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1. The energy of a quantum system desribed by a time-dependent

Hamiltonian H(t) is not conserved. However, if a dependence of H(t) on t is periodic, it

can be changed only by some integer number. In other words, the quasi-energy, i.e.

the energy defined up to an integer, is a conserved quantity.

Here we discuss scattering of a plane wave by a time-periodic potential. Due

to the quasi-energy conservation such a process is desribed by a set of amplitudes

S^(^) where ̂  is energy of an incident wave (in other terms, of a quantum particle)

and n is arbitary integer. We always decompose ?. as ̂  = m+9 where m e Z is the

entire part of X and 6€ [0,1]. Each S^) corresponds to a channel when energy is

changed by n-m. Actually, amplitudes S^) for n ^ O correspond to outgoing waves

and amplitudes S^) for n< 0 correspond to exponentially decaying modes. In some

sense these modes play the role of bound or quasi-bound states for

time- independent Hamiltonians. It means that they represent states which can have

long though finite time of life. Thus exponentially decaying modes are essential for a

detailed picture of interaction of an incident wave with a quantum system but they

do not contribute to the scattering matrix of this process. Our aim is to study the

transformation of exponentially decaying modes into proper bound states as a

time-periodic perturbation is switched off.

In fact. we shall consider the following situation. Suppose that

H(t) = H^+sV(t) where the Hamiltonian H^ has a negative eigenvalue ?l and the

coupling constant e is small. Physically, it is natural to conjecture that the bound state

of the system with the Hamiltonian H^ will give rise to some kind of long-living state
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for the family H(t). Due to the quasi-energy conservation this state is insignificant if

energy X of an incident particle and ̂  do not coincide by modulus of Z. However, if

energy ̂  is resonant, that is A.-^ = K e Z. then an incident particle can strongly

interact with this quasi-bound state. Therefore the corresponding amplitude

S^_^(X.8) is expected to be very large for small s. Below we will show at the

example of zero-range potentials that this physical picture is correct.

The problem of resonances for time-periodic perturbations was studied earlier

by K. Yajima [l] in a different, more mathematical, framework. Our approach is closer

to physical papers [2]- [5]. In particular, in [5] an attempt was made to study the

amplitudes S^ for small time-periodic perturbations. However, the appearence of

resonant energies seems to be neglected in this paper.

2. The Hamiltonian H^ corresponding to a zero-range potential well of a
^ 2

"depth" h^ is defined as H^ = -—-^ . x € IR^. with the boundary condition u'(o) =
d x

-h^u(o). h ^ = h ^ . The operator H ^ > 0 . if h^O. and it has (exactly one) negative

eigenvalue^ -h^wi th the eigenfunction exp(-h^x). if h ^ > 0 . Let H^= -d^dx2

with the boundary condition u(o) = o be the "free" Hamiltonian. The scattering matrix

S { (X) for the pair H^. H^ at energy ̂  equals
C^/l \ /I. • -» 1/2 \ /t. •-» 1/2 \-1 / \S (X) = ( h ^ - i X ) (h^+iX ) . (l)

We shall consider zero-range potential well whose depth depends periodically

on time. Mathematically this problem is governed by the equation

8u 3 u
i . = -— .xeR,. (2)

at ax2

with the time-dependent boundary condition

u'(O.t) = h(t)u(o. t ) . h(tT= h(t), h(t+2?i) = h(t) (3)

We will look for solutions of equation (l) which have a representation of the form
00

/ \ V / \ - i ( n + Q ) tu(x.t) = 2 ^ u (x)e (4)
n = - oo n
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where the parameter 6e [o,l]. Such solutions describe a stationary process in the
sense that for any -c e IR

/,t+2jl

I °°

(2;i)'1 ^(x.t^dt = £ |u (x)|2 (5)
j n = - oo n

•/'c

Substituting (4) into (2) we find that u^(x) should satisfy the equations

-u;(x) = (n+9)u^(x) . (6)

whose solutions are linear combinations of exponentials. In particular, the solution
1 /9

correspond ing to the incoming wave exp(-i3L x ) , ? . = m + 9 , m € Z, 9€ [o,l[, has
the form

u^x,?.) = S^exp (- iX^x) - S^ 0) exp (Ke+n^x), (7)
wheresmm=l•sn^I = O.ifn^m.and

Ke+n)17^ -le+nl^'.n^-l.
1 /'?

