-2.2 (see [8] for details ).

3. Configurations containing Coulomb charges cannot be acomodated in the
hyphoteses of this theorem.

The proof is long and will not be presented here. We shall give some
ideas though. The decay estimates are obtained by a careful decomposition
of Minkowski Space-Time into two different regions. The first part consists of
the exterior of a small cone of aperture e around the central line and includes the
wave zone , where we must exploit the null condition in the non-linearities. For
that matter we use the representation of the Yang-Mills equations in light-cone
coordinates ( see [8] ):

(D4+l)QA+f>AP-€ABf>BO• = 0 (2.6)

(Ds - ̂ OA- V>AP - CAB ^BO- = 0 (2.7)

(^4+ 2 )p+^•a = 0 (2.8)

(Da-^-^a = 0 (2.9)
r

(D4 -r ^(T-h ft x a = 0 (2.10)

(Dz - ̂ ^ y> x a = 0 (2.11)

In these equations {a^,aA,P,^} are the null components of the Yang-Mills
curvature tensor, Ds and D^ denote the derivatives along the null directions
and f) are angular derivatives. These can be estimated by using the spherically
symmetric Ansatz 2.1- 2.2. One arrives then at:

Proposition 2.1 There exists a constant C = cE^\l 4- cE^2^^)^2 4-
|-F(0)|i depending only on the initial data such that the following estimates for
the null components {a^,aA,p,<T} of the Yang-Mills curvature tensor F are
verified for all points (t,x) in the exterior region \x\ > 1, \x\ + 1 > et :

\p(t,x)\ S C\x\-2 (2.12)
|<r(<,.r)| <, C'H-2 (2.13)
K^)l ^ C'O+fo+la-oir^ol-372 (2.14)
\a(t,x)\ < GM-^l+lt-Mr^l+^U (2.15)
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where
[F(t)]oo = 5tips.(l + M)(l + r + M)|F(r, ;c)| (2.16)

measures the curvature tensor F in the interior region 1 -4- |a*| < ct.

These estimates are obtained by integration along the characteristic curves
and by using the energy bounds to obtain a Gronwall exponent lower than
one in the bootstrapping inequalities. Different components must be integrated
along different characteristic directions. The essential difficulty here is that the
component a must be integrated past the central line r == 0 where the field F
has not yet been estimated. This is expressed by the appearance of the interior
norm for F in the estimates of a . The interior norm is is controlled in turn by
looking to the fundamental solution of the wave operator. By straightforward
differentiation we get from equations 1.1-1.2 :

DA^=2[FJ,F^] (2.17)

where D^ == -D\DX denotes the wave operator relative to the Yang-Mills
potential A. Writing 2.17 explicitly in terms of the gauge potential , we find:

OF^ = -2^([A^F^])-h[a^/F^]
- [A^[A^Fap]]^2[F^F^] (2.18)

Let us consider now a fixed point p = (^o, a?o) with |.co| +1 < eto and to > 2.
Using the fundamental solution representation of the wave equation we mav
write (cf. [3] ):

WP) = F^N(p) - ̂  f rdrd^(-29^([A\ F^])

+ [9^F^]^[A\[A^F^]]+2[F^F^])

''= ^(P)-^(A+72+J3+J4) (2.19)

where F^N(p) is the solution of the wave equation DF^ = 0 with the same
initial data as Fap. and Ji,..., 1^ denote the terms containing the non-linearities.
The linear term is bound trivially. In order to estimate the non-linear terms
hjhjb, I^ in the right-hand side of equation 2.19 one resorts to using a local
light-cone reference system and the conformal energy measured in the cone Kp.
Here, a fundamental role is played by the so-called Cronstrom gauge adapted
to the point p, that is to say:

3

(t - <o)Ao(<, x) + ̂ (^ - xi)A,(t, x) = 0 (2.20)
.7=1

This allows us to integrate by parts in the cone Kp and stop the loss of deriva-
tives. The integrals 7i, 1^ and /a are estimated in this gauge. The key property
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is that on this gauge one can represent the potentials A in terms of the curvature
as:

A,(x) == / AdA^^P+AQc-p)))
Jo

= / AdArFs^o - Ar, XQ + Aw)
Jo

Q^A^x) = / A^A^^Fa^P+A^-p^^^p+A^-p))
Jo
ri

= / A^ArtFa^A^^o-Ar^o+Ara/)
Jo

for all x in the cone Kp (see [3]). To estimate the last term one appeals again
to the conformal energy and to the estimates in the exterior region. Here one
exploits the null condition which says that in the estimation of the commutator
terms one can always take one factor in the Z^-norm. This completes the
estimate of the curvature tensor near the central line which combined with
the estimates in the exterior region conclude the proof of the main theorem.

3 Final Remarks
We would like to finish the lecture by remarking that none of the results shown
here describe the asymptotic behavior of Yang-Mills charges. The fact that
one insists to use the conformal energy to get a strong a priori estimate is the
source of the problem. A proper understanding of the meaning of such charges
should lead to a way to subtract the infrared fields. Another problem consists
of the heavy use of the spherically symmetric Ansatz. One would like to extend
these results to the general case. Both problems are still open and represent
an obstacle to the solution of the more difficult problem of the interaction of
monopoles.

ae

References
[1] The Yang-Mills Equations on the Universal Cosmos , Y. Choquet-

Bruhat , S. Paneitz , I. Segal, J. Functional Analysis 53 ,p. 112
(1983)

[2] Lectures on Global Solutions of Hyperbolic Equations of Gauge The-
ories , Y. Choquet-Bruhat , Proceedings of Symposium at Simon
Bolivar University, Caracas , Ed. C. Aragone.

IV- 9



[3] The Global Existence of Yang-Mills-Higgs Fields in 4-dimensional
Minkowski Space , D. Eardley and V. Moncrief , Comm. Math.
Phys. 83 , p. 171 (1982)

[4] Quantization of Non-abelian Gauge Theories , V.N. Gribov, Nu-
clear Phys. B 139,1,(1978)

[5] Decay of Classical Yang-Mills Fields, R.T. Glassey, W.A. Strauss,
Commun. Math. Phys. 65,1, (1979)

[6] The Asymptotic Behavior of Yang-Mills Fields in the Large , V.
Georgiev and P.P. Schirmer, preprint, (1991).

[7] Vortices and Monopoles , Arthur Jaffe , Clifford Taubes, Birkhauser
Progress in Physics PPh2, Birkhauser 1980

[8] Global Existence for Spherically Symmetric Yang-Mills Fields on
3+1 Space-Time Dimensions, P.P. Schirmer, Doctoral dissertation,
New York University, 1990.

IV-10


