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An Introduction to symplectic Topology

CLAUDE VlTERBO

The aim of this talk is to present some results and questions in symplectic topology
obtained in the last years. We shall also sketch some applications to eigenvalues of
differential operators, mostly from our very partial understanding of [F].

Symplectic topology is the qualitative study of symplectic manifolds, their submani-
folds and the symplectic maps between them. The author wishes to thank the organizers
of ther meeting for inviting him to such a pleasant and instructive meeting.

1. Some basic facts of symplectic geometry.

A symplectic manifold is a pair (M.o;) where a; is a 2 form on At, which is:
-closed : duj = 0
-nondegenerate i.e. V.r c^(a*, y) = 0 =^ y = 0
This implies in particular that M is 2n - dimensional. Classical examples are:
(1) (R271,^) where 0:0 = ^^=i ^xt ^ ^Vi- Note that since UJQ is invariant by the

standard Z271 action this induces a symplectic structure on r2^.
(2) If M an n-dimensional manifold, (T"*'M, dp A dq) where dp A dq is the two form

given locally by dp A dq = $^i dp1 A dqi where (p1) are local coorinates dual to the
(g,). It is easy to check that our definition is indipendent of the choice of the local
coordinates.

It is a classical result that in contrast to Riemannian geometry there is no local
symplectic invariant. Indeed, we have:

DARBOUX'S THEOREM. Two symplectic manifolds of the same dimension are locally
symplectomorphic. Thus a symplectic manifold is locally equivalent to (R^.c^o)

The proof is essentially an application of Moser^s lemma, which allows one to extend
the above theorem as follows. First remember that a Lagrange submanifold is an n
dimensional submanifold of (M,o;) on which the symplectic form induces the zero form.
Then, we have:

WEINSTEIN'S THEOREM. If L is a Lagrange sumbanifold of (M,o;), then, there is a
symplectic diffeomorphism from a neighbourhood of the zero section in (T^L^dp A dq)
into (M,c^) which sends the zero section to L.

Finally we are also interested in symplectic diffeomorphisms, these are diffeomor-
phisms ij) satisfying i/?*a; = a?. We denote by Diffa(M,a;) the group of such diffeo-
morphisms. The group Diffa(M,a;) is quite large. Indeed if H ( t ^ x ) is a function
on R x M, and XH the time dependent vector field on M defined by the relation
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W(XH^) = dH(t,x)^ V^ € TsM (here (iff is the space derivative), then provided the
flow tj)t of this vector field is defined (this is always the case if M is compact), it lies in the
group Diff/t(M,o?) of hamiltonian diffeomorphisms. This is a subgroup of Diff,(M,a;).
On T*M the flow is written in local coordinates as the familiar

. QH . 9H
^-Qp p=--^

Note that in R2^ a symplectic diffeomorphisms coincides on an arbitrary large compact
set with the time one maps of a Hamiltonian flow

The group DifF^M.o/) is obviously a subgroup of BifF^M.o^), the group of volume
preserving difFeomorphisms. It has been a long standing question as to whether sym-
plectic maps were fundamentally different from volume preserving ones. Mathematically
this is a question about the closure of Diffy in Diffvol (the space of volume preserving
difFeomorphisms) for the C° topology. That the second space is closed follows from
the remark that volume preserving is equivalent to measure preserving, which is a C°
notion ( ^ is measure preserving is expressed by the fact that for any open set, U, we
have AW?7)) = p.(U\ and for each U the map ^ -^ P^WU)) is continuous for the C°
topology). A related question is what obstructions are there, other than the volume, to
symplectically embed an open set in an other one. We shall see in 2.A and 2.B how
this was answered by Gromov and Eliashberg.

2. Three theorems in symplectic topology.

A. Fixed point theorems
The first result in modem symplectic topology is the Conley-Zehnder fixed point

theorem:

THEOREM 2.1. Let ^t be a Hamiltonian Bow on (T^.o^o), then ̂  has at least 2n + 1
fixed points.

