JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Dimitri R. Yafaev
 On resonant scattering for time-periodic perturbations

Journées Équations aux dérivées partielles (1990), p. 1-8
<http://www.numdam.org/item?id=JEDP_1990 \qquad A4_0>
© Journées Équations aux dérivées partielles, 1990, tous droits réservés.
L'accès aux archives de la revue «Journées Équations aux dérivées partielles » (http://www. math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

D.R. YAFAEV
LOMI, Fontanka 27, Leningrad
191011 USSR

1. The energy of a quantum system desribed by a time-dependent Hamiltonian $\mathrm{H}(\mathrm{t})$ is not conserved. However, if a dependence of $\mathrm{H}(\mathrm{t})$ on t is periodic, it can be changed only by some integer number. In other words, the quasi-energy, i.e. the energy def ined up to an integer, is a conserved quantity.

Here we discuss scattering of a plane wave by a time-periodic potential. Due to the quasi-energy conservation such a process is desribed by a set of amplitudes $S_{n}(\lambda)$ where λ is energy of an incident wave (in other terms, of a quantum particle) and n is arbitary integer. We always decompose λ as $\lambda=m+\theta$ where $m \in \mathbb{Z}$ is the entire part of λ and $\theta \in[0,1]$. Each $S_{n}(\lambda)$ corresponds to a channel when energy is changed by $n-m$. Actually, amplitudes $S_{n}(\lambda)$ for $n \geqslant 0$ correspond to outgoing waves and amplitudes $S_{n}(\lambda)$ for $n<0$ correspond to exponentially decaying modes. In some sense these modes play the role of bound or quasi-bound states for time- independent Hamiltonians. It means that they represent states which can have long though finite time of life. Thus exponentially decaying modes are essential for a detailed picture of interaction of an incident wave with a quantum system but they do not contribute to the scattering matrix of this process. Our aim is to study the transformation of exponentially decaying modes into proper bound states as a time-periodic perturbation is switched off.

In fact, we shall consider the following situation. Suppose that $H(t)=H_{1}+\varepsilon V(t)$ where the Hamiltonian H_{1} has a negative eigenvalue λ_{1} and the coupling constant ε is small. Physically, it is natural to conjecture that the bound state of the system with the Hamiltonian H_{1} will give rise to some k ind of long-living state
for the family $\mathrm{H}(\mathrm{t})$. Due to the quasi-energy conservation this state is insignif icant if energy λ of an incident particle and λ_{1} do not coincide by modulus of \mathbb{Z}. However, if energy λ is resonant, that is $\lambda-\lambda_{1}=K \in \mathbb{Z}$, then an incident particle can strongly interact with this quasi-bound state. Therefore the corresponding amplitude $S_{m-K}(\lambda . \varepsilon)$ is expected to be very large for small ε. Below we will show at the example of zero-range potentials that this physical picture is correct.

The problem of resonances for time-periodic perturbations was studied earlier by K. Yajima [1] in a different, more mathematical, framework. Our approach is closer to physical papers [2] - [5]. In particular, in [5] an attempt was made to study the amplitudes S_{n} for small time-periodic perturbations. However, the appearence of resonant energies seems to be neglected in this paper.
2. The Hamiltonian H_{1} corresponding to a zero-range potential well of a "depth" h_{1} is defined as $H_{1}=-\frac{d^{2}}{d x^{2}}, x \in \mathbb{R}_{+}$, with the boundary condition $u^{\prime}(0)=$ $-h_{1} u(0), h_{1}=\bar{h}_{1}$. The operator $H_{1}>0$, if $h_{1} \leqslant 0$, and it has (exactly one) negative eigenvalue $\lambda_{1}=-h_{1}^{2}$ with the eigenfunction $\exp \left(-h_{1} x\right)$, if $h_{1}>0$. Let $H_{0}=-d^{2} / d x^{2}$ with the boundary condition $u(0)=0$ be the "free" Hamiltonian. The scaltering matrix $S^{(1)}(\lambda)$ for the pair H_{0}, H_{1} at energy λ equals

$$
\begin{equation*}
S^{(1)}(\lambda)=\left(h_{1}-i \lambda^{1 / 2}\right)\left(h_{1}+i \lambda^{1 / 2}\right)^{-1} \tag{1}
\end{equation*}
$$

