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Evolution Of Semilinear Conormal Waves

ANTONIO SA BARRETO

1 Introduction
Let ft C R3 be an open subset and let P be a second order strictly hy-

perbolic differential operator in ft with smooth coefficients. Let t 6 C'°°(ft)
be a time function for P and define

ft^ftr^AOO}. (1.1)

Assume that ft is a domain of dependence offt~. Let / be a smooth function
of its arguments and suppose u^Du 6 £^(ft) satisfies

Pu = f(z, u,Du), z eft . (1.2)

The general question on propagation of singularities of solutions of (1.1)
is how do singularities of u in ft" influence singularities of u in ft. We shall
concentrate in the study of some geometric singularities called conormal and
the first example is conormality to a smooth hypersurface. Thus let S C ft
be a smooth hypersurface which is characteristic for P, let Vs be the Lie
algebra of smooth vector fields tangent to S and denote

J^(ft, Vs) = {u € £L(») ^ ̂  C £L(»), 3 < k}. (1.3)

Observe that if u G IooL^(fl^Vs)^ then u is smooth away from S. In fact
one can easily show that in this case the wavefront set of u is contained in
the conormal bundle to S.
Theorem 1.1 (Bony, [4]) Let u,Du e HfocW^ s > Ih ^^fv {l'2)f V
u,Du £ 4£^(ft~,V5), then u,Du e W^Vs).

This result shows that as long as S is smooth u remains conormal to it, but
in general characteristic hypersurfaces of P can have rather complicated
singulariries. In this talk we shall describe the results of [16] and [17] con-
cerning the propagation of conormal singularities for solutions of (1.2) along
a hypersurface E with either a cusp or a swallowtail singularity. These are
in some sense, see [2], the only cases where the singularities are stable under
small pertubations. These problems have been also studied by M. Beals [3]
and R. Melrose [9], in the case of the cusp and G. Lebeau, [6], [7] and J-M.
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Delort [5] in the case of the swallowtail with the hypotheses that P has real
analytic coefficients and the regular part of E is real analytic.

Before stating our results we have to introduce some notation. Let W
be a Lie algebra and C°° module of smooth vector fields on a manifold with
corners X and let /i be a smooth measure on X. The space of iteratively
regular distributions with respect to W is then defined as

J,^(X,W) = {u C L^(X)^u £ £^(X), j < k}. (1.4)

2 The Cusp
Let G be a hypersurface with a cusp singularity at a line Z, i.e there are

local coordinates near q 6 L such that

G = {(x,y,z) e n : y3 = x2}, L = {(x,y,z) : x = y = 0}. (2.1)

Assume that the smooth part of G is characteristic for P. Let VG be Lie
algebra of smooth vector fields tangent to G. It is easy to show that the Lie
algebra VG is characteristic complete, i.e

[P,VG] c ̂ °(n) • P + ̂ (n). VG + ̂ (O). (2.2)
Where ^(0) denotes the space of properly supported pseudodifferential
operators of order j in Sl. Then by commutator methods, see [4], one obtains
Theorem 2.1 Let u,Du € Hf^(St), s > j, satisfy equation (1.2). If
u,Du € IkL^Sl-.Vc), then u,Du e IkL^^Vc).

Next we recall the spaces of marked Lagrangian distributions introduced
by R. Melrose in [9]. Let AG = c\os[N*(G \ 2/)], AG is a smooth conic
Lagrangian submanifold of T*R3. Let KL = N * L and

.Mi(G) = {A € ^(H) : a = ai(A) = 0 at AG, (2.3)
J?a is tangent to AGnAiJ.

.Mi(£) = {A € ^(H) : a == ai(A) = 0 at AL, (2.4)
^Ta is tangent to AcriAL}.

Let
J^W = J,^(n,Mi(G)) + J^L(^A<i(^)). (2.5)

In [9] Melrose proves that

J^hL^VG) (2.6)
and
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Theorem 2.2 (Melrose, [9]) Letu.Du e H^J^t), s > j, ̂ is/y equation
(1.2). J/iA,2^ € ̂ (n-), <Aen n,Dn € ̂ (H).