The. above theorem can be seen as a generalization of the Poincare -Birkhoff theorem
on difFeomorphisms of the annulus (it is an exercise for the reader to show that for n = 2
Poincare -BirkhofF's theorem follows from the above result). The Conley-Zehnder theo-
rem has been further generalized to other symplectic manifolds, mostly by M. Gromov
and A.Floer (cf. [G 1],[G 2], [Fl 1-4]). We see at once that such a theorem implies
that DifF^r2",^) is not dense for the C° topology in DifF^M.o/"), since there are
volume preserving maps of T2" without fixed points (this remark is due to M. Herman).
Other results assert the existence of periodic orbits for Hamiltonian systems. Let us
remind the reader that if H is time independent, then the Hamiltonian flow preserves
the levels of H. Thus it makes sense to look for periodic orbits on a given level set of
H. We have ([V 6]:

THEOREM 2.2. Let c e R, and c > 0. Suppose that H^([c - e,c + e}) is compact.
Then it contains at least one periodic orbit of the flow.
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B. Non embeddability and rigidity properties
In [G 1] Gromov proved that obstructions to symplectic embeddings are stronger

than the volume restrictions:

THEOREM 2.3. If B^r) is a ball of radius r, then there is no embedding ofB^r)
into B2^') x R2"-2 unless r < r '

Eliashberg proved that this implies:

THEOREM 2.4. Diffs is closed for the C° topology.

REMARK . This becomes false if we replace the C° topology, by the L9 topology. One
may approximate any volume preserving map by a symplectic map in the If topology.
Also, it is possible to embed symplectically B^r) into B2^') x R^-2 up to a set
of arbitrary small measure. The idea is to replace the ball by a cube with sides one,
that we cut in smaller squares plus ^some fat^ (see figure 1). Then each of the smaller
squares may be embedded symplectically into B2^') x R2^2, with r1 < r and it is
easy to extend the map defined on the small cubes to a symplectic map defined on the
large cube. A refinement of this ([H.]), following an idea by Katok , may be used to
approximate any volume preserving map in the Lf topology. For instance one may try
to approximate a volume preserving diffeomorphism of the large cube which restricts
to some permutation of the small cubes. Any volume preserving map may in fact be
approximated by such a map (provided the small cubes are small enough, and the "fat
part" has small measure). It is thus enough to realize a transposition of two cubes inside
a parallepiped. But this may be reduced to switching the two halves of a ball, which
can be realized by a unitary rotation, obviously symplectic.

Gromov proved also some "packing inequalities": If one tries to squeeze symplectically
two balls of radius r in a ball of radius J2, then we see from volume considerations that
we must have that 2rn < 72". Another theorem by Gromov tells us that this is not
enough:

THEOREM 2.5. If B^^R) contains two disjoint symplectically embeded balls of radius
ri and r^, then we must have r^ + rj < jR2. I f n = 2, and B^{R} contains d(d + 3)/2
embbedded baUs of radius r., then we have ̂ if^72 r] < d - R2.

C. Lagrange sub manifolds
We finally give some properties of Lagrange submanifolds. Lagrange submanifolds

have half the dimension of the ambient manifold . So it is not clear whether they should
still exhibit some "rigidity" properties. We shall see that it is indeed the case.

The first result we will consider is the folowing

THEOREM 2.6. Let j : T" -^ R2" be a Lagrange embedding. Then there is a loop
7 : S1 -^ T" such that:
(i) f^^(pdq)>0
(ii) {^(j),7) 6 [2,n + I], where fi(j) denotes the Maslov class of the embedding.

The number {^(J)^} is essentially a measure of how much the tangent space ofj^T")
winds as we move along 7.
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This theorem tells us about a different type of symplectic particularity: some algebraic
invariants of a Lagrange submanifold may not be arbitrarily prescribed. This has several
consequences.

For instance we saw before that a ball may not be squeezed in an arbitrarily small
cylinder. Now this is also true for a Lagrange torus, even though it is a very thin subset
of R2^ Indeed we have:

PROPOSITION 2.7. Let j : T" -^ R2" be a Lagrange embedding. Then there is a number
r(j) such if for some ̂  e Diff^R21^), we have ̂ '(T^) e ̂ (r) x R^-2, then r > r(j)

Note that any set of dimension at most n — 1 may be squeezed in an arbitrarily
small cylinder, thus n is really the critical dimension. We also point out that being
lagrangian plays a crucial role in the above argument (for instance a symplectic subset
of codimension 4 may be arbitrarily squezed).