We shall consider zero-range potential well whose depth depends periodically on time. Mathematically this problem is governed by the equation

$$
\begin{equation*}
i \frac{\partial u}{\partial t}=-\frac{\partial^{2} u}{\partial x^{2}}, x \in \mathbb{R}_{+} \tag{2}
\end{equation*}
$$

with the time-dependent boundary condition

$$
\begin{equation*}
u^{\prime}(0, t)=h(t) u(0, t), \overline{h(t)}=h(t), h(t+2 \pi)=h(t) \tag{3}
\end{equation*}
$$

We will look for solutions of equation (1) which have a representation of the form

$$
\begin{equation*}
u(x, t)=\sum_{n=-\infty}^{\infty} u_{n}(x) e^{-i(n+\theta) t} \tag{4}
\end{equation*}
$$

where the parameter $\theta \in[0,1]$. Such solutions describe a stationary process in the sense that for any $\tau \in \mathbb{R}$

$$
\begin{equation*}
(2 \pi)^{-1} \int_{\tau}^{\tau+2 \pi}|u(x, t)|^{2} d t=\sum_{n=-\infty}^{\infty}\left|u_{n}(x)\right|^{2} \tag{5}
\end{equation*}
$$

Substituting (4) into (2) we find that $u_{n}(x)$ should satisfy the equations

$$
\begin{equation*}
-u_{n}^{n}(x)=(n+\theta) u_{n}(x) \tag{6}
\end{equation*}
$$

whose solutions are linear combinations of exponentials. In particular, the solution corresponding to the incoming wave $\exp \left(-i \lambda^{1 / 2} x\right), \lambda=m+\theta, m \in \mathbb{Z}, \theta \in[0,1[$, has the form
$u_{n}(x, \lambda)=S_{n m} \exp \left(-i \lambda^{1 / 2} x\right)-S_{n}(\lambda) \exp \left(i(\theta+n)^{1 / 2} x\right)$,
where $S_{m m}=1, S_{n m}=0$, if $n \neq m$, and

$$
\mathrm{i}(\theta+\mathrm{n})^{1 / 2}=-|\theta+n|^{1 / 2}, \mathrm{n} \leqslant-1
$$

The terms $S_{n}(\lambda) \exp \left(i(\theta+n)^{1 / 2} x\right)$ desribe out going waves, if $n \geqslant 0$, and they are exponentially decaying, if $n<0$.

Equations (6) are coupled by the boundary condition (3) which allows us to determine the amplitudes $S_{n}(\lambda)$. In fact, substituting (7) into (4) and then into (3) we obtain the equation

$$
\begin{align*}
& -i \lambda^{1 / 2} e^{-i m t}-i \sum_{n=-\infty}^{\infty}(\theta+n)^{1 / 2} S_{n}(\lambda) e^{-i n t}= \\
& h(t)\left(e^{-i m t}-\sum_{n=-\infty}^{\infty} S_{n}(\lambda) e^{-i n t}\right) \tag{8}
\end{align*}
$$

Explanding $h(t)$ in the Fourier series and comparing coefficients of $e^{-i n t}$ we arrive at an infinite set of algebraic equations for the amplitudes $S_{n}(\lambda)$.

Note that functions $S_{n}(\lambda)$ are continuous in $\lambda \in[m, m+1]$ for every $m=0,1,2, \ldots$ Moreover, $S_{n}(m-0)=S_{n+1}(m+0)$ for all $n \in \mathbb{Z}$ and $m=1,2, \ldots$,
3. Below we restrict ourselves to the consideration of the simplest case

$$
\begin{equation*}
h(t)--h_{1}+2 \varepsilon \text { cos } t \tag{9}
\end{equation*}
$$

Then equation (8) is equivalent to the following system of equations

$$
\begin{equation*}
\left(i(\theta+n)^{1 / 2}+h_{1}\right) S_{n}-\varepsilon\left(S_{n+1}+S_{n-1}\right)=S_{n}^{(0)}, n \in \mathbb{Z} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{m}^{(0)}(\lambda)=h_{1}-\mathrm{i} \lambda^{1 / 2}, S_{m-1}^{(o)}(\varepsilon)=S_{m+1}^{(0)}(\varepsilon)=-\varepsilon \tag{11}
\end{equation*}
$$

