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Necessary conditions for strong
hyperbolicity of first order systems

by

Waichiro MATSUMOTO and Hideo YAMAHARA

So. Introduction, definitions and theorems.

On higher order scalar equations, the strong hyperbolicity is well
characterized. (See 0. A. Oleinik [l3], V. Ja. Ivrii and V. M. Petkov [3], V. Ja. Ivrii
[2], L. Hormander [l], N. Iwasaki [4], [5], [6], etc.) On the other hand, on first
order systems, if their coefficients are constant, we also have a complete result. (See
K. Kasahara and M. Yamaguti [7]). In case of first order systems with variable

coefficients, we have some results, but they are not satisfactory. (See, for example, N.
D. Koutevand V. M. Petkov [8], T. Nishitani [lo], [ll], [12], H. Yamahara [l 4],
[15] etc.).

In this note, we give some necessary conditions for the strong hyperbolicity
of first order systems with variable coefficients, assuming that coefficients depend
only on the time variable. This is a further developed results of H. Yamahara [l4]
and [15]. On the other hand, these become sufficient under a reasonable
supplementary condition.

Let us consider the following Cauchy problem.

/Pu=(Pp-B)u=(D^-2t. ,Aj(t ,x)D^-B(t,x)}u=f(t ,x),
' i

(1)
[u(tQ,x)=UQ(x),

where u(t,x), u^x), f(t,x) are vectors of dimension N and Aj(t,x), B(t,x) are square

matrices of order N with elements in C^ft). (ft is an open set in 1R^6 ). We say
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that the Cauchy problem (l) is uniformly well-posed in a if the following holds :

VK=[T\ ,T2: |xKo,VK'ccK

(2) • 3d>: a lens-shaped neighborhood of the origin,

, V(to,Xo)€K', Vu^e C°°(Ko), Vf€ C^K), 3 I u solution of (l) in (t^.x^+o.

Proposition 0.1. // (l) is uniformly well-posed in Sl, the following holds :

'V( to ,x^)eK' , VM€IN,3M'61N.36>0 ,3C>0

(3) • Vd^eK' s.t.|to-tj^8, VU^eC^K)

yt <= C^to.Bu solution of ( l ) in K", (K"={|t-tJ$6}x{|x-xJ$6})0' ^ ' " 0 ^

and u satisfies

(4) MM.K^^I^IM'.K -^-I^M-l.K^
0

def ^
where |uLy = £ max |D u(t,x)|.

^i*llv I I KA / \ »A- -»^Iccl^M (t.x)eK

By the estimate (4). we have the following theorem.

Theorem 0. (P. D. Lax and S. Mizohata)
0

If (l) is uniformly well posed, all characteristic roots of P are real in QxRAO.

From now on, we always suppose the conclusion of the above theorem.

Definition 0.1. (Strong hyperbol ic ity)

We say that P is strongly hyperbolic when the Cauchy problem (l) of Pp+B is

uniformly well posed in Q for arbitrary choice of B(t,x).

Throughout this note, we assume the following :

Assumption. A^ depends only on t. (l $ i $C).

Let UJj. ^ be the different characteristic roots of P at t = t. and ^ = ̂  ^ 0.
We set

.(o) ^e A /. \ »-
A =2-i-lAi(to^oi'
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. ( i ) ye a A /* \ fcA =2•^-l^^Ai( to^oi•i - l 3t "•p'-o7 •'Oi •

y.: the projection to the generalized eigenspace of 3L ,

A^A^^.^i^l.l^d).

Theorem 1. // P is strongly hyperbolic in Q, the follow ing holds

(5) ^(A^^I.XA^^A^-^I,)^

/or l^j^dancf keZ^ ={o,l,..J.

Remark. Let m be the multiplicity of 'k . . At least for k ^m , Condition (5) becomes

trivial.

. ̂  A*! ,

Corollary 2. The lengths of Jordan chains of A ° are at most 2.

By virtue of Bronshtein-Mandai's theorem, the characteristic roots ^ ) (t)

( l $ j $ N ) of P p ( t ^ ; ̂ ) belong to C^°. (See T. Mandai [17] and M. D. Bronshtein

[16]). Let us set

^^O^^^^t-t,)^^).
Theorem 3. // 8= land (^(t)}^ are distinct for 0<|t-tJ$36^ . condition ( 5 )
is suficient for the strong hyperbolicity of P near ty

Remark, ̂ (t) is obtained by 2^ (^ A^t^with 0$k$2.

