@incollection{JEDP_1990____A10_0,
author = {Erik Skibsted},
title = {Time-dependent approach to radiation conditions},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {10},
pages = {1--13},
year = {1990},
publisher = {\'Ecole polytechnique},
doi = {10.5802/jedp.392},
mrnumber = {91k:81201},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.392/}
}
TY - JOUR AU - Erik Skibsted TI - Time-dependent approach to radiation conditions JO - Journées équations aux dérivées partielles PY - 1990 SP - 1 EP - 13 PB - École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.392/ DO - 10.5802/jedp.392 LA - en ID - JEDP_1990____A10_0 ER -
Erik Skibsted. Time-dependent approach to radiation conditions. Journées équations aux dérivées partielles (1990), article no. 10, 13 p.. doi: 10.5802/jedp.392
[G] , : Asymptotic completeness for N-body short-range quantum systems: A new proof. Preprint (1989). | MR
[H-S] , , , : Time-dependent approach to radiation conditions. Preprint (1990). | MR | Zbl
[I-S] , , , : Limiting absorbtion method and absolute continuity for the Schrödinger operator, J. Math. Kyoto Univ., 12 (1972), 513-542. | MR | Zbl
[I1] , : Eikonal equations and spectral representations for long-range Schrödinger Hamiltonians, J. Math. Kyoto Univ., 20-2 (1980), 243-261. | MR | Zbl
[I2] , : Differentiability of generalized Fourier transforms associated with Schrödinger operators, J. Math. Kyoto Univ., 25-4 (1985), 781-806. | MR | Zbl
[I-K] , , , : Modified wave operators with time-dependent modifiers, J.Fac.Sci. Univ. Tokyo, Sect. 1A, Math.32(1985), 77-104. | MR | Zbl
[J] , : Propagation estimates for Schrödinger-type operators, Transactions of the American Mathematical Society 291-1 (1985). | MR | Zbl
[M] : Opérateurs conjugués et propriétés de propagation, Commun. Math. Phys.91(1983), 279-300. | MR | Zbl
[S-S] , , , : Local decay and propagation estimates for time-dependent and time-independent Hamiltonians. Preprint (1988).
[S] , : Propagation estimates for N-body Schrödinger operators. In preparation.
Cité par Sources :