The terms S^(X) exp (i(6+n) x) desribe out going waves, if n^O , and they are
exponentially decaying, if n< 0.

Equations (6) are coupled by the boundary condition (3) which allows us to

determine the amplitudes S^(X). In fact, substituting (7) into (4) and then into (3)
we obtain the equation

1/2 -irnt . ^ 1/2 . . -int
-iX e -i L (6+n) S (31) e

n^-oo n

00

- imt xp -int
h(t) (e - £ S 0)e ). (8)

n = - oo n

Explanding h(t) in the Fourier series and comparing coefficients of e^^we arrive at
an infinite set of algebraic equations for the amplitudes S (31).

Note that functions S^(3L) are continuous in X e [m, m+l] for every

m =0,1,2,... Moreover, S^(m-o) = S^(m+o) for all neZ and m=l,2,. . . ,

3. Below we restrict ourselves to the consideration of the simplest case
h(t) - -h, + 2s cost (9)
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Then equation (8) is equivalent to the following system of equations

(Ke+n)172 + h^) S^-s(S^4- S^) = s[°\ neZ. ( 1 0 )

where

S^ftt .h.-i^.S^.S^ife^-e 01)
and S^° = 0 for In-ml ^ 2. We emphasize that the amplitudes S^ = S^ (X,s)

depend on energy ?. of incoming wave and on the parameter s in (9). It is convenient

to rewrite the system (10) in vector notation. Set s ={S^}. s^ ={S^° }, ne Z. and

A = diagUO+n)^2 + h^} , K = F + F*

where r. (F6)^ = 6^ . is the shift operator. Then (10) is equivalent to the

equation

(A - s K ) s = s^ (12)

which can be considered, for example, in the spacer (Z).

In the case 8 = 0 the function (9) does not depend on t so that equations (10)

become independent and can be easily solved. In fact, S^(?.,o) = S { (X) and S^fi.) =

0, if n ^ m, n^O. For negative n the amplitude S^(X.O) = 0 in case

h^ ^ le+nl172 ( 1 3 )
1/2and S^(^.O) is arbitrary in case h^ = |9+n| . The latter equality is possible only if

h^ >0 and ?.-^ € Z. In this case the function (4) is given by the relation

^x^^exp^Ll^x)-^0 COexp (iX^xDexp (iU)+7 exp(-h^x+ih^t) (l4)

with arbitrary 7. The last term in (l4) disappears (i.e. 7= 0) if h^O or h ^ > 0 and

X-3l^ Z

4. Our goal is to study the limit of the amplitudes S^.s) as s ~4 0. We first

consider the non-resonant case when either h^O or h ^ > 0 and X-?.^ Z. Then

condition (13) holds for all n = -1,-2,... so that the operator A is invertible and (10)

is equivalent to the relation

( 1 - 8 A ^ i O s = A'So

Since K is a bounded operator, for sufficiently small s this equation can be solved by
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iteration:
00

s(s) = S s" (A^K)' A'1 s ( £ ) .
p = o ° (6)

Thus for non-resonant energies X,?.-^ ^ Z. the asymptotic expansion of

amplitudes is described by regular perturbation theory. In particular. (15) ensures

that S^(?w,s) = 0(e n m ) so that the probability of excitation of states with energies
I Kl?.+K, K € Z, is proportional to e . The amplitude S^(X,s) converges to the scattering

matrix (l), i.e.

S^O.8) = (h^i?/'2)^^172)'1^^2^ (16)

The leading term of the corrections to the case s = 0 is determined by the amplitudes

S^GI.£) = -2ie ^1 /2 (h^-h i Oil)172 )"1 (h^+i ^1 /2 )"1 + o(s2 ). (17)

5. If h^ > 0 and ^ equals one of the resonant points ̂  + K, K € Z, there arises

a non-trivial interaction of the incident wave with the quasi-bound state of the

time-dependent well. This interaction does not vanish in the limits -^ 0. From the

mathematical viewpoint the problem is due to the appearence of zero eigenvalues of

the operator A. The operator A - sK is invertible for all e > 0 but some of the

matrix elements of (A-e K) tend to infinity as s -* 0. For definiteness we suppose

that 0 < h ^ < l and ^ approaches the point ?^ = 1-h^ . In this case the resonant

interaction is the most significant. In fact, we shall obtain asymptotic formulas for

S^ (?.,£) which hold uniformly in ^6 I g = [8.1-8]. 8 > 0, as e -* 0.