In the following sections 1, 2 and 3, we give a proof of Theorem 1 for k = 0

and 1. The proof of Theorem 1 for k ^2 and that of Theorem 3 will be given in the

forthcoming paper [l9].

SI. Reduction.

We may assume t^ = 0. We take B as constant matrix and f = 0. Let us take

Fourier image of (l) on the variable x ;
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^-2:^A,(t)^-B(t)}u=0

(1.1) •

,u(0^)=u^).

Setting ^=n^ , we expand 2^Aj(t)^ as A^+t A^+t2 A^t). Further, we

transform A ° to Jordan's normal form A :
FA. ^

A=
A

. ^l^'
ffl

f=]\r^)9f(^.2)9...9f(^.m[)9...9f(i.m\).

^0 i ^

./(k.^ ; kxk , ( l$j$d).

Thus, we arrive at

^-^A+tA^+t^^-mmu^O,

(1.2) •

-u l (o )=UK>•

Corresponding to A, we can transform (1.2) by the similar transformation by

N ( t ) = I + t N , r

fPu={Dt-n(A+t A^+t2 A^^O-Bd^u^O,

(1.3)

[u^(o)=u^ ,
o ~ /() ~~ /()

where, decomposing in blocks A and A corresponding to A, say,
'(^ ;>' '(i)/. .,.(A1 (jj'))i<, ̂  and (A^jJ'))^ y^ . it holds that A(j.j) = A(j.j) and A(jJ') = 0 for

J^J'.

Ex.

A A(l.l) A(l,2)

A = A=

A. A(2.l) A(2,2)
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As our consideration becomes independent of the part which has the factor t2 n,

from now on, we take out (j,j) block and omit the subscript "j". We may assume
X = 0. Further, we set t = n~° s {a > 0). Thus, we arrive at

'PO v=(n° D^-(n J+n'° s A,+n1'20 s2 A^s)+B}v
(1.4) • =0 .

. V ( O ) = V Q ,

where v.v^ are vectors of dimension m, J, A,, Ay B are square matrix of order m
and

J=J(r,l)®...®J(r,m,.)®J(r-l,l)®...®J(r-l,m,._,)©J(r-2,l)®...®J(l,m,).
V •-"j-iJ m,=m.

Here, condition (5) for j in §0 is equivalent to

(1.5) .KA^^oforkeZ, .

Proposition 1.1. We assume that (l) is uniformly well posed in ft. If, for P in

(1.4), there exists an invertible matrix N(s,n)/br O-dsl^S and C^2, (C€IN) such

that

P=N'lLN=n<TD,-nll(J(s)+K(s))-nll'C(s,n),

\i>\i\ \i.>o. C(s.n) is bounded,
( k.h

0 ^

0J= ® J(k,h),J(k.h)=
l $k$R

l$h$Mn
k.h
ak-l

0
k,h .a^' is not identically zero, and is analytic for s ̂  0,

? = (K (k ,h,k' ,h') )^ ̂  y ̂ : block decomposed with respect to J,
l$h$M^
l$h'$M^,

with
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f k.h.k'.h' \
0

K(k.h,k',h')= . o ; kxk '
k.h.k'.h'^ °J

k.h.k'.h' - . . , no^ = 0 for i^ o mod C.

then, ^e have the following ;

1) // C ̂  3. J+ K is nilpotent.

2) Let det(U-(J+K)) be 2^ C^(s) Sl"1"1.

// 6=2 and C^(s) (C^^^(s), resp.) is even function (odd function, resp.),

J+K is nilpotent

Now, we assume (5) does not hold for k = 0 or k = 1.
1 O/T 0 1

In order to make B stronger than n s A^(s), we take l-2a < 0 ie a >^-.

S2. Maximal connection.

Let us consider
R

J= ® J(k,h), J(k.h) is that in Prop. 1.1, M=£ j M. .
l ^ k ^ R j = l J

l^h^Mn

Corresponding to the blocks of J, we decompose MxM matrix K to
(K(k,h,k',h')),^,^ .

l$h$M^
l$h'$M^.