3. Two methods of proof.

Gromov's original proofs are based on the study of pseudo holomorphic curves in
symplectic manifolds and rest on the following principles. First we define in a symplectic
manifold (M,C(;) an almost complex structure as an automorphism J of TM such that
J defines a complex structure on each fiber (i.e. J2 = —J) and a;(^,J^) = g{^xi)
where g is some Riemannian metric on M. Such a J always exists and the set of all J
is contractible. Then pseudo holomorphic curves are maps u from a Riemann surface
(S, Jo) to (M, J) commuting with the complex structures; that is Duo Jo == JoDu. This
is equivalent a Cauchy-Riemann equation, is thus elliptic, and not too difficult to study.
(In fact it is very close to the harmonic map equation studied by Sacks and Uhlenbeck,
and exhibits the same blowing-up phenomenon). We denote by Hx(U) the set of pseudo
holomorphic curves through x, which are closed in U. Then Gromov defines the width
of an open set as

w{U) =supjinfse?<,(LO / ^
JEHU

It is easy to check that the above definition is independent of the choice of x^ and that
it is a monotone symplectic invariant. Then the use of Leiong's isoperimetric inequality
(see [Le]) allows one to see that using the standard complex structure in R^ ^ C"
that w^^r) x R2"-2) > ^(B^r)) > Tir2. In fact a subtle existence theorem for
holomorphic curves shows that the above inequality is in fact an equality. Because the
width is monotone, (i.e. if U C V then w(U) < w(U)), this clearly implies theorem 2.3.

The other approach is through the concept of generating functions. It was motivated
by the approach of Ekeland and Hofer in [E -H I], [E -H 2], and by results in [Si I],
as well as earlier work by the author [V 1].

We shall shortly review this and refer for more details to [V 5]. We are first going
to sketch the proof of the Conley-Zehnder theorem. Let L be a Lagrange submanifold
in T*N and S : N x R^ -^ R be a C°° function. We shall say that S is a generating
function for L if L == {(a-, |j(:r, ̂ ) | ̂ (x, ^) = 0}. Let us remark that if S is a function
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on N x R^, such that the map (a:,^) ->,|j(a*,0 has 0 as a regular value , then the
submanifold L given by the above equations is an immersed Lagrange submanifold.
The simplest case is k = 0, and then L is the graph of dS. We are in fact interested
in a special class of generating functions, those which coincide with a nondegenerate
quadratic form at infinity. This is because we are looking for points in L D JV, (we
identify N to the zero section in T*N)^ and a critical point of S corresponds to such a
point. The first result we need is:

PROPOSITION. If(f>e Diffk(T*N) then (f>(N) has a generating function quadratic at
infinity (we shall write g.f.q.i. for short) .

Now a special feature of a g.f.q.i. is that, like functions on JV, they must have critical
points. In fact if ai,..., ai are closed forms of nonzero degree on JV, such that a\ A- • -Aa/
is not exact, then any g.f.q.i. on N xRk has at least I + 1 critical points. The largest
/ such that forms o?i, . . . , a\ with the above property exists is called the cup lenght of
JV, (abbreviated as c.L). For instance C.HT^ = n + 1, as we see by taking for a,,
the coordinate forms d6j = p](dff) {pj : T^ = (S'1)71 -^ S1 is the projection on the j-th
factor).

We thus have:

PROPOSITION. If(l>€ Diffk(T*N) then (/>{N) n N contains at least c. l.(JV) points.