Finally we introduce a third space of distributions associated to the cusp.
Observe that in local coordinates where (2.1) holds one finds that G is
invariant under the R'̂  action

^(^y)=(^A). (2.7)

This leads to the definition quasi-homogeneous polar coordinates, thus con-
sider the non-round circle

^-2 = {(^1^2) 6 R2 : c^ + o;f = 1} (2.8)

and the manifold with boundary

^3-2=5^2X[0,oo)xR. (2.9)

Then define the blow-down map

/?3-2 : ̂ 3-2 —^ R3, /?3-2(^,r,<?) = (r^i.r2^^). (2.10)

Let WG be the Lie algebra of smooth vector fields in Xa-2 which are
tangent to 8X3^ and to G^ = dos/3^[G \ L]. Let /A be the pull back of
the Lebesgue measure by the map /?3-2. Then one defines

Jf(ft) == {u € £L("): K^u € ^Z^(X3-2,WG)}. (2.11)

One can easily show that the space J^(Sl) does not depend on the choice of
coordinates such that (2.1) holds. Then see [16], one can show that if >V^ is
the Lie algebra of smooth vector fields in X^^ that are tangent to QX^'2
to G(1) and to the lines {o/i = 0,r = 0}, {o?2 = 0,r = 0}, then the blow
down map ^83.2 induces an isomorphism

^-2 = Jf^W ^ 4^(^3-2, Wb)' (2.12)

Similarly if W^ is the Lie algebra of smooth vector fields that are tangent
to G^ and vanish on 3X3-2? then

/?5-2 ^ IkL^Vo) ̂  IkL^X^V^). (2.13)

In particular one obtains from (2.12) and (2.13) that

^TO ̂ $ hLU^VG). (2.14)
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Figure 1:
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The main difficulty in proving a propagation theorem for J^(H) is that
this space is not known to have a microlocal characterization. One of the
main results of [16] is the following elliptic regularity type of theorem

Theorem 2.3 If u,Du € HfacW n ̂ L^fl.G) satisfies equation (1.2),
then u,Du e Vf(^).

Theorem 2.3 illustrates an important idea that will be used in the proof of
Theorem 7.1. One first proves a propagation theorem for a bigger space
which has a microlocal characterization and then uses the equation to show
that the solution is actually in the smaller space.

3 The Swallowtail
Since the results we wish to prove are local we shall assume that n C

R3 is a sufficiently small neighborhood of 0 = (0,0,0). Let E C 0 be a
hypersurface with a swallowtail singularity at 0 G n, i.e there are smooth
coordinates ( x ^ y ^ z ) in Sl such that

S = {(x, y, z) : 6(X) = A4 + z\2 + y\ + x = 0, (3.1)
has a double real root}.

E has a cusp singularity at

L={(x,y,z): x=-^, ^(-J^)3} (3.2)

and a self-intersection at

H={(x,y,z): y=0, x = -p z < 0}. (3.3)
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Fig 2:

The continuation of the line H to values of z > 0 corresponds to the set
of (:r,y, z) such that 6{\) has two doulbe complex roots and therefore is not
included in E. Let Ereg = E \ [L U H] be the regular part of E.

The discriminant of the polynomial 8{\) is given by

^ y, z} = 16xz4 - 4y2^3 - 128a^2 + 144^y2 + 256a;3 - 27y4. (3.4)

Hence one deduces from (3.2) and (3.3) that

Sreg={(^y^): $(a:,y^)=0, y ^ O , x + ̂ }. (3.5)

Assume that Eyeg is characteristic for P, i.e i fp= c^2(P) is its principal
symbol,

p(d^)=0 at Sreg. (3.6)

Assume that t(0) = 0 and that

E- = E n n- (3.7)

is a smooth hypersurface of n".
Let Q be the light cone for P over 0, then, see Proposition 3.3 ,

Q ft E = E U B, where away from 0, E and Q intersect transversally at E
and are tangent to third order along 5. Let V(S) and V(E,Q) be the Lie
algebras of smooth vector fields tangent to E and to E and Q respectively.

The following is then a simple consequence of the results of [17].
Theorem 3.1 Let u,Du € Hf^(Sl),s > j, satisfy (1.2). If
u,Du € IkL]^,V^Q)\ then u,Du € 7^(n,V(E,(?)).

One deduces from Theorem 3.1

Theorem 3.2 Let u,Du E Hf^(Sl),s > j, satisfy (1.2). //
u,Du € J^(n-,V(E)), then u,Du C 4^(n,V(E,<?)).
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In fact the results of [17] are stronger, we show that under the hypotheses
of Theorem 3.1 the solution is strongly conormal in the sense of Melrose and
Bitter, [12], along B and in the sense of [16] along the cusp line L of S.

