Journées ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Ari Laptev
 Yu Safarov

Error estimate in the generalized Szegö theorem

Journées Équations aux dérivées partielles (1991), p. 1-7
<http://www.numdam.org/item?id=JEDP_1991 \qquad A15_0>
© Journées Équations aux dérivées partielles, 1991, tous droits réservés.
L'accès aux archives de la revue «Journées Équations aux dérivées partielles» (http://www. math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Error estimate in the generalized Szegö theorem

A. Laptev, Yu. Safarov

1. Let A be a positive selfadjoint elliptic pseudodifferential operator of order 1 on a smooth compact manifold M without boundary, $\operatorname{dim} M=n \geqslant 2$. The spectrum of the operator A consists of infinite number of eigenvalues $\lambda_{k} \rightarrow+\infty, k \rightarrow \infty$. By $N(\lambda)$ we denote a counting function of the spectrum of operator A,

$$
N(\lambda)=\#\left\{k: \lambda_{k}<\lambda\right\}
$$

(we take into account the multiplicity of the eigenvalues). Let Π_{λ} be the spectral projectors of operator A corresponding to the intervals $(0, \lambda)$. We consider a family of operators

$$
B_{\lambda}=\Pi_{\lambda} B \Pi_{\lambda},
$$

where B is a selfadjoint pseudodifferential operator of order zero. The rank of the operator B_{λ} is finite, so it has a finite number of eigenvalues $\mu_{\mathrm{j}}(\lambda)$ lying in the interval

$$
K=[-\|B\|,\|B\|] \subset \mathbb{R}^{1}
$$

The number of these eigenvalues is infinitely increasing when $\lambda \rightarrow+\infty$.
Let ρ_{λ} be a measure on K which is equal to the sum of the Dirac measures at the points $\mu_{j}(\lambda)$, i.e.

$$
\rho_{\lambda}(f)=\sum_{j} f\left(\mu_{j}(\lambda)\right)=\operatorname{Trf}\left(\Pi_{\lambda} B \Pi_{\lambda}\right)
$$

for any function $f \in C(K)$. We shall study the asymptotic behaviour of ρ_{λ} when $\lambda \rightarrow+\infty$.

It is well known [1, theorem 29.1.7] that the measures $\lambda^{-n} \rho_{\lambda}$ converge weakly to the measure ρ_{0} which is defined by the following formula

$$
\rho_{0}(f)=(2 \pi)^{-n} \int_{a_{0}(x, \xi)<1} f\left(b_{0}(x, \xi)\right) d x d \xi \text {, }
$$

where $f \in C(K)$ and a_{0}, b_{0} are the principal symbols of the operators A and B. By other words, for any $\mathrm{f} \in \mathrm{C}(\mathrm{K})$

$$
\begin{equation*}
\rho_{\lambda}(f)=\rho_{0}(f) \lambda^{n}+o\left(\lambda^{n}\right) \tag{1}
\end{equation*}
$$

This result is considered as a generalization of the classical Szego theorem [2] on the contraction of a multiplication operator to the space of trigonometrical polynomials. It dues to Guillemin [3].

We prove that for sufficiently smooth function f the remainder in (1) is $0\left(\lambda^{\mathrm{n}-1}\right)$. Our main results are the following theorems.

Theorem. There exist an integer r and a positive constant C such that for any function $f \in C^{5}(K)$ the following inequality holds

$$
\begin{equation*}
\left|\rho_{\lambda}(f)-\rho_{0}(f) \lambda^{n}\right| \leqslant C\left(\lambda^{n-1}+1\right)\|f\|_{C^{r}}(K) . \tag{2}
\end{equation*}
$$

Theorem 2. If B is a multiplication by sufficiently smooth function $b_{0}(x)$ then the estimate (2) is valid for $r=2$.
2. Let $\varphi_{j}(x)$ be eigenfunctions of the operator A corresponding to the eigenvalues λ_{j}, and $\left(\varphi_{j}, \varphi_{k}\right)=\delta_{j}^{k}$. The proof of the generalized Szegö theorem is based on the following well known result (see [1, §29.1]).

Theorem 3. For any pseudodifferential operator H of order zero

$$
\begin{aligned}
& \sum_{\lambda_{j}<\lambda} \overline{\varphi_{j}(x)} H \varphi_{j}(x)= \\
& =(2 \pi)^{-n} \int_{a_{0}(x, \xi)<1} h_{0}(x, \xi) d \xi \lambda^{n}+0\left(\lambda^{n-1}\right)
\end{aligned}
$$

uniformly with respect to $x \in M$, where h_{0} is the principal symbol of the operator H.