Ex.

J(2,l) J(2,l,2,l) J(2,l,2.2) J(2.1.1,l)

J= J(2,2) , K = J(2,2.2,l) J(2,2.2,2) J(2,2,l,l)

J(l.l) J(l,1,2,1) J(l,l,2,2) J(l,1,1,1)

We call (K(k,h,k',h')) the block decomposition of K with respect to J.

The following notions are important.
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Definition 2.1. (Maximal connection of Jordan chain).

Let (K(k,h,k',h')) be the block decomposition of K with respect to ]. If
1 )

(2.1)

f °

K(R,h,k',h')=

<«
K(k.h,k',h')=0 (k<R)

0
R.h.k'.h'

°1

0

0>

f

(3) ^=(a ' • • )^h,h'<M is nilpotent,
R

J+K is again nilpotent. We say that in J+K, the Jordan chains of Jare maximally

connected by K, or that K brings a maximal connection (of Jordan chain) to ].
Definition 2.2. (Self similar matrix).

Let us take 1 < R^ < R^ <... < Rp < R , such that

R ^ = k j R j + R ^ , k ^ l , 0$R^°<Rj , k, ,R .€ lN .
We set

0 1

^
0 .

. 1

0

; R , x R .o o

0A^=A^...®A,®Aj+K, ; R,^xR^

kj

Aj = the first R. rows and R°columns part of A.,

(2.2) Kj = (Kj(k,k')); block decomposition v.r.t. A.^

K.(h,h+l);

fO 0^
0

0

s 0

| , l$h$kj ,

J(i): ix i = the first i rows and i columns part of Ap+i
We call
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}= © (J(i)®...®J(i))
i^Rp^ M,

a self similar matrix of step p+1 and A. and A°the factors of step j.

Let J be MxM selfsimilar matrix and K is a MxM matrix block decomposed^<
w.r.t J. Let an element of a block of K belong to q -thAp in the direction of row

and to Qp0 -thAp in the direction of column. ((kp+l)-thAp=A_). Further, inA ,

let it belong to q ^-thA in the direction of row and to q*.^-thA _, in the

direction of column. We continue this procedure up to q^ . At last, let it be the

(q^.q^) element of Ap . We set q^q^-q^+1 (- l$h$p) .
Definition 2.3. (Address)

We call q= (qp.qp.i.—.q.i) the address of the element.

To the set of addresses, we give the dictionary order.

Definition 2.4. (Acceptable matrix).

Let us takel>v_,>VQ>.. .>v ̂ O.v^1'. _ ^ v , , ando>0 (v . ,<?(= lR^) . Fora

block decomposed matrix K w.r.t. a selfsimilar matrix J, if the adress q of its element

has a q ^ such thatq^k^+1 and 2}^(q^-l)R^+q_^=R°(that is, the element is

found at the left-down corner of R.^xR matrix in step of j+1, R( ^R.+l) ; free),

the element has the form c(s)nl-v, v' =v'(q) =2o-2p _i(qj-l)v, and otherwise, it

has the form c n^, v' =v'{q)=a-^p -/(Ij-Ovj and c is constant. Further, if all

v(q) are greater than v, we say that K is acceptable w.r.t. n .̂!. We call

s(q)= (v'-v^S^^q.-OR.+q ^ the descent index of the element with the
address q.

When the descent index is smaller, we say that it is more effective.
^

Remark. Corresponding to the above J, we take a shearing operator with weight s
W= e W(k.h,£),

i^Rp^
l$h$M^

W(k,h,e) = diagd.n0 ,n2c,...,n(k-l)c), £ =v(q). Then, the element with the adress q
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obtain the order l-v-e of W '(n1^ J)W by the shearing transformation W~1 K W.

Now, we return to the equation (1.4). We assume that (l) is uniformly
well-posed.

Let us set W= © W(k,h,^).
i $ k $ r r

l$h$m^

setting w^ = W w, w^ satisfys P^ = 0,

(2.3) P^W-^W^D^n-^J+n-^s K,+s A^+s^s ; ^^-B^n)).
where s(n -<T r K,+AJ(n)) is brought from n~0 s A1 and the order of AJ(n) is less

thanl-o/r.sA^+s^^s ; n) is acceptable w.r.t. n'0^ ].