We now show how this implies the Conley-Zehnder theorem. Let R^ be the symplec-
tic manifold (R2^ ~o;o). Then if (j> (E Diffh^T^ and ^ € Diffk^) is the lift of (/>
to R^ ((R^.o^o) is the universal cover of (T^.dp A dq)\ then 1̂  = {(x,<f>(x)) | x 6
R211, the graph of ^, is a Lagrange submanifold of R^ x R2'1 (compute the induced sym-
plectic form!). Now, R2^1 x R2" is symplectically isomorphic to T*An2n, where Ajpn is
the diagonal R2^ x R211, the isomorphism being given by

(<^0,P) - {x^^r,) = (^J ,̂̂ ,? -p^ - Q)

Now r^ is a Lagrange submanifold hamiltonianly isotopic to the zero section (the
isotopy is given by id x ^, and the points of F^ n AR2n correspond to fixed points
of ^, hence to fixed points of <f>. Moreover F^ is invariant by the Z271 symmetry of
R^ x R^ given by v * {z, Z) = {z + y, Z + v} (where z = (^,p), Z = (Q, P)), that is
v * (^ V^ ̂ r]} = {x + ̂  V + ̂  ̂  77). It is easy to see that the quotient space of T^Agpn
by this action is T^T^and F^ descends to a Lagrange submanifold f^ of r^T2^
hamiltonianly isotopic to the zero section. Again the points of f^ n T^ correspond to
fixed points of (/>. According to our proposition, there are at least 2n + 1 such points,
this proves the theorem of Conley and Zehnder.

Now, the same idea may be applied to construct symplectic invariants associated to
(f> an element in Diff^R2") the set of compact supported maps of Diff^R2"). We
see again that the graph G{(f>} of <f> is a Lagrange submanifold in R^ x R2"* = r^Ajpn.
Moreover, C?^) coincides with A outside a compact set. Thus we may simultaneously
compactify G{(f>) and the base of T*AR2n to get G{<f>) a Lagrange submanifold of T^S2".
As before, G((f>) has a g.f.q.i. which has certain critical points. In fact a g.f.q.i. S on
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5'271 has at least two critical levels, that we shall denote by c^(S) and c-(5'). It looks as
if these critical values really depend on 5, and not on L {L does not uniquely define S).
But one can exactly describe the set of all g.f.q.i. of L, and check that, provided c^{S)
and €-(5') are properly defined, they really only depend on L, that is here on </>. We
write them as c-|-(<^) and c^(<^). These invariants have several properties, summarized
by the following:

PROPOSITION.
(i) €(</>) <0<c+(<^)
(ii) C((f)) = C4-(<^) == 0 i;f and only if(f> = Id
(Hi) There exists x^., a fixed point of<f> such that c+(<^) = f. , \pdq Hdt, and
there is a point x- such that a similar statement holds for c-(<^).
(iv) C4.(^<^"~1) = c-(-(<^), and the same holds for c_.

We may now construct a symplectic invariant by setting:

DEFINITION. Let U be an open set in R2", we define c(U) as c(U}
<^i, where (/>t is the flow of a Hamiltonian supported inU}

sup{c4-(<^)|^

Now, because of (w) of the preceding proposition, c(U) is a symplectic invariant. By
its definition we see right away that it is monotone . Of course the difficult fact is to
prove that c(U) is bounded for U bounded and to compute it explicitly, for instance if U
is a ball or a cylinder. In fact Gromov^s theorem follows from the fact that (^(B^r)) =
c^r^xR271-2.

FIGURE 1
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4. Small eigenvalues of elliptic operators.

Even though, there is definitely a relationship between symplectic topology, we failed
to convince ourselves that any significantly new result in estimating eigenvalues of eliptic
operators follows from the preceding sections. For the moment symplectic topology and
the theory of elliptic operators are having an unsuccessful! love story. However we
thought it worthwile to summarize one of the connections between these two fields.

We will mainly consider the operator P(;r,D) : ̂  —^ (-A + V{x))r/}. We remind the
reader that the number, N(P^ A) of eigenvalues of this operator less than A is bounded
from above by a constant times V(P,A) = volume of the set{(a:,^) 6 T^R" | (P(^,Q <
A} i.e. we have JV(P,A) < CV(P,A) (C depends only on n). With reasonable assump-
tions, this inequality yields an accurate estimate as A goes to infinity. On the other hand
it is often very important to have an approximate value of N(P^ A) for small values of
A, and then, the value Y(P, A) is often grossly inaccurate (we refer the reader to the
example at the end of this section as well as to more examples in [Fl]).

