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Structure of S-matrices for three body Schroodinger operators

HIROSHI ISOZAKI

1. Results
We consider a collision process of quantum mechanical three particles
moving in R3. Suppose in the initial state two of them form a bound
state and in the final state all of the three particles move freely. The
aim of this paper is to study some properties of the scattering operator
associated with this process. Consider three particles wth mass m^,
position x1. We choose a pair (^\j) arbitrarily and denote it by a. Let

_L - A. JL -L - _L i
m^ mi r r i j t > n^ m^ rrii + mj ?

^ = v^^ - x^, x^ = v%;(̂  - !̂ L±^ )̂.
772, 4- rnj

Let X = {O1^2,^3); ̂ =1 mt t r^ = 0}- Then in £2(x) our Schrodinger
operator is given by

H = HQ + ̂  y,(^), HQ = -A,. - A,,.
a

We impose the following assumption on the potential Va\

V{x) is a real-valued smooth function on R3,

and Ic^y^)! < C^(l + H)-^ p > 0, m = 0,1, 2 , . . .

We introduce wave operators. Let p > 1 and

W^^s-lim^^e^e^0, W^ = s-lim^^e^e-1^ J,,

where

H, = Ho + V^ (Ja/Xa-",^) = ^(^^(a-a),

y?" being an eigenfunction of h" = —A,;a + ^0(2'°) with eigenvalue
-B0 < 0. Let

5o. = wr^
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be the scattering operator. To intoduce the S-matrix, it is necessary to
consider the Fourier transform. For / (E L^R6), we set

W)(M) = (27^)-32-1/2A / e-^^f^dx.
JiL6

Then FQ is a unitary operator from L^R6) to ^((O, oo); L2^5)). We
also define for / e ^(R3),

(^Oa/XA^^Tr)-3/^-1/^-^0)1/4 / e-iv^1^w•xf{x}dx.
JR3

Then Foa is a unitary operator from L^R3) to ^((E", oo); ̂ (S12)).
Let

•?0a = FoSoaF^.

Then for any A > 0, there exists a bounded operator

.So^eB^2^2);^5))
such that

(5oa/)(A^)=(^oa(A)/(A,.))(0)

for all A > 0,0 G S5 and / € ^((E^, oo); L\S2)). This is calld the S-
matrix. One does not know so much about its properties . The general
result known so far is that of Amrein-Pearson-Sinha [A-P-S] asserting
that 5'oa(A) ls a Hilbert-Schmidt operator for a.e.X > 0. We study more
detailed propeties of this operator. Let

X f t = { x e X ^ x ^ =0}

and define
M=St) \ (J^X^ N = 55 n (U^).

THEOREM 1. ( 1 ) Suppose p > 3. Then 5'oa(A) has a continuous kernel
outside N :

5oa(A;^) 6 €((0,00) x M x 52).

f2) To study the behavior of Soa^O^) near N, we need a stronger
decay assumption on the potential. Suppose p > 5 + 1/2. Let /? be any
pair and decompose 6 (z S5 as 0 = {0^ 0p). Then as

n/3
5oa(A; 0^) ̂  ̂ ^-^^^(A; - 0^^) + A^o(A; -i7.^^).

Fl I 1 7 ' I
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where

^
A^,-i(A;.^-,^,a;)

finite Q= E ̂ ?(Ai^^)></^|^-^^^
+C^0p^)x [ V^^^x^dx^

JR3

u^' bein -̂ the eigenfunction with 0 eigenvalue for h13, and ̂  the 0-
resonance. A^_i == 0, if 0 is neither an eigenvalue nor the resonance for
h^. In this case, 5oa(A;(?,o;) is continuous at ̂  = 0.

We are interested in the coefficients ( 7 - ( A ; ^ ^ , ^ ) and C/?2(A;^,^).

THEOREM 2. C^(A; 6^,0;) and C^2(A; Q^u) are the scattering am-
plitudes for two cluster scattering.

