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PREPARATION THEOREMS FOR SYSTEMS

NILS DENCKER

University of Lund

1. INTRODUCTION
The Malgrange preparation theorem is a useful tool in analysis. It is a generalization of

the Weierstrass' preparation theorem to C°° functions as follows: if f(t, x) G C'°°(R x R^)
satisfies

(1.1) 0=/(0,0)=^/(0,0)=•••=<9^1 /(0,0) and ^"/(0,0)^0,

then we can factor

(1.2) /(*, x) = c(<, x)^ + a,_i(a;)<"-1 + • • • + a,(x)t + ao(a-))

near (0,0), where c(0,0) 7^ 0 and a,(0) = 0, 0 ̂  j < n. The condition (1.1) means that

/M)^)^,

where c(0) ^ 0. A possible generalization of this result to matrix valued functions, is to
replace (1.1) by

(1.3) 0=^(0,0)=^F(0,0)=.••=a^ l^(0,0) and |5^F(0,0)| ̂  0,

where F^t, x) € C°° is N x N matrix valued, and |F| is the determinant. Then we should
obtain (1.2) with matrix valued c{t,x) and aj(x), satisfying |c((,a;)[ 7^ 0 and a,(0) = 0,
V.7. In the case when n = 1 in (1.3), this was proved in [1]. But the condition (1.3) is
too restrictive, since it does not cover the cases when F(t,x) = {fj(t,x)6jk) is diagonal,
with diagonal elements fj satisfying (1.1) with different n (in which case we can use the
Malgrange preparation theorem). More generally, we assume that

(i.4) FM)=cwfY7r,,
j=o

where |<7(0)| ^ 0, and TT, is orthogonal projection on C^, such that TTjTTk = Sj^k and
Z^=o 7r? = ̂ N- This includes condition (1.3), and is equivalent to

(1-5) CN=Q)lm9jF<,0,0)
j=0 E^-1

where Ek = Do^^jfc Ker5fF(0,0). This condition is invariant under left multiplication of
F by elliptic systems. Assuming (1.5), we show in Theorem 2.5 that

(L6) ^M = C^x)(^t^j + ̂ A,(A
^=0 j=0 /
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near (0,0), where C(t,x) and Aj{x) are C°° functions satisfying |C(0,0)| ̂  0 and A^-(O) =
0, 0 < j < n. Since we are allowed to make row operations, we obtain that Aj{x)^k = 0
when j >, k. The orthogonal projections 71-jk are uniquely determined in (1.6).

Now condition (1.5) is also too restrictive, for example, it is not satisfied for the poly-
nomials

n n—1

E^'+E^^)/ ̂  ^3 T / ^ ^J^h
j=0 j=0

when Aj(x)^k = 0 for j >, fc, and Aj(0) 7^ 0 for some j. But such systems always satify
the condition

(1.7) ^(detFXO.O^O,

for some m, thus the determinant does not vanish of infinite order. In Theorem 3.3,
we show that condition (1.7) is sufficient for a preparation of F on the form (1.6), with
orthogonal projections {^j} on C^ such that TTjTTk = Sjk^k and ]>^Lo 7r? = ^ N ' We
obtain that Aj(x) satisfies Aj{x)7Tk = 0 when j >, fc, and

(1.8) A,(0) = E 7r,A,(0)7r,.
i<j<k

The projections TT^ and matrices Aj(0) are uniquely determined by (1.8). The rank of the
projections TTjc are determined by the elementary divisors of the Taylor expansion of F(t^ 0)
at t = 0, but the projections themselves are harder to compute, except for TTQ and 71-1 (see
Remark 3.4).

By allowing right multiplication by elliptic systems, i.e. column operations, we may
also obtain that 7TkAj{x) =: 0 when j >_ fc, and A^-(O) = 0 when (1.8) holds (see Propo-
sition 3.5). By duality, we obtain the corresponding results for right preparation of F, i.e.
left preparation of F*, in Theorem 4.2. We also prove the generalization of Malgrange's
division theorem in Theorems 3.6 and 4.3. The method of proof follows in part Mather
[6], with the improvements of Hormander [2, Section 7.5]. Observe that, since the proofs
of Malgrange [3] use commutative algebra, they are not directly applicable here.