In this note we shall restrict ourselves to the case where u satisfies the
weakly semilinear equation

Pu^f(z,u), zefl. (3.8)

Since it contains all new ideas involved in the proof of Theorem 3.1
I would like to acknowledge that the main new ideas in [17], originated

in joint works (in progress) with R.B. Melrose, [13], and with R.B. Melrose
and M. Zworski, [14]. I would like to thank them for sharing their ideas with
me, for their interest and encouragement. Possible errors in this manuscript
are of course my own fault.

4 Outline Of The Proof

To prove Theorem 3.1 in the case of the weakly semilinear equation (3.6)
we shall introduce a family of spaces JkW C hL]^, V(E)), k e No, sat-
isfying the following properties:
i) J^iW c JkW c £^(n), Jo(n) = L^W.
2) Jk(Sl) is a (^(^-module.
3) Jk(Sl) n 2^(0) is a C°° algebra.
4) u,Du e JkW =» u 6 Jk+iW.
5) Pu = / e ^((l), n = / = 0 in HT = i^n {« T}, then u,Du € ^(n).
6) Ifu.Du e ̂ ^(""^(S)) in 0- satisfy (3.8), then u,Du 6 <4(n-).

Proof of Theorem 3.1 : Suppose that such a family of spaces ^(0)
has been constructed. We then proceed by an induction argument. Let
X6C°°(R), x00=0, ,s<-^, x00=l, s > 0. We obtain from (1.8)

PXU = \f(z, u) + [P, ̂ \u. (4.1)

If n, Du G JoW n ̂ i(n-), it follows from properties 2, 3 and 4 that the
right hand side of (4.1) is in Ji(Q). Thus one deduces from property 5 that
ti, Du 6 Ji(Sl). By the same argument it follows that if
n, Du 6 J^Sl) n ^+i(n~), i < k, then n, Du e ^+i(fl). D

To define the spaces Jk(Sl) we shall introduce a blow-down map

():X—.R3 (4.2)
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from a manifold with corners X to R3 such that the lifts of E and Q by /?
intersect each other and the boundary of X transversally. We then define

JkW = {u 6 £L(»): ̂ ^u € J^(X), j ^ fc}. (4.3)

Where >V is a Lie algebra and C°°(X) module of smooth vector fields in
X and ^ is the lift of the Lebesgue measure of R3 under /?. It will be a
clear consequence of the definition of X and >V that <7^(n), defined by (4.3),
satisfies properties 1,2 and 4. It is a simple consequence of the Gagliardo-
Nirenberg type of estimates of [11] that the spaces defined by (4.3) also
satisfy property 3. Property 6 follows from Theorem 2.3 and from the results
of [15]. The proof of property 5 is of course the most difficult one. The
manifold with corners X and the algebra >V will be constructed in Section
6.
5 Model Case

An easy computation shows that, in coordinates where (3.3) holds, E is
invariant under the R4' action

^"^(^y^) = (s4x,s3y,s2z,t), s € R^ (5.1)

LetM^W = {u € C°°(Sl) : ̂ ^(0,0,0, t) = 0, (5.2)
Va ,&,ceN, 4a+36+2c^r}

be the ideal of smooth functions having Taylor series at

0^{(x,y,z,t)eSl\ x = y = z = 0 }

consisting of terms of homogeneity r or greater with respect to (5.1). A dif-
ferential operator P is said to have only terms of homogeneity T ' or greater,
with respect to (5.1), if

P'.M^W^M^r2^ r € N o , r + r ' > 0 . (5.3)

Simple computations show that if Po = D^ - D^Ds, then Ereg is char-
acteristic for Po, in general one can prove, see [17] that
Proposition 5.1 IfP and E are as above and (x,y,z,t) are smooth coor-
dinates in which (3.3) holds, then

P=a(I^-Z^)+P.5, a6C°°(n), |a| > 0. (5.4)

where P^ has only terms of homogeneity -5 or greater with respect to (5.1).
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Let QQ be the light cone for PQ over 0, then one easily finds that

Qo = {{x,y,z) € 0 : y2 - 42:2- = 0}. (5.5)

In this model we find that away from 0, QQ and E are tangent to third
order along BQ and intersect transversally along J£*o» where

Bo = {(x,y,z) € fl: a; = y = 0}, (5.6)

^o = {(^,0 60:0:= ̂ 2, y2 = -J^3}. (5.7)

Fig 3:

As an immediate consequence ofPropositon 5.1 one obtains
Proposition 5.2 In the local coordinates a/Proposition 5.1 one finds that