More precisely, C^{\\6^u) and C^{\\6^u} are the scattering am-
plitudes for 2-cluster scattering in which, after the collision, the pair f3
becomes the bound state with zero energy or the zero-resonance, respec-
tively.

Our next aim is to relate the above S-matrix to the asymptotic be-
havior at infinity of the generalized eigenfunction for H given by

(1.1) y(x,\^)=ei^1^^yQ(xQ)+v,
v = - R(\ + i0)f, R{z) = (H - z)-1,

f=Y^ v^}^^01)^^'^^".
f^a

The first term of the right-hand-side of (1.1) corresponds to the incident
wave and the next term to the scattered wave. As in the 2-body case,
the S-matrix is obtained from the asymptotic behavior of v.

THEOREM 3. Suppose that p > 3. Then we have

s - /im.-.oor5/^-1^^.) = Ci(A)5oa(A; -,a») in L^(M).
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It is not easy to replace M by 5'5 in the above thoerem, since in a
neighborhood of N the behavior of v is rather complicated. We introduce
a pseudo-differential operator P with symbol p[x^ ̂ ) such that

p(^)= x^w^p^^ . ̂ LY
F/?l 1^1

where ̂ {x) = 1 if \x^\/\x\ < 61, ̂ {x) = 0 if \x^\l\x\ > 2e^ ^{t) = 1 if
\t - \\ < 62, ^(t) = 0 if \t - \\ > 262, p+{t) = 1 if t > 1 - 63, />+(<) = 0
it t < 1 — 263, 6i, 62, 63, being small positive constants such that 61/62
is sufficiently small. We also take p(t) e C°°(R1) such that p(t} = 1
if 1 < * < 2, p(t} = 0 if ( < 1 or t > 3. The following theorem is an
analogy of Theorem 3 in a generalized sense.

THEOREM 4. Suppose that p > 5 + 1/2. Then we have

s - U m R ^ - ! e-^^e^xp^^Pv^dx
ri J^6 H

= C2(A)Soa(^;^), X = X / \ X \

in ̂ (A^), where N^ is a small neighborhood of N HX^ in S5.

2. Resolvent estimates
The basic estimate needed to prove the above theorems is that of

Skibsted [S] established recently. Let P be a pseudo-differential operator
with symbol p(.r, ^) having the following properties:

(2.1) |C^P(^0| < Cmn < X >-rn,

there exists a cone F C X — U^X^ such that
supp^p(x^) c r,
there exists a constant 0 < 6 < 1 such that

p(.r,0 = 0 if x^> 1-6.

Then we have ([S])

(2.2) < x >3 PR(\ + z0) < x ̂ -^ B^X); L2{X))

if 5 > -1/2^ > 1.
To prove Theorem 1, We use the method of [I-K]. Namely, we localize

the S-matrix in the phase space and apply (2.2). The singularities of
Soa{\^e^) arise from the low-energy asymptotics of the resolvents of
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2-body subsystems studied by Jensen-Kato [J-K].
To prove Theorems 3 and 4, we use the idea of the spectral representa-
tion of 2-body Schrodinger operators developed by Jager, Ikebe, Saito
and Isozaki. But we further need the following estimate.
Let ^(x) = 1 if |;r°|/H < e, ^(.r) = 0 if \xa\|\x\ > 2e. Let
•Pa(a'ai-Daca) ^e ^le pseudo-difFerential operator with symbol p(xa^a)
such that

(2.3) |^%p(^,^)| < Cmn < X, >-"1,

P{x^^=0,if-^-^>fz. ( -1<^_<1) ,
F<»1 Isal

P(^a)=0, ^|M-\/A|>ei,(ei «1).

Then we have

(2.4) < x >9 Xa{x)P^(x^ D^ )R(\ + iO) < x ^-^
eB^2^);^2^))

i f s > -1/2, t > 1 .

3. Micro-local positivities and resolvent estimates
We explain the idea of the proof of (2.4). To make the arguments clear
we first explain it in the case of the 2-body Scorodinger operators. We
introduce the following class of symbols.