and $S_{n}^{(o)}=0$ for $|n-m| \geqslant 2$. We emphasize that the amplitudes $S_{n}=S_{n}(\lambda, \varepsilon)$ depend on energy λ of incoming wave and on the parameter ε in (9). It is convenient to rewrite the system (10) in vector notation. Set $s=\left\{S_{n}\right\}, s_{0}=\left\{S_{n}^{(0)}\right\}, n \in \mathbb{Z}$, and

$$
\Lambda=\operatorname{diag}\left\{i(\theta+n)^{1 / 2}+h_{1}\right\}, K=\Gamma+\Gamma^{*}
$$

where $\Gamma,(\Gamma 6)_{n}=\sigma_{n+1}$, is the shift operator. Then (10) is equivalent to the equation

$$
\begin{equation*}
(\Lambda-\varepsilon K) s=s_{0} \tag{12}
\end{equation*}
$$

which can be considered, for example, in the space $\ell_{2}(\mathbb{Z})$.
In the case $\varepsilon=0$ the function (9) does not depend on t so that equations (10) become independent and can be easily solved. In fact, $S_{m}(\lambda, 0)=S^{(1)}(\lambda)$ and $S_{n}(\lambda)=$ 0 , if $n \neq m, n \geqslant 0$. For negative n the amplitude $S_{n}(\lambda, 0)=0$ in case

$$
\begin{equation*}
h_{1} \neq|\theta+n|^{1 / 2} \tag{13}
\end{equation*}
$$

and $S_{n}(\lambda, 0)$ is arbitrary in case $h_{1}=|\theta+n|^{1 / 2}$. The latter equality is possible only if $h_{1}>0$ and $\lambda-\lambda_{1} \in \mathbb{Z}$. In this case the function (4) is given by the relation $u(x, t)=\left(\exp \left(-i \lambda^{1 / 2} x\right)-S^{(1)}(\lambda) \exp \left(i \lambda^{1 / 2} x\right)\right) \exp (i \lambda t)+\gamma \exp \left(-h_{1} x+i h_{1}^{2} t\right)$ with arbitrary γ. The last term in (14) disappears (i.e. $\gamma=0$) if $h_{1} \leqslant 0$ or $h_{1}>0$ and $\lambda-\lambda_{1} \notin \mathbb{Z}$
4. Our goal is to study the 1imit of the amplitudes $S_{n}(\lambda, \varepsilon)$ as $\varepsilon \rightarrow 0$. We first consider the non-resonant case when either $h_{1} \leqslant 0$ or $h_{1}>0$ and $\lambda-\lambda_{1} \notin \mathbb{Z}$. Then condition (13) holds for all $n=-1,-2, \ldots$ so that the operator Λ is invertible and (10) is equivalent to the relation

$$
\left(I-\varepsilon \Lambda^{-1} K\right) s=\Lambda^{-1} \text { so }
$$

Since K is a bounded operator, for sufficiently small ε this equation can be solved by
iteration :

$$
\begin{equation*}
s(\varepsilon)=\sum_{p=0}^{\infty} \varepsilon^{p}\left(\Lambda^{-1} K\right)^{p} \Lambda^{-1} s_{0}(\varepsilon) \tag{15}
\end{equation*}
$$

Thus for non-resonant energies $\lambda, \lambda-\lambda_{1} \notin \mathbb{Z}$, the asymptotic expansion of amplitudes is described by regular perturbation theory. In particular, (15) ensures that $S_{n}(\lambda, \varepsilon)=0\left(\varepsilon^{|n-m|}\right)$ so that the probability of excitation of states with energies $\lambda+K, K \in \mathbb{Z}$, is proportional to $\varepsilon^{|K|}$. The amplitude $S_{m}(\lambda, \varepsilon)$ converges to the scattering matrix (1), i.e.

$$
\begin{equation*}
S_{m}(\lambda, \varepsilon)=\left(h_{1}-i \lambda^{1 / 2}\right)\left(h_{1}+i \lambda^{1 / 2}\right)^{-1}+O\left(\varepsilon^{2}\right) \tag{16}
\end{equation*}
$$

The leading term of the corrections to the case $\varepsilon=0$ is determined by the amplitudes

$$
\begin{equation*}
S_{m \pm 1}(\lambda, \varepsilon)=-2 i \varepsilon \lambda^{1 / 2}\left(h_{1}+i(\lambda \pm 1)^{1 / 2}\right)^{-1}\left(h_{1}+i \lambda^{1 / 2}\right)^{-1}+0\left(\varepsilon^{2}\right) \tag{17}
\end{equation*}
$$