2. LEFT PREPARATION
In what follows, let TTJ be (complex) orthogonal projections in C^, 0 < j < n, such that

^^o ̂ 3 = ̂ N and TTjTTk = Sjk^k- This means that TI-J = 7Tp Vj. Put

(2.1) P(*,A)= ^ ^.+ ^ ^A,,
0<,j<n 0<,j<n

with A = (Ao,. . . ,An-i) , where Aj e CN = ̂ (C^.C^ is a complex N x N matrix
satisfying

(2.2) AjTTk = 0 when j > k.

Let \Aj\ = detAj be the determinant of Aj, and let ||A|| = ̂  \\Aj\\, where \\Aj\\ is the
matrix norm. We are going to divide matrix valued analytic functions with such matrix
valued polynomials. Let uj be an open set in C, let G(t) be analytic in cJ with values in
CN, and assume |P(<,A)| ^ 0 on 9^ C C1. Then

(2.3) G(<) == Q{t)P{t, A) + R{t) t e a;,
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where

(2.4) Q(t} = (27n)-1 / G{s)P{s, f\)-\s - t)-1 ds t e a;
,/a^

is analytic in c^, and

(2.5) R(t) = (27rz)-1 / G'OQP^Ar^PO^-P^A))^-^-17r0-1 / ^)P(^A)^(P(5,A)-P^A))^-<)-1^
J^IQ^

is a polynomial of degree n — 1 in t. We find that

(2.6) R{t)7Tk = (27Tz)-1 / ^(^(^Ar^^-^^Tr.+^^-^^A,^)^-*)-1^
Jaw j<k

is a polynomial of degree < k in t. The remainder 72(t) is uniquely determined by this
condition, if J2(()P(<,A)~'1 is analytic when t ^ uj.

Let V C 0^ CN be the set of A = (Ao, . . . , An-i) satisfying (2.2), let rrik = Rank^
and m = ̂ ^j^j • mj. Since Ak = Z^<^ A^, Ajk lies in a subspace of (complex)
dimension Efc<j ̂ -^ of ^N. This implies that V ^ C^1^ ^ R2771^, since we have
T^o<k<j<n mj == S^=i ^ ' ̂  == m- We obtain the following division theorem on R.

PROPOSITION 2.1. Let F(t) C S(R) have values in CN- Then we can find Q(*,A,F) £
C°°(R x V) and J^(A, F) £ (^(V), 0 < j < n, with values in CN and depending linearly
on F(t), such that JRy(A)7rjk = 0 when j ^ k, and

n-i
(2.7) F(<)=Q(*,A,F)P((,A)+^^(A,F) when ||A|| < 1, t e R.

j=o

We also get global estimates on all the derivatives of Q and Rj. The proof of Propo-
sition 2.1 follows the proof of [2, Lemma 7.5.4]. Thus, first we show that we may divide
bounded analytic functions by P(t, A) in a strip containing R, with uniform bounds. Then,
we get the result by a Fourier decomposition of F.
REMARK 2.2. If F ( t , x ' ) G 5(R x R^ depends on parameters x, then Q(t, A,F(-,a;)) €
C°°(R x V x R^ and J^(A, F(., x)) £ C°°(V x R71). In fact, by linearity and continuity,
we may differentiate directly on F.

Next, we shall compute some invariants. Let F(t) be a C°° function on R with values
in CN. Put E_i = CN and

(2.8) Ek= F| Ker^F(O), k ̂  0.
0<j<Jk

PROPOSITION 2.3. If

(2.9) C^^^Im^O) ,
,=o E-1

then it follows that En = { 0 }. We find that the spaces Ej,, 0 < k < n, and condition (2.9)
are invariant under left multiplication of F by elliptic systems.