( ° 1

InK^(K/k,h,k'.h'))^,^. , K,( ,k,k',h')= ^ o
l$h^ h.k-.h-
l$h'$m^, ^a )

and K,(k,h,k'.h') = 0 for k <r. By virtue of Proposition 1.1, (a11'11'11'), ,̂ ^ must be

nilpotent, and then, 1̂  brings a maximal connection to J if K^ 0. We can take each

Jordan chain in J+K^ composed by vectors of s11 v, v; constant vector. Replacing s11 v

by vn we can have a constant matrix N which transform J to ] , a selfsimilar
matrix. We have

(2.4) P l = N - l P ^ N = n < T D , - ( n - o / r J l ( s ) + s A ; ( n ) + s 2 A ^ ( s ; n ) + B l ( n ) ) .

Let us set the length of the longest Jordan chain of J^(s) as R, = kg R^+C, R^ = r,

O $ C < R Q . In s A,(n)+s A^(s ; n), the highest order on n is given only by the

elements with the address (k^+l.r-l) if C^R^-l , and by those with the adress

(kp.r-l) (and also by those with (kQ+l,r-2) in cas e o f k ^ l ) i f C < R Q - l . In the

former case, if an element with the address (kp+l.r-l) does not vanish, after the

shearing transformation with weight R-°R— a maximal connection occurs by virtue
o i

of Proposition 1.1. In the latter case, no maximal connection occurs. Continuing this

procedure, we arrive at the following proposition.
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Proposition 2.1. Let us set R ^ = l . R Q = R » ^+1=^ P j ^ j K j - i (o^.kP+1) and
f t = k p Rp+C. (kj€N={l,2, . . .}, 0$C<Rp) .

(1) In the above procedure, if p times maximal connections occur, the highest

order part must be the self similar matrix of step p+1 replacing R by ft

and has the order 1-v on n, V ^ F V . , v,=p—°"p—-1 - 0 ) , R^R^

(2) The operator P has the following form ;

(2.5) Pp„=n<7D,-(n l"VJp^(s)+sAP ' l(n)+s2Af l(s;n)+BP+l).

where s A^^+s^^s ; n) Vs acceptable w.r.t. n^ J ^^.

(3) In s A^d^^A^^s ; n), if C ^ R . - R , the highest order is given

only by the elements with address (k p + l , k , . . . ,k^r-l) and j7

C<Rp-Rp_^ it is given by those with the address ( k , k , . . . , k ^ , r - l ) fancf

also by those with (l,...,1.2,kg-l,kg_^...,k^r-l) in case of k g ^ ^ = . . . = k -1

and kg^2 and a/so by (hose with (l,...,!,2,l,...,l.r-2) in case of
ir -ir - -^ -i)^o" ~i~ •" ~ p '' / '

Proof By the induction on p.

S3 Proof of Theorem 1, case of k $ 1.

The maximal connections can occur at most [^r^ times. Let no maximal

connection occur on P , that is. in f t = k R + e , e ^ R - R o r e = R - R b u t a l l

elements with the address (k +1. k , ..., k^r-l) vanish.

Let W be the shearing operator corresponding to J in (2.5) with weight s
(£ = F-I——in case of ^Rp-Vi and £ = R (R q -R ) '^ case of C$R -R ).p p + i - p p + i p
We set

(3.1) ^W^P^W^

n oD,-{n- v - c (Jp^(s)+sKp^)4-sAP ' 2 (n)4-s 2A;+ 2 (s ;n)4-BP + 2^^^

where the orders of A^2 and A^2 are less than 1-v-s. Here the highest order in

Bp+ (n) is o and it is given by the elements with the address (k +l,k ,...,k^,r) in
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caseof€>Rp-Rp_,and (kp,kp.,,...,ko,r) incaseofC^Rp-Rp^.