5. If $h_{1}>0$ and λ equals one of the resonant points $\lambda_{1}+K, K \in Z$, there arises a non-trivial interaction of the incident wave with the quasi-bound state of the time-dependent well. This interaction does not vanish in the limit $\varepsilon \rightarrow 0$. From the mathematical viewpoint the problem is due to the appearence of zero eigenvalues of the operator Λ. The operator $\Lambda-\varepsilon K$ is invertible for all $\varepsilon>0$ but some of the matrix elements of $(\Lambda-\varepsilon K)^{-1}$ tend to infinity as $\varepsilon \rightarrow 0$. For def initeness we suppose that $0<h_{1}<1$ and λ approaches the point $\lambda_{0}=1-h_{1}{ }^{2}$. In this case the resonant interaction is the most significant. In fact, we shall obtain asymptotic formulas for $\mathrm{S}_{\mathrm{n}}(\lambda, \varepsilon)$ which hold uniformly in $\lambda \in \mathrm{I}_{\delta}=[\delta, 1-\delta], \delta>0$, as $\varepsilon \rightarrow 0$.

To bypass the problem of small denominators which appears now we distinguish equation (10) with $n=-1$

$$
\begin{equation*}
\left(h_{1}-(1-\lambda)^{1 / 2}\right) S_{-1}-\varepsilon\left(S_{0}+S_{-2}\right)=-\varepsilon \tag{18}
\end{equation*}
$$

where all coefficients vanish as $\lambda \rightarrow \lambda_{0}$ and $\varepsilon \rightarrow 0$. First we consider only equations in (10) which correspond to $n \geqslant 0$. We shall solve this system with respect to amplitudes $S_{n}, \mathrm{n} \geqslant 0$, with S_{-1} playing the role of a parameter. Since all diagonal elements $\mathrm{i}(\lambda+\mathrm{n})^{1 / 2}+\mathrm{h}_{1}, \mathrm{n} \geqslant 0$, are separated from zero, this system can be solved by iteration which gives the relation

$$
\begin{equation*}
S_{0}=\left(h_{1}+i \lambda^{1 / 2}\right)^{-1}\left(\varepsilon S_{-1}+h_{-1}-i \lambda^{1 / 2}\right)\left(1+0\left(\varepsilon^{2}\right)\right) \tag{19}
\end{equation*}
$$

We emphasize that quantities as $0\left(\varepsilon^{2}\right)$ are uniform in $\lambda \in I_{\delta}$. Similarly, solving equations in (10) corresponding to $n \leqslant-2$ with respect to $S_{n}, n \leqslant-2$, we find that

$$
\begin{equation*}
S_{-2}=\varepsilon\left(h_{1}-(2-\lambda)^{1 / 2}\right)^{-1} S_{-1}\left(1+0\left(\varepsilon^{2}\right)\right) \tag{20}
\end{equation*}
$$

Substituting expressions (19), (20) into (18) we obtain finally the equation for S_{-1}. It follows that

$$
\begin{equation*}
S_{-1}(\lambda, \varepsilon)=2 \mathrm{i} \varepsilon \lambda^{1 / 2} \Omega^{-1}(\lambda, \varepsilon)(1+0(\varepsilon)) \tag{21}
\end{equation*}
$$

where

$$
\Omega(\lambda, \varepsilon)=\left[-h_{1}+(1-\lambda)^{1 / 2}+\varepsilon^{2}\left(h_{1}-(2-\lambda)^{1 / 2}\right)^{-1}\right]\left(h_{1}+i \lambda^{1 / 2}\right)+\varepsilon^{2}
$$

Here we have taken into account that

$$
\left|\varepsilon^{2} \Omega^{-1}(\lambda, \varepsilon)\right| \leqslant C .
$$