DBF. 3.1 p^x.^eS^^^

I^P^OI^C'^^"1-1"1 and

p ( x ^ ) = 0 i f x - ( > l - e ( 0 < e < 1).

DBF. 3.2. p(x, 065-^4=^

|^p(^oi<c'^<a->-^-i°i.
p(x, ̂ ) 6 ̂ i'" is said to be a symbol of canonical type if

^ 0 = (Ml^l - ̂  • O2"1^^ • ^MOx(a-)
where p{t) ^ 0, p(t) = 1 if t < 1 - 2e, p{t) = 0 if t > 1 - e, /(() ^ 0,
y € ^(R" - {0}), y > 0, x(a-) > 0, x(x) = 1 if H > 2 ^(.r) = 0 if
|a:| < 1. A simple computation shows the following lemma.
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LEMMA 3.3. Let m > -1/2 and p{x^} € S2"1 be a symbol of
canonical type. Let a(a:,^) = (|a'||^| — x • ^)p(x^). Then there exists a
constant Co > 0 such that

-{\^,a}>Cop+q,

where { 5 } denotes the poisson bracket and q is compactly supported
in x.

Let H = —A + V be the Schrodinger operator on R^ where V is a
real function satisfying

Q^V = 0(< x ^l^-^), 0 < p < 1.

Let p and a be as in Lemma 3.3 and set A = a^a-, -D^), P = p^.z^.Da;).
Then by Lemma 3.3, we easily have

LEMMA 3.4. CoP < -i[H,A] + Pi + PN, where Pi e ^2m-^ p^ e
^-A^ ĵ - ]^Q^g a. sufficiently large constant.

Let ZA = (i? — z)~1 f-) Imz > 0. Then by Lemma 3.4 we have

(3.1) Co(Pu,u) < -z([^A]u,u) + (Piz^u) + (PN )̂.

The first term of the right-hand side is calculated as

(3.2) - i([H, A}u, u) = -2Imz(Au, u) - i{{Au, f) - (/, Au)}.

By Garding^s inequality the first term of the right-hand side of (3.2) is
dominated by

(3.3) (Piu,u)+(P^,u), Pi €52m- l, PNG^-^.

We also have

(3.4) |(Au, /)| < IdiAull2.̂ .,., + imî ,)

^(Piu,u)+c||/||2^^, Pi e^2"1-2".

These estimates together with (3.1) show that

(3.5) (Pu,u) 5, (Piu,u)+C'||/||L^, Pi € ̂ -^
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Here we note that the symbol of Pi € S2^ p is dominated from above
by the symbol of canonical type G S2m~p. So, one can use (3.5) with
2m replaced by 2m — p to estimate (Piu,u) . We repeat this procedure
and finally obtain

(Pu,u)^c'||/||Ln+,,
which implies that

\\Pu\\m < C\\f\\m^^

ifPG^, m> -1/2.
Now we turn to the three body problem and give the idea to prove

the estimate (2.4). We introduce 5'!", P, A in the same way as in the
2-body case with x, ^ replaced by XQ^ ^a- L^t u = R(z)f, z = A + ie.
Since

-i[H,XaAxa] = -ixa[H,A}xa-i[H,Xa]Axa-iXoA[H,^},

we have

Co(XaPXa^ U) < -i{Xct[H, A\XaU, u) + {XaPlXaU, u) + • • •

with Pi G S ' ^ n ~ p . Let <^(-) be a smooth cut off function near A. Then

[H, Xa}AxaR(^f = [H, Xa]AxaV{Ho)R(z)f + lower order term.

Now we note that on the support of the symbol of [H^Xa\Axoc^{Ho)^
x ' ^ < ^JL-\X\\^ — 1 < {i- < 1, which follows from the fact that x ^ ' ^ a <
(1 — €)|rCcJ[^cJ . So, one can apply the estimate (2.2) to controle this
term. The rest of the proof is the same as in the 2-body case.
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