PROOF: Assume that C(t) is elliptic, then KerCF(O) = KerF(O). Now, we have by
Leibniz5 rule

^(CT)(0) = ̂  ( k } ̂ C(0)^F(0),
j=o v/
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so by induction we obtain

F| Ker9}CF(0)=( Q Ker9{F{0)\ n Ker^(C^)(0) = Q Ker^F(O),
0<J<A; '0^<Jk / O^^Jk

which gives the invariance of jBjb, Vfc. We also obtain that

(2.10) Im^(CF)(0) =G(0)Im^F(0)
^* -1 Ek -1

Since |C(0)| ^= 0, this gives the invariance of condition (2.9).
It remains to prove that dim En == 0. Let mk = dimEk^ so that m-i = N . Then, we

find

dim(lm^F(0)[ ) = dirndl - dimfKer^F(0)| ) = m î - m^.
\ lEfc-i / \ lEfc-i/

Thus we find from (2.9) that

n

N < ̂ (mjb-i - mk) =N -mn.
j=0

This means that m^ < 0, which proves the result. |

PROPOSITION 2.4. Let CN = £L.i 3 EQ 3 - ' 3 En = {0}, and let TTk be the orthogonal
projection on E^{~}Ek-i, for 0 <: k <, n. Then it follows that TTjTTk = ^jfcTTjb? and

k

(2.11) Q)lm7r,=^, 0 < f c ^ n .
j=o

In particular, we obtain ®o<j<n I1117 '̂ = C^, which implies Y^^Q TTJ = Id^y.

PROOF: Clearly, Ker^ = (ImTr^)-1- = EkQ^E^, so

ImTr^ C ̂ -i C Ek C KerTTjk if j > k.

Thus, TTjkTry = 0 when j > fc, and by taking adjoints we obtain this when j < k^ which
implies TI^TT^ = S j k ' T T k -

By taking orthogonal complements, we find that (2.11) is equivalently to

k

(2.12) F| Ker7Ty = Ek 0 < k < n.
j=o

We find KerTTo = £'0 ® ̂ i = £'0- Assume by induction that (2.12) holds for some k > 0.
Then we find that

F| KerTT, = Ek [^(^+1 ® ̂ ) = ^+1,
0<J<^+1

since £'jk-n C £^, thus by induction we obtain (2.12) for all &. Since En = { 0 } we find
that Y^=o ^3 ls bijective, and since (^=o ^J')2 = S^=o 7r^ lt ls equal to ^e identity. |

Now, we can state the following generalization of the Malgrange preparation theorem.
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THEOREM 2.5. Let F(t^x) be a C°° function of (t,x) in a neighborhood of the origin
ofRx R/, with values in C^, and assume that

(2.13) C^=(glm^F(0,0)
j=o Ef^^•-i

where E^ = C^ and Ek = no<^Kerc^\F(0,0). Let TT^ be the orthogonal projection
on E-^ n^Jk-i for 0 ̂  fc 5; n. Then, we may factor

n n—1

(2.14) F^x) == ̂ .r)^^ + ̂ ^(.r)) = C(^)P(<,A(rc))
\;==o .7=0 /

near (0,0), where C(t^x) and Aj(x) are C00 functions with values in C^j satisfying
Aj(x)7Tk ES 0, j > k. We also find 10(0,0)1 ^ 0 and A^-(O) == 0, 0 ^ j < n . If F is
real (matrix) valued, we may choose C and Aj real (matrix) valued (and the projections
TTjc are real).

This is proved by using Proposition 2.1 and Remark 2.2, to divide F(t, x) by the polyno-
mials P(t, A). Then, we use the implicit function theorem, to choose F\(x) € C°° making
the remainder S,^^(A(a;),F) == 0.