Combining (19) with (21), we find also the asymptotics of S_{0} :
$S_{0}(\lambda, \varepsilon)=\left(h_{1}-\mathrm{i} \lambda^{1 / 2}\right)\left(h_{1}+i \lambda^{1 / 2}\right)^{-1}+2 i \varepsilon^{2} \lambda^{1 / 2}\left(h_{1}+i \lambda^{1 / 2}\right)^{-1} \Omega^{-1}(\lambda, \varepsilon)+0(\varepsilon)$.
Clearly, $\left|S_{0}(\lambda, \varepsilon)\right|=1$ up to an error of order ε.
If λ is separated from the point λ_{0}, we can replace $\Omega(\lambda, \varepsilon)$ by $\Omega(\lambda, 0)$ which is not zero. In this case we recover the relations (16), (17) (for $m=0$). In the particular case $\lambda=\lambda_{0}$ we have that

$$
\left(\lambda_{0}, \varepsilon\right)=\varepsilon^{2}\left(h_{1}-\left(1+h_{1}^{2}\right)^{1 / 2}\right)^{-1} b_{1}
$$

where

$$
b_{1}=2 h_{1}-\left(1+h_{1}^{2}\right)^{1 / 2}+i\left(1-h_{1}^{2}\right)^{1 / 2}
$$

There fore according to (21), (22)

$$
\begin{aligned}
& S_{-1}\left(\lambda_{0}, \varepsilon\right)=2 i\left(1-h_{1}^{2}\right)^{1 / 2}\left(h_{1}-\left(1+h_{1}^{2}\right)^{1 / 2}\right) b_{1}^{-1} \varepsilon^{-1}+0(1) \\
& S_{0}\left(\lambda_{0}, \lambda\right)=\overline{b_{1}} b_{1}^{-1}+0(\varepsilon)
\end{aligned}
$$

As could be expected, the amplitude $S_{-1}\left(\lambda_{0}, \varepsilon\right)$ grows infinitely as $\varepsilon \rightarrow 0$. By virtue of (5) it follows that for the corresponding function (4) and any $r>0$ the integral
tends to infinity as $\varepsilon \rightarrow 0$. This is consistent with the decoupling of bound states and
scattering states in the stationary case $\varepsilon=0$ when, by (14), the integral (23) has arbitrary value.

The amplitude $S_{0}\left(\lambda_{0}, \varepsilon\right)$ has a finite limit $S_{0}\left(\lambda_{0}, 0\right)$ which is, however, different from the scattering matrix (1) at energy λ_{0} for the time-independent boundary condition $u^{\prime}(0)=-h_{1} u(0)$. Therefore, at energy λ_{0} we find an additional resonant phase shift which does not vanish in the limit $\varepsilon \rightarrow 0$.
6. In stationary problems resonances are usually defined as complex "eigenvalues" for which the Schrödinger equation has solutions satisfying the outgoing radiation condition at infinity. Similarly, a compex point λ can be called [3] resonant point for the problem (2), (3) if there exists its solution of the form

$$
u(x, t)=\sum_{n=-\infty}^{\infty} A_{n} \exp \left[i(\lambda+n)^{1 / 2} x-i(n+\lambda) t\right]
$$

It is easy to see that at such λ the homogeneous system of equations

$$
\left(i(\lambda+n)^{1 / 2}+h_{i}\right) A_{n}-\varepsilon\left(A_{n+1}+A_{n-1}\right)=0
$$

should have a non-trivial solution. This system can be studied by the method of section 5 . In the case $0<h_{1}<1$ there exist for sufficiently small ε resonant points obeying the relation
$\lambda=n-h_{1}^{2}-2 \varepsilon^{2} h_{1}\left(\left(1+h_{1}^{2}\right)^{1 / 2}+i\left(1-h_{1}^{2}\right)^{1 / 2}\right)+0\left(\varepsilon^{4}\right)$
where n is an arbitrary integer. In the limit $\varepsilon \rightarrow 0$ these complex points approach real points differing from $\lambda_{1}=-h_{1}^{2}$ by some integer.

References
[1] K. YAJIMA, Resonances for the AC-Stark effect. Commun. Math. Phys. 87 (1982), 331-352.
[2] A.N. KAZANSKII, V.N. OSTROVSKII, E.A. SOLOV'EV, Passage of low-energy particles through a nonstationary potentiel barrier and the quasi-energy spectrum, Soviet Physics - JETP 48 (1976), N2, 254-259.
[3] V.N. OSTROVSKII, many-photon ionization, resonance scattering on a
nonstationary potential, and complex poles of the S-matrix, Theor. Math.
[4] M. BUTTIKER, R. LANDAUER, Traversal time for tunneling, Physica Scripta 32 (1985), 429-434.
[5] J.A. STøVNEG, E.H. HAUGE, The Büttiker-Landauer Model Generalized, Preprint, 1989, University of Trandheim.