The theorem 3 (with $\mathrm{H}=\mathrm{I}$) immediately implies that for any bounded function $h(x)$ and corresponding multiplication operator $\{\mathrm{h}\}$

$$
\begin{aligned}
& \left|\operatorname{Tr} \Pi_{\lambda}\{h\} \Pi_{\lambda}-(2 \pi)^{-n} \int_{a_{0}(x, \xi)<1} h(x) d x d \xi \lambda^{n}\right| \leqslant \\
& \quad \leqslant C \lambda^{n-1} \sup _{x}|\mathrm{~h}(x)| .
\end{aligned}
$$

where $\lambda \geqslant 1$, and the constant C does not depend on h. In particular,

$$
N(\lambda)=(2 \pi)^{-n} \int_{a<1} d x d \xi \lambda^{n}+0\left(\lambda^{n-1}\right)
$$

If f is a smooth function then $f(B)$ is a pseudodifferential operator and its principal symbol is $f\left(b_{0}\right)$. Therefore according to the theorem 3 , for $f \in C^{\infty}(K)$ we have
$\operatorname{Tr} \Pi_{\lambda} f(B) \Pi_{\lambda}=\rho_{0}(f) \lambda^{n}+0\left(\lambda^{n-1}\right)$,
where remainder somehow depends on f. It is easy to see from the proof of the theorem 3 [1, §29.1] that this remainder term is estimated for $\lambda \geqslant 1$ by
$C \lambda^{n-1}\|f\|_{C}{ }^{r}(K)$
where the constant C and the integer r are independent of f.

Remark 4. We suppose that this estimate holds for $r=2$. If it is true then the theorem 1 is valid for $\mathrm{r}=2$ as well.
3. Now we shall prove the following abstract theorem.

Theorem 5. Let A be a positive selfadjoint operator and B be a bounded selfadjoint operator in a Hilbert space. Suppose that spectrum of the operator A consists of eigenvalues, and let Π_{λ} be the spectral projectors corresponding to the
intervals $([0, \lambda]), N(\lambda)$ be the counting eigenvalues function, and

$$
N_{\varepsilon}(\lambda)=\sup _{\mu \leqslant \lambda}[N(\mu)-N(\mu-\varepsilon)] .
$$

Assume that the comutator $\widetilde{B}=[A, B]$ is a bounded operator. Then for any $\varepsilon>0$ and for any function $f \in C^{2}(K)$ the following inequality holds
$\left|\operatorname{Tr} \Pi_{\lambda} f(B) \Pi_{\lambda}-\operatorname{Tr} f\left(\Pi_{\lambda} B \Pi_{\lambda}\right)\right|$
$\leqslant\left(2\|B\|^{2}+C_{\varepsilon}\|\widetilde{B}\|^{2}\right) N_{\varepsilon}(\lambda) \max _{K}|f "|$,
where $K=[-\|B\|,\|B\|]$, and the constant C_{ε} depends on ε only.
On account of (3) the theorems 1 and 2 follow from the results mentioned in the section 2.

We deduce (3) from the following well known Berezin's inequality.

Theorem 6. Let B be a bounded self adjoint operator in a Hilbert space, $K=[-\|B\|,\|B\|]$, and Π be a selfadjoint projector, rank $\Pi<\infty$. Then for any convex function $\psi \in C(K)$
$\operatorname{Tr} \Pi \psi(B) \Pi \geqslant \operatorname{Tr} \psi(\Pi B \Pi)$.

Corollary 7. Let $\varphi \in C^{2}(\mathrm{~K})$ is a strictly convex function. Then for any $\mathrm{f} \in \mathrm{C}^{2}(\mathrm{~K})$
$|\operatorname{Tr} \Pi f(B) \Pi-\operatorname{Tr} f(\Pi B \Pi)| \leqslant$
$\leqslant\left(\max \left|\frac{\mathrm{f}^{\prime \prime}}{\varphi^{\prime \prime}}\right|\right)(\operatorname{Tr} \Pi \varphi(\mathrm{B}) \Pi-\operatorname{Tr} \varphi(\Pi В \Pi) \mid$.
In particular (if $\varphi(\mathrm{t})=\mathrm{t}^{\mathbf{2}}$),
$|\operatorname{Tr} \Pi f(B) \Pi-\operatorname{Tr} f(\Pi B \Pi)| \leqslant \frac{1}{2}(\underset{k}{\max }|f \||)\|(I-\Pi) B \Pi\|_{2}^{2}$,
where $\|.\|_{2}$ is the Hilbert-Schmidt norm.