By a suitable choice of B in the original operator P, we can take B^2 such that it has

only one non-zero element, (g,l)-element c^ n° (c^ is a large constant), where

g = k p R p + 2 ? : ^ k j - l ) R j + r i f e > R p - R p _ , a n d g = 2 ^ ( k , - l ) R j + r i f e ^ R p - R p _ , .
We consider the characteristic polynomial of the full operator P :

detaMn-^Jp^s^s Kp,,)+s A^(n)+s2 A^+B^n)})
X" in / \, m-j=2,j_QCtj(s ; n)X '.

ctg(s ; n) has the form c^ n s^l+od)) , 6 - (g - l ) ( l -v -e )+o and \ eZ^c^h-i-nh^ x _ / < r _ i U < »> <~\ , ^ ^^A .̂

(v = 2. Q ̂ —0^-). Here, we cannot find Jordan chains which are composed the
j-i J„»

vector of type s v, v: constant vector.

By virtue of Proposition 1.1, Jp.,i+Kp^ is nilpotent. Let us take N(s) which
'>•

transforms Jp+,+s Kp^ to Jordan's normal form and set

(3.2) Pp.2=N"1 . P,^ . N = n° D.-n-^ Jp,,- C(s ; n).
Here, the commutator n° N~\s) Dg N(s) has the same order o as Bp+2(n) and it can
give an influence on a (s ; n). That is, setting

detOl-n-'-6 Jp^-C(s ; n)) ̂ .^(s ; n^"1-1,

a'g(s ; n) may have the form (cQ+c'^s^d+od)). However, c'^s) is decided by

the principal part part of the original operator P and independent of B^n). Thus,
a'g(s.n) a 0 and it has the order a, if we take c^ sufficiently large.

Leto be i/i^ (i^i^N). l-v-e is also expressed as i^/i^ ( i^€ lN) . If
h/i

l -v-£>o.wecanfind a matrix N' ~ ^^heIN" 0 ̂ ^^ such that

(3.3) Q = N • - l o P „ o N • = n o D , - n - v - C J , - C ' ( s ; n ) ,-1 V.oN'^-n——^-

where C'(s ; n) = (C'(k,h,k',h')(s ; n)) ; block decomposition w.r.t. J ^ ,
( khk'h' ^

7^ 0

C'(k.h,k'.h')= . o and
khk'h'

v\ ° )
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khk'h* v i/i^(j-i)(v+£) .̂̂
Y, ~ 2. n 7 (s ) .

J i€Z Jl

i / iQ+j(v+e)<l

(See, for example, V.M. Petkov [l8] or rather its proof).

We say that a matrix which has the form as C is admissible to n1^"6 J. By this

transformation, the principal part ofa '(s ; n) is preserved. From now on, we assume

that l-v-£>o.

We introduce a notion :

Definitions.!. (Stable coefficient of characteristic polynomial)

Let C be admissible to n^ J. We set

detO I-n^J-^s ;n)) =2^6^ ; n)^.

When the principal part of a. is preserved by any perturbation of order at most o,

we say that a. is a stable coefficient of the characteristic polynomial of full operator.

On the stable coefficients, the following proposition was obtained by W.

Matsumoto [9].

Proposition 3.1. If the original Cauchy problem is uniformly well-posed, the

characteristic polynomial of full operator has no stable coefficient.

We transform Q by shearing operator W' corresponding to J with weight

s^>0,£^: very small.

(3.4) Q '=W I ~ l QW'=n < 7 D^n ' v ' c ~ c oJ-C"(s ;n ) .

where the order of C"(s ; n) is less than 1-v-s-e^ and C"(s,n) is admissible to

n v c ^^o J. Further, the elements which concern a' (s ; n) has the order
6

<^+(g-l)£o in C"(s,n). This implies that a' (s ; n) is stable in the characteristic

polynomial of the full operator Q\ if we can find a such that l-v-e>o>^-. Then,

when we can find ao such that l-v-c>o>^-, we arrive at a contradiction. Here.
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the existence of such a is equivalent to "g^3" and further equivalent to "r^2 and if
r=2.

inA^(^(k,h,k\h')),^,^in(l.4)^(2.h,2,h')=^^^^ ^) .

l$h'$m^,

^hh'\<h,h'<M ^nishes". "r$2" is equivalent to condition (1.5) with k = 0 (Corollary

2) and the rest is equivalent to (1.5) with k = 1.

Q.E.D.
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