Proposition 2.3 and (2.13) imply that En = { 0 }. Thus, we obtain from Proposition 2.4
that TTjTTk = Sjk^k ^d Si^j == ̂ N- Since (2.14) implies

F(*,0)=C(*,0)^^,
j=o

we obtain from Proposition 2.3 that the condition (2.13) is necessary for the prepara-
tion (2.14).
EXAMPLE 2.6. Let F(t^ x) be a C°° function of (<, x) with values in CN^ and assume that

1^(0,0)| ̂  0 and ^'F(0,0) E= 0, 0 < j < n.

Then we obtain from Theorem 2.5

F^x)=C^x){tnldN+ Y^ ^A,^)),
0<,j<n

where G(t, x) and Aj{x) are C°° functions with values in jC^y, 10(0,0)| ~=f=- 0 and Aj(0) = 0,
0 ^ J < n. (The case when n = 1 was proved in [1, Theorem A.3].)

3. THE PREPARATION THEOREM

The condition (2.13) in Theorem 2.5 is still too restrictive. In fact, the systems P{t^ A(:r))
in (2.14) do not satisfy condition (2.13) when A(0) ̂  0, but will be acceptable normal forms
when A(*r) 6 V, i.e. Aj^x)^^ =. 0 for j > k. As before, we assume that TTJ is orthogonal
projection in C^, 0 < j < n, such that ^ ^ o ^ j = ^N and ^i^j = ^ij^j- First, we
consider the necessary condition for such a preparation.
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PROPOSITION 3.1. Let F(t) £ (^(R) with values in CN, and assume that

(3.1) F(<) = C(f)(^^7r, + E^) = W^)
^=o j=o /

where \C{0)\ ̂  0 and AjTTk = 0 when j >; fc. Then it faUows that

(3.2) ^(detFXO^O,

.for some m. We also find

(3.3) ^= n Ker^F(0)={0}.
O^Jk^n

PROOF: Since the spaces Ek are invariant under multiplication from left by elliptic systems
by Proposition 2.3, we may replace F(t) by P(t, A) in (3.3). Now^P(O.A) = fc!(7^+Afc),
where Ak = Sfc< • A^. Thus, we find that Ker^F'(O) = KerTTyi. By induction we have

n / n \ nn / n \ n

F| Ker(7r, + A.,) = ( Q Ker^ ) n Ker^k + A^ = H
j=A; S'=^+l ^^

F| Ker(7Tj + Aj) = ( Q KerTTj j n Ker^k + Ajk) = Q Ker^,
-»'=1- ^i—Jk-l-l / »=fc

for 0 < k <, n, which proves (3.3). It is also clear that condition (3.2) is invariant under
multiplication by elliptic systems. By a (constant) orthogonal base change, we may assume
that

Jk-i k
1m TTjc = { (^i , . . . , Z N ) : ^j 7^ 0 => Y^ Rank TT, < j < ̂  Rank TT^ }, 0 < k < n.

i=o »=o

Since P(t, A)^ = (^ + ̂ ^ VAj^k we find that

^(detPXO,^ ^A:!7r, ^0,
Jk=0

if m •= ^^ i J • RankTTp which proves (3.2). I
The factorization (3.1) is not unique, according to the following

EXAMPLE 3.2. Let

P i (<)=(S ^ ) = < I d 2 + A o

P2{t)=(^ ^ =^0+^2+^1

and Q(t) = ( t ~1 ). Then we have Q(<)Pi(t) = ?2(<), and \Q{t)\ = 1. Since B^o = 0,

it is clear that ?i(<) and ?2(<) are on the form (2.1)-(2.2).
Now we are ready to state the main preparation theorem.
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THEOREM 3.3. Let F(t,x) be a C00 function of (i,x) in a neighborhood of the origin
ofRxR^ with values in CN, and assume that

(3.4) ar(detF)(0,0)^0 and ^(detF)(0,0) = 0, 0 ̂  k < m.