Proof. Applying the Berezin's inequality to the convex functions

$$
\Psi_{ \pm}=\left(\max _{\mathrm{K}}\left|\frac{\mathrm{f}^{\prime \prime}}{\varphi^{\prime \prime}}\right|\right) \varphi \pm \mathrm{f}
$$

we obtain exactly (4).
In view of (5), to prove the theorem 5 it is sufficient to estimate $\left\|\left(I-\Pi_{\lambda}\right) B \Pi_{\lambda}\right\|_{2}^{2}$ by $\left(2\|B\|^{2}+C_{\varepsilon}\|\widetilde{B}\|^{2}\right) N_{\varepsilon}(\lambda)$. Note that $\left\|\left(I-\Pi_{\lambda}\right) B \Pi_{\lambda}\right\|_{2}^{2} \leqslant 2\left(\left\|\left(I-\Pi_{\lambda}\right) B \Pi_{\lambda-\varepsilon}\right\|_{2}^{2}+\left\|\left(I-\Pi_{\lambda}\right) B\left(\Pi_{\lambda}-\Pi_{\lambda-\varepsilon}\right)\right\|_{2}^{2}\right)$, and $\|\left(I-\Pi_{\lambda}, B\left(\Pi_{\lambda}-\Pi_{\lambda-\varepsilon}\right)\left\|_{2}^{2} \leqslant\right\| B \|^{2} N_{\varepsilon}(\lambda)\right.$. So it remains to estimate $\left\|\left(I-\Pi_{\lambda}\right) B \Pi_{\lambda-\varepsilon}\right\|_{2}^{2}$ only . According to the definition

$$
\left\|\left(I-\Pi_{\lambda}\right) B \Pi_{\lambda-\varepsilon}\right\|_{2}^{2}=\sum_{\lambda_{k} \geqslant \lambda} \sum_{\lambda_{j}<\lambda-\varepsilon}\left|\left(B \varphi_{j}, \varphi_{k}\right)\right|^{2}
$$

where φ_{j} are the eigenfunctions of the operator corresponding to the eigenvalues λ_{j}. Since $\left(\mathrm{B} \varphi_{j}, \varphi_{\mathbf{k}}\right)=\left(\lambda_{\mathbf{k}}-\lambda_{j}\right)^{-1}\left(\tilde{\mathrm{~B}} \varphi_{j}, \varphi_{\mathbf{k}}\right)$, we obtain that

$$
\left\|\left(I-\Pi_{\lambda}\right) B \Pi_{\lambda-\varepsilon}\right\|_{2}^{2}=\sum_{\lambda_{k} \geqslant \lambda} \sum_{\lambda_{j}<\lambda-\varepsilon}\left|\left(B \varphi_{j}, \varphi_{k}\right)\right|^{2},
$$

$$
\leqslant \sum_{k} \sum_{\lambda_{j}<\lambda-\varepsilon}\left(\lambda-\lambda_{j}\right)^{-2}\left|\left(\tilde{B}_{\varphi_{j}, \varphi_{\mathbf{k}}}\right)\right|^{2} \leqslant
$$

$$
\leqslant\|\widetilde{B}\|^{2} \sum_{\lambda_{j}<\lambda-\varepsilon}\left(\lambda-\lambda_{j}\right)^{-2}=\|B\|^{2} \int_{0}^{\lambda-\varepsilon}(\lambda-\mu)^{-2} d N(\mu)
$$

$$
\leqslant\left\|\tilde{B}^{2}\right\|^{2} N_{\varepsilon / 2}(\lambda) \sum_{k=0}^{k *}(\lambda-k \varepsilon / 2)^{-2}
$$

where $(\lambda-\varepsilon / 2) \geqslant k^{*} \varepsilon / 2>(\lambda-\varepsilon)$. The sum in the right hand side is estimated by some constant C_{ε} not depending on λ. Therefore

$$
\left\|\left(I-\Pi_{\lambda}\right) B \Pi_{\lambda-\varepsilon}\right\|_{2}^{2} \leqslant C_{\varepsilon}\|B\|^{2} N_{\varepsilon / 2}(\lambda)
$$

It completes the proof of the theorem 5 and of the theorems 1 and 2.
Remark 8. Under some additional assumptions one can obtain a two-term asymptotic formula for $\operatorname{Tr} \Pi_{\lambda} f(B) \Pi_{\lambda}$. However, even under these assumptions the difference
$\operatorname{Tr} \Pi_{\lambda} f(B) \Pi_{\lambda}-\operatorname{Trf}\left(\Pi_{\lambda} B \Pi_{\lambda}\right)$
can really have the order $0\left(\lambda^{n-1}\right)$. So the second term in (1) (if it exists) can be different one.

Remark 9. The theorem 5 can be applied in various different problems as well. For example, it allows to improve some results from [4].

References

1. L. Hörmander, "The Analysis of Linear Partial Differential Operators IV" , Springer-Verlag, 1985.
2. G. Szegö , Beiträge zur Theorie der Toeplizschen Formen, Math. Z. 6, 167-202 (1920).
3. V. Guillemin, Some Classical theorems in spectral theory revisited, Seminar on sing. of sol. of diff. eq., Princeton University . Press, Princeton, N.J. , 219-259 (1979).
4. D. Robert, Remarks on a paper of S.Zelditch :
"Szegö limit theorems in quantum mechanics", J. Funct.Anal. 53, 304-308 (1983).