0={(:r ,y^, t )€n; ?0r,y,^)=0}, (5.8)

where
?==<7o+^ go =^-4^, q'eM^3-2^). (5.9)

See [17] for a proof. Now we deduce from it more information about the
interaction of Q and E.
Proposition 5.3 With P and S as in Proposition 5.1, in a small neigh-
borhood of Of there are smooth functions Fi(z^t)^ 1 ^ t ^ 3, such that
Qns=Bu£

B^^Fi^t), y=^F2(^t)}, (5.10)

E = {x = ̂ 2 + ̂ f3(^),y2 = -j^3 + ̂ 4(^)} (5.11)

Away from 0,Q and G meet transversally at E and are tangent of third
order at B.
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6 Geometric Resolution

The hypersurfaces E and Q will be resolved to normal crossing by iter-
ated quasi-homogeneous blow ups. As a first step we define the 4-3-2 blow
up ofR/* along 0 = (0,0,0).

In R3 consider the non-round sphere

^3.2 = {(^1,^2,^3); ^ + ̂ f + u^2 = 1}

and the map

/?i : Xi == [0,oo) x S^^ —^ R3, /3i(5,o;) = (^i,^,^).

This is surjective and restricts to a diffeomorphism of Xi \ 9X^ onto R" \ K.
Moreover the R"^ action (5.1) lifts to the standard multiplicative action on
the factor [0,oo).

From these obeservations above it follows that the lifts of the hypersur-
faces and the bicharacteristic B in the model case are:

E^clos^f^EYO)^ (6.1)
{16u^ - 4o;ja;j - 128o; ĵ + U4u^^ + 256o^ - 27o;j == 0},

Q^ == dos[^\Qo \ 0)] = {^ - 40:1^3 = 0}, (6.2)

B^ = dos[P,-\B \ 0)] = {^ = 0,0:2 = 0}. (6.3)

Fig 4:
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S^^ has a cusp singularity at

LW = dos\ft^(L \ 0)] = {^ = -^j, ̂  = (-Jo/3)3} (6.4)

and a self-intersection at

H^ = dos[P^(L \ 0)] = {o;i = "a/l, ^2 = 0}. (6.5)

For reasons that will become clear later on, there are two "great circles^ on
5 .̂2-1 ̂ at will have to be taken into consideration. We define

Ci={a;i=0, r=0}, (6.6)
C2={o;3=0, r=0}. (6.7)

More generally we find, see [17]
Proposition 6.1 In local coordinates in which (3.1) and (5.8) hold the
lifts E^,Q^ and B^ of the hypersur faces and the bicharacteristic to X\
are diffeomorphic, on X\, to the model T^\Q^} and B^ under a diffeo-
morphism fixing 9X\ pointwise. Conversely any diffeomorphism preserving
(3.1), (5.8) and 0, lifts to a diffeomorphism of X\ near9X\ preserving E^1)
and QW

The full resolution of the geometry is obtained by blow ups of the three
(really six) submanifolds L^\ D^ = Q^ n €2 and B^. There are local
coordinates (s,X,Y,T) near L^ with

E<1) = {V3 = X2}, (6.8)

near D^ with

QW = {X = V2},^ = {X = 0,r = 0}. (6.9)

near B^ with

Q(2)={Jr=o}, E^^j^y4}, Cl={x=y2,r=o}. (6.10)
Thus E(1) can be resolved to normal crossing by a 3 - 2 blow-up of L^\
thus set

^2 = {(^1^2) 6 R2;^ + ̂  = 1} (6.11)
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and in local coordinates (6.8) we construct the map

(h-2 : [0,oo), x [0,oo), x ^_2 x R"-3 -^ Xi
03-2(s,r,0)=(r,S30^S2ff^.

(6.12)
(6.13)

Fig 5:

(5-

It will also be necessary to blow-up D ^ ' with homogeneity 2-1-1, thus let

^2-1-1 = {(^2,^3) € R2; Q\ + 9\ + 9i = 1} (6.14)

and in local coordinates (6.9) construct the map

/?2-i-i : [0,oo), x (0,00)^ x ̂ .i x R"-3 ̂  Jfi
^2-l(5,A,0;,t) = (A, ̂ 1,^2,^3,*).

(6.15)
(6.16)

Fig 6:

e.-,-

To resolve Q(1), E(1) and C\ to normal crossing it will be more coneve-
nient to use four normal blow-ups as in [12]. Since Q^ and S^ are tangent
to third order at B^\ if C\ did not have to be taken into consideration, one
could use a 4-1 nonhomogeneous blow-up to resolve Q^ and S^ to normal
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crossing, but C\ destroys the 4-1 homogeneity.
Fig 7:

-(•' c!.