A more accurate estimate is provided by FefFerman (cf.[F 1],[F-P]), it is based on
the uncertainty principle. This tells us that if u is a function localized in J3(a;o, p ) (i.e.
1^(^)1 < l/2||n||^2 for x outside B{xQ,p)}^ and its Fourier transform, u is localized in
B(^o? p\ then we have p x p > 27r.

Moreover the equality is realized by up (x) = e^^e ^ .
Now the L2 scalar product < P(a;, jD)n, u > may be written as

/ P(x^)u(x)u^)dxd^
JH2n

Since N(P^ A) is the maximal dimension of a subspace of ^(R") on which < P(a?, D)u, u ><,
\\\u\\2 and if we assume that P(a-,$) < A on B(a-o,^o,p) dlf B{xQ,p) x B(^o, 2£) we may
write, for u = u^ .

t P{x, Ou(a:)u(0 dxdd + I P(o-, 0^)u(0 dxd^ <
JB(zo,(o,p) Jll^-B^o^o,?)

^IH12+/ P(x^)u(x)u^)dxd^
4 JK2n^B(a;o,(o,p)

Provided P(a*,^) does not grow too fast outside the box, the second term will be
bounded by a constant times the first one, so we already see that if {(a?, ̂ ) | P(a-, ̂ ) < A}
contains a box B(a-o, ̂ o, p) with, then JV(P, A) > 1 i.e. the smallest eigenvalue of P(rr, D)
is greater or equal to C\ where C only depends on the growth of the symbol. In general
to show that ^V(P, A) > k it is not enough to find k disjoint testing boxes we must also
show that the functions Uq^p are linearly independent. We refer to [F] for a discussion of
this point. The symplectic transformation come into play in the following manner. Let
U be a unitary operator of L2. Then the eigenvalues of P(.r,D) and those of UPU~1

are obviously the same. The idea is to apply Egorov's theorem to get from a symplectic
map ^ (satisfying certain growth conditions) a unitary pseudodifferential operator U^
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such that the symbol of U^PU^ 1 is equal to P(x, Q = P{^{x, Q) + lower order terms.
Then one may apply the above argument that is, if the set {(rr,^) | P{x^) <, X] ==
W(^01-P(^0 < A}) contains a box B(.TO,$O^), or else if {(a-,0 | P(.r,0 < A}
contains ^ l(B(a•o, ̂ o, p)), then N(P, A) > 1. However, the set of admissible ^ is much
smaller than Diff^R2"), because of all the growth conditions we had to impose. So the
first eigenvalue of P may be estimated by the smallest A such that {(a-, ̂ ) | P{x, ̂  < A}
contains the symplectic image of a box (note that any two boxes, B(a-o^o^), are
symplectomorphic), but this is still not too good. Taking into account the estimates
that have to be satisfied by the symplectomorphisms usually gives a much better result.

EXAMPLE, (from [F 1]) Let P{x, D)u = -(^+Exi{x))u, where I = {(x,,..., ̂ ) | \x,\ ̂
6i} and \i is the characteristic function of I. We assume 6^ < • • • < 6n. The volume
of the set {(a-, Q| ̂  - Exi(x) < 0} is Cn6i • • •^ x E^2 (Cn is the volume of the
unit ball in R^. It is contained in a cylinder of sectional area E1/2 6^ thus it can-
not contain a symplectic box unless JS1/2 ̂  > 27T, that is E > ̂ . On the other

hand it contains a symplectic box as soon as E > ̂ . Thus, if this relation is satis-

fied ~(A + E\i{x}) should have negative eigenvalues. In fact according to [F], one may
prove that a necessary and sufficient condition for this operator to have a negative eigen-
value is that E > C{8^8^6^ with ^&/6^ < C^S^S^) < ̂ . Indeed we have

(Cn^i...^72) ^^(^ 5^2 5^3) < ^r, the v volume estimate" is very bad, the v symplectic
estimate" is better but still far from the exact value.
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