Then we may factor

(3.5) F^x) = C^x}(J^t^, + ̂ ^A,(^)) = C(^)P(<,A(:r))
^=0 j=o /

near f0,0^ where TTJ is orthogonal projection in C^, 0 <j <n, such that 71-̂  = Sj^k and
Z^Lo7^ == Id^- JErere C^a;) and Aj(x) are C00 functions with values in CN, satisfying
|C(0,0)| ̂  0, Aj{x}^ == 0 when j > k and

(3.6) A,(0) = ̂  7r,A,(0)7r,,
t<7<A;

which implies Ao(0) = 0. The projections TTjc and matrices Aj(0) are uniquely determined
by the condition (3.6), and it follows that m = ̂ . j . Rank 7Ty in f3.4^. IfF is reaJ (matrix)
valued, we may choose C(t,x}, TTk and Aj{x} real (matrix) valued.

Theorem 3.3 is proved by reducing to the case of Theorem 2.5. Since condition (2.13)
is necessary for that preparation, and is invariant under left multiplications, we must also
multiply F from the right. Then, we have to be careful not to destroy the normal form
P(t,f\{x}\
REMARK 3.4. The rank of the projections TTk are determined by the elementary divisors
of the Taylor expansion of jF(t,0) at t = 0. In fact, let dk be the determinant factors
for 1 < k < TV, i.e. the greatest common divisor of the minors of order k of the Taylor
expansion. Then ek = dk/dk^-i are the elementary divisors, and Rank 71-̂  is the number
of k such that ej, is divisible by t3 but not by ^+1 (see [8, § 85]). The projections TTJ are
harder to compute, except for j = 1, 2, since in these cases KerTi-o = KerF(0, 0), and

KerTTo n KerTTi = Ker [^F(0,0) ^ CN / ImF(0,0) = CokerMO, 0)1 .
L KerF(0,0) / v / J

By multiplication from right with invertible matrices, i.e. column operations, we may
also obtain that TTkBj(x) = 0 when j > k, and B(0) = 0 in (3.5), according to the following

PROPOSITION 3.5. Assume that TTJ are orthogonal projections in C^, 0 ^ j <, n, such
that TTjTTk = SjkTTk and ^=o ^3 = ̂ N- Let

(3-7) P^W) = f^TT, + ̂ A^)

j=o 7=0

where Aj{x) are C00 functions with values in CN, satisfying Aj(x)7rk = 0 for j > k. Then
we may find C(t, x) G C°° with values in CN, such that \C{t, x)\ ̂  0 and

(3-8) P((,A(2:))C(f,.r)=P(t,B(o:)),

where TTkBj(x) == Bj{x}-Kk = 0 when j > k. At the points XQ where Aj(xo) satisfies (3.6),
\ / j , i.e. 7TkAj(xo) = 0 when k > j , we obtain that Bk(xo) = 0, Vfc. When P{t, A) is real
(matrix) valued, we may take C{t, x) and Bj(x) real (matrix) valued.

We also obtain the following generalization of the division theorem.
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THEOREM 3.6. Let F{t,x) satisfy the hypothesis in Theorem 3.3. If G{t,x} is a C°°
function in a neighborhood of(0,0) with values in CN, then we can write

n-i
(3.9) G(t, x) == Q{t, x}F{t, x} + ̂  ̂ R^x)

j=o

near (0,0). Here Q(t^x) and Rj{x) are C00 functions with values in CN, satisfying
Rj{x}^k '= 0 when j > k, for the projections TTk in Theorem 3.3. If condition (2.13)
also is satisfied, then TTk is the orthogonal projection on E^~ Q Ek-i for 0 < k < n, where
E^ = C^ andEk = C}o^k Ker^F(0,0), k > 0.

PROOF: By Theorem 3.3, we may assume that

F^x) = ̂ ^ + ̂ A^x) = P^F\(x))^
J=0 j=0

where Aj(x)'Kk = 0 when j > k. Since it is no restriction to assume G(t^x) 6 C^°^ the
statement follows from Proposition 2.1 and Remark 2.2, with Q(t^ x) = Q(t^ A(.r), (?(•, x))
and Rj(x) = ^(A(a;),G(-,rc)) in (2.7). When F(t,x) satisfies (2.13) also, we find that T^
is the orthogonal projection on E^~ QjBjk-i.