To bypass the problem of small denominators which appears now we

distinguish equation (10) with n= -1

(^-(l-^^S^-^So + S_,) = -e (18)

where all coefficients vanish as ̂  ̂  and s-4 0. First we consider only equations in

(10) which correspond to n^O. We shall solve this system with respect to amplitudes

S^, n ^ 0. with S_^ playing the role of a parameter. Since all diagonal elements

id+n) + hp n ^ 0, are separated from zero. this system can be solved by iteration

which gives the relation
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S ^ d L + i ^ r ^ s S . + h , - i ^^d+O^ 2 ) ) . (19)•'Q —— V**l • •l "' / \^ -I

We emphasize that quantities as 0(s ) are uniform in ̂  e Ig. Similarly, solving

equations in (10) corresponding to n^ -2 with respect to S^. n$ -2. we find that

s_, = sai^-iD^^s^d+o^2)). (20)
Substituting expressions (19). (20) into (18) we obtain finally the equation

for S_y. It follows that

S^Cl.8) = 2i83l l /2a ^ 0.8) (1+0(8)). (21)

where

Q0l.e) = [ -h^( l - . l ) l / 2 +£ 2 (h , - (2^) l / 2 ) " l ] (h^a l / 2 ) -^£ 2

Here we have taken into account that

is2 ̂ a^c.
Combining (19) with (21). we find also the asymptotics of S^ :

S,a.s) = (h^iX^Hh^iil172)"1 +2 ie 2 ^(h^iX172)"1^^)^). (22)

Clearly. IS^^.s)! = 1 up to an error of order s.

If ?. is separated from the point ̂ . we can replace a(?..£) by a(?..o) which is

not zero. In this case we recover the relations (16). (17) (for m = 0). In the particular

case X = ̂  we have that

Cl,.£) = e 2 ^ - (l+h^)172)"1^

where

b^ = 2h^ - (1+h;^2 + i (1-h^)172

There fore according to (21). (22)

S.^.e) = 2 i ( l - h ^ / 2 ( h ^ - ( l + h ^ / 2 ) b ^ £ ' l + 0(1).

SoOo.X) = b^b^ + O(s).

As could be expected, the amplitude S_^Q.£) grows infinitely as e -^ 0. By

virtue of (5) it follows that for the corresponding function (4) and any r > 0 the

integral

tends to infinity as s -4 0. This is consistent with the decoupling of bound states and
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scattering states in the stationary case 8 = 0 when, by (14), the integral (23) has
arbitrary value.

The amplitude SpC^s) has a finite limit SpC^.O) which is, however, different

from the scattering matrix (l) at energy 7.^ for the time- independent boundary

condition u'(o) = -h,u(o). Therefore, at energy^ we find an additional resonant

phase shift which does not vanish in the limit e -» 0.

6. In stationary problems resonances are usually defined as complex

"eigenvalues" for which the Schrodinger equation has solutions satisfying the outgoing

radiation condition at infinity. Similarly, acompex point?, can be called [3] resonant

point for the problem (2), (3) if there exists its solution of the form
oo

i 1 / 0

u(x,t) = 2^ A exp [i(?.+n) x - i(n+?l)t]
n = - o o n

It is easy to see that at such ?. the homogeneous system of equations
1 /9

( i a + n ) + h,) A^-s (A^ + A^) = 0

should have a non-trivial solution. This system can be studied by the method of

section 5. In the case 0 < h^ < l there exist for sufficiently small s resonant points
obeying the relation

X = n-h^s^d+h2)1^ id-h2)1 7 2) + o(e4)

where n is an arbitrary integer. In the limit s -» 0 these complex points approach
real points differing fromX, = -h^ by some integer.
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