Since D^,L^ and B^ are disjoint we can use these maps to replace small
neighborhoods of D^\ L^\ BW by their respective blow ups and so define
the manifold with corners X and a blow down map /?z : -X" —»• X\. Let

/? = /?20/3i : X -^ R" (6.17)

Denote
(?(2) = clos^-1^1) \ (B<1) U Z)^))],

S(2) = clos^-^S^) \ (Z<1) U 5<1)))]

J^(2) = clos[fti\LW)],

B^ = clos^-^^1))],

Ci'^clos^-^CiV^1))],

Cf^clos^P^].

The circle C'̂  does not continue into the boundary face introduced by the
2-1-1 blow-up.

The manifold with corners X has twelve boundary hypersurfaces which
meet transversally pairs or triples. Let p^, p^,! <_ j <, 8, po and pK be
respectively the defining functions of/?-^!/), each of the eight hypersurfaces
of/?-^), ̂ (D) and ̂ {K) (These functions are assumed to be extended
smoothly past the surfaces they define).
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Proposition 6.2 Under the C°° map /?: X -> R'1 the lifts

/T(M) = clost/T^M \ [K U £ U 5])), (6.18)

/or At = 0,S are smooth hypersurfaces that intersect the boundaries of X
transver sally. Any C°° diffeomorphism of X\ preserving S^1),^1) D } - and
9X\ lifts to a C°° diffeomorphism ofX preserving all boundaries and all the
hypersurfaces.

Let L^{X) be the space of compactly supported square integrable func-
tions in X with respect to the measure /A = /3*(dxdydz). Then the blow
down map (3 gives an isomorphism

/T : ̂ (R^ ̂  2^(X). (6.19)

Let YV be the Lie algebra and smooth vector fields W on X satyisfying the
following properties:
1) W is tangent to all boundary hypersurfaces.
2) W is tangent to /T(S) and to ^(O).
3) W is tangent to C^.
4) In local coordinates (r,5,X) in which pK = r and C}' = {r = X = 0},
>V is spanned by r9r^ s9s^ XQx-i r29x-
We then define for any integer k

JkW = {u e 2^(n): /3'n e J^c2 ,̂ w)} (6.20)
As a consequence of Propositions 6.1 and 6.2 it follows that the spaces
Jk(ft) are independent on the choices of coordinates. Moreover from the
Gagliardo-Nirenberg type inequalities of [15] one obtains

Proposition 6.3 For any k € N, ^(0) n L^(Sl) is a C°° algebra, i.e for
any f E C00^) and m € JkW n L°°(Sl), 1 < i <. m,

/(^,..,^)ej,(n)n£^(n). (6.21)
By writing the generators of V(S,Q) and their lift under the map /? it

is not hard to see that

JkW C IkL^^V^Q)) (6.22)
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7 The Linear Propagation Theorem

In this section we sketch the proof that the spaces Jk{Sl) satisfy
Theorem 7.1 Let f 6 JkW, f = 0 in n-. Let u 6 H}^(fl), u = 0 in 0-,
satisfy

Pu^f. (7.1)

Thenu.Du € ^(0).

Lemina 7.1 Ze< <^ G C^°(Xi), <^ == 1 m sufficiently small neighborhoods of
L^\ E^ and H^\ (f> = 0 outside slightly bigger neighborhoods. There exist
v\^Dv\ 6 <^k(^) ^ucA </IG<

/^(P^i) - <^/ € IkLi^9Xz) (7.2)

The proof o Lemma 7.1 is based on the fact that the lift of the operator
P by the map /?i is of real principal type in the totally characteristic sense,
see [10], in some directions near L^\E^ and H^. One can then use the
calculus of totally characteristic Fourier Integral Operators of [10] to trans-
form the operator, the characteristic surfaces and their intersections into
model cases. Lemma 7.1 is then a consequence of the mapping properties of
these operators.

Lemma 7.2 Let g G £^(ft) be such that

^geIkL^X.QX^ (7.3)

Then there exists v^^Dv^ ^ Jk(^) such that Pv'z = g .

The proof of Lemma 7.2 is considerably simpler than the one of Lemma 7.1,
it is based on a commutator argument.