4. RIGHT PREPARATION

In Theorems 2.5 and 3.3, we have only done left preparation of matrix valued functions.
By taking transposes we also obtain the corresponding results for right preparation. We
first examine what condition we get on jP, when (2.13) holds for jF*. Let F(t) be a C°°
function on R with values in /^, put E*_^ = C^, and

(4.1) ^= ft Ker^F^O), k > 0.
0<j<k

Let Fk be the mapping

(4.2) Fk : CN 3 w ̂  9fF{0)w (mod Ik-i) k > 0,

where J-i = { 0 }, and
Ik= (9 Im^F(O), k>0.

0<j<,k

PROPOSITION 4.1. The condition
n

(4.3) CN =0)lm^F*(0)| ^
*=o '^-i

is equivalent to

(4.4) { 0 } = Q KerFfc,
O^fc^n

and implies

(4.5) 0^= ^ Im^F(O).
O^t^n
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We find that condition (4.4) and the spaces Ik = ®o<;-^^Im<9^F(0), 0 < k <, n, are
invariant under right multiplication ofF by elliptic systems.

PROOF: We have by duality that

(4.6) I k = © Im^F(0)=[ Fl Ker^F*(0)) = (̂ ^
0<,j<,k 0<J<:k /

Let TTk be the orthogonal projection on Ik D^-i == (J^)'1' H^-i? ̂ ^ we ̂ d KerF^ =
KerTrj^F(O) and

(4.7) Im^F^O)! ^ = Im^F^O)^ = (KerTr^^O))^
^-i

By Proposition 2.3, condition (4.3) is invariant under multiplication of F by invertible sys-
tems from right, and it is equivalent to (4.4) by (4.7). We also obtain from Proposition 2.3
that the spaces E^ = Ij^ are invariant under right multiplication of^by invertible systems.
Since condition (4.3) implies E^ = { 0 } by Proposition 2.3, we obtain (4.5). I

Now we obtain from Theorems 2.5 and 3.3 the following result.

THEOREM 4.2. Let F(t^x) be a C°° function of (t^x) in a neighborhood of the origin
ofRx Tid with values in CN satisfying (3.4). Then we may factor

(4.8) F(<, x) = [^ i^, + ̂  ̂ A^)) C(t, x) = P(*, A(^))C(*, x}
^•=0 j=o /

near (0,0), where TTJ is orthogonal projection in C^, 0 < j< n, such that TTjTTjk = Sjk^k ^d
Y^^o^j = Id^v. Here C(t,x) and Aj(x) are C00 functions with values in C^y satisfying
|C(0,0)| ̂  0, 7TkAj(x) = 0 when j > k, and

(4.9) A,(0) = ̂  7r,A,(0)7r,,
i>j>k

which implies Ao(0) == 0. The projections TT^ and matrices A^-(O) are uniquely determined
by condition (4,9), and m = ^.J^ • RankTr^- in (3 A), If also condition (4A) is satisfied,
we find that A^'(O) = 0, 0 <: j < n, and TTje is the orthogonal projection on Ik H^j^-i ^or

0 < k < n, where J-.i == { 0 }, h = (Bo<j<k Im^F(0,0). IfF is real (matrix) valued, we
may choose C, TTjc and Aj real (matrix) valued.

It is clear that condition (3.4) is necessary for the preparation (4.8), and condition (4.4)
is necessary when A(0) = 0. We also obtain the following version of the division theorem
from Theorem 3.6 by duality.

THEOREM 4.3. Let F(t^x) satisfy the hypothesis in Theorem 4.2. If G(t,x) is a C°°
function in a neighborhood of(0,0) with values in CN, then we can write

n-i
(4.10) G(<, x} = F(<, x)Q(t, x) + ̂  t^Rj(x)

j=o

near (0,0). ffere Q(t^x) and Rj(x) are C00 functions with values in CN, satisfying
7rkRj(x) = 0 when j >_ k, for the projections ^k m Theorem 4.2.
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