7.1 Marked Lagrangian Distributions

Let A C T*n be a smooth conic closed Lagrangian and let 52 C 5i C A be
conic smooth hypersurfaces. Denote

A^(A)i = {A 6 ^(H) : a = (T\A) = 0 at AA, (7.4)
Ha tangent to 5i and to 82} (7.5)

and define

IkL^M(A),) = {u 6 L^Sl) : M(A){u C L^Sl), j < fc}. (7.6)
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A detailed study of these distributions can be found in [8]. As mentioned
in Section 2, the marked Lagrangian Distributions were first introduced by
Melrose in [9] to study the cusp case.

Let A£ = closTV^Ere^), AQ = dosN*(Q \ 0). It is weel known that AE
and AQ are smooth conic Lagrangian submanifolds ofT^R3. Let AB = N * B
and let AO == T^R3^ d6110^ 5i = A£ n Ajg = AQ H Ajg == As H AQ and
62 = AE n AO. Let 63 = Ao ft AQ and let IkL]^(fl,M{Ao}^) be the space of
marked Lagrangian distributions to Ao marked by 63 and S^.

In coordinates where (3.1) holds one obtains that A^(S)i is the ^°(n)
span of

YI == 4^ + 3y9y + 2z9^ • V2 = (2xz - jy2)^ - -^ + 4x9,, (7.7)

Pi = z(9^ - ̂ ), Pa = y^y - 9,^), (7.8)
Pa = 49,2 + 2^2 + y9y9^ P4 = (^2 - 9.9^ (7.9)

Ps=(9^9^)9y. (7.10)

Times elliptic factors of the appropriate orders. The space of marked La-
grangian distributions to the swallowtail marked by S and 5'i is however
too small for our purposes, we shall need a slighty bigger one. Let P^ =
(392—89x9^ — 12z9^)392 and define the space of ^supermarked^ Lagrangian
distributions to AS S andiSi as

l3kL^M(A^Y = {u e LtW : V^V^P^P^P^P^P^u €
H^W, i == ̂  + ̂  + £3 + t4 + 6^5 < 3k}. (7.11)

Where the superscript s is for "supermarked^. The spaces of supermarked
Lagrangians was introduced by M. Zworski in [18] where a more detailed
description of those spaces is given. One defines the space IkL^(fl,M(Tt)\}3

for all integers k by complex interpolation. One can easily show that

J,^(n,A1(As)i) C IkL^M^A^. (7.12)

Let

MkW = IkL^M(A^Y + IkL^M(AQ)z) +
IkL^M(AB)i) + IkL^M{Ao)3) (7.13)

be the space of marked Lagrangian distributions to 2,Q and J5.
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Lemma 7.3 Let g e JkW be such that /3*g is supported away from EW
HW and LW, then g e Mk(Sl).

The proof of Lemma 7.3 is quite long and consists basically of lifting the
generators of each of the components of Mk under the map /?. Now we
are going to use the same idea as in the case of the cusp, first we prove a
propagation theorem for Mk(Sl) and then use again the equation to show
that the solution is in fact in the smaller space Jk(St). By commutator
methods one can prove

Lemma 7.4 Let f e Mk(Sl), there exist v^Dv-s 6 MkW such that
Pv3=f.

Then one proves an elliptic regularity type of Theorem which states that

Lemma 7.5 Let v,Dv 6 Affc(n) be such that Pv e JkW. Then
v,DveJk(St).

When one lifts v 6 A4(Q) under the map 0 one finds that it may be
singular at some circles at the boundary of X, but it turns out that the
lift of operator P under the map /? is elliptic in some directions of '>T*X
over those circles and therefore one concludes that if v satisfies the inclusion
Pv e JkW, then v € Jk(Sl). This is the reason why one has to include the
great circles in the definition of the spaces, since the hypersurfaces {a; = 0}
and {z = 0} are characteristic for Po the lift of the operator P could not
the be elliptic on circles C[2^ and C^.

Conclusion of the proof of Theorem 7.1:
Let vi,V2 and »s be as in Lemmas 7.1, 7.2 and 7.3 and w = u-vi-v-i-vy.

Then
Pw = 0, w e JkW in t< 0. (7.14)

Let

M(AQ U As) = {A € ^(0): a = ̂ (A) = 0 on AQ U As) (7.15)

Equation (7.14) implies that

w, Dw € IkLi^fl-, M(AQ U As)). (7.16)

By commutator methods one can easily show that

w,Dw e IkL^(Sl,M(AQ U A£)). (7.17)
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By the arguments used in the proof of Lemma 7.3 one can show that

hL]^M^Q U AE)) C JkW. (7.18)

This concludes the proof of Theorem 7.1.
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