Journées ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Waichiro Matsumoto Hideo Yamahara
 Necessary conditions for strong hyperbolicity of first order systems

Journées Équations aux dérivées partielles (1989), p. 1-16
<http://www.numdam.org/item?id=JEDP_1989 \qquad A8_0>

Necessary conditions for strong hyperbolicity of first order systems

by

Waichiro MATSUMOTO and Hideo YAMAHARA

§o. Introduction, definitions and theorems.
On higher order scalar equations, the strong hyperbolicity is well characterized. (See O. A. Oleinik [13], V. Ja. Ivrii and V. M. Petkov [3], V. Ja. Ivrii [2], L. Hörmander [1], N. Iwasaki [4], [5], [6], etc.) On the other hand, on first order systems, if their coefficients are constant, we also have a complete result. (See K. Kasahara and M. Yamaguti [7]). In case of first order systems with variable coefficients, we have some results, but they are not satisfactory. (See, for example, N. D. Koutev and V. M. Petkov [8], T. Nishitani [10], [11], [12], H. Yamahara [14], [15] etc.).

In this note, we give some necessary conditions for the strong hyperbolicity of first order systems with variable coefficients, assuming that coefficients depend only on the time variable. This is a further developed results of H. Yamahara [14] and [15]. On the other hand, these become sufficient under a reasonable supplementary condition.

Let us consider the following Cauchy problem.
(1) $\left\{\begin{array}{l}P u \equiv\left(P_{p}-B\right) u \equiv\left\{D_{t}-\sum_{i=1}^{\ell} A_{i}(t, x) D_{x_{i}}-B(t, x)\right\} u=f(t, x), \\ u\left(t_{0}, x\right)=u_{0}(x),\end{array}\right.$
where $u(t, x), u_{0}(x), f(t, x)$ are vectors of dimension N and $A_{i}(t, x), B(t, x)$ are square matrices of order N with elements in $C^{\infty}(\Omega)$, (Ω is an open set in $\mathbb{R}_{t, x}^{1+\ell}$). We say
that the Cauchy problem (1) is uniformly well-posed in Ω if the following holds :
(2) $\left\{\begin{array}{l}\forall K=\left[T_{1}, T_{2}\right] \times K_{0}, \forall K^{\prime} \subset \subset K \\ \exists \omega: \text { a lens-shaped neighborhood of the origin, } \\ \forall\left(t_{0}, x_{0}\right) \in K^{\prime}, \forall u_{0} \in C^{\infty}\left(K_{0}\right), \forall f \in C^{\infty}(K), \exists I u \text { solution of }(1) \text { in }\left(t_{0}, x_{0}\right)+\omega .\end{array}\right.$

Proposition 0.1. If (1) is uniformly well-posed in Ω, the following holds :

$$
\left\{\begin{array}{l}
\forall\left(\hat{t}_{0}, \hat{\mathbf{x}}_{0}\right) \in \mathrm{K}^{\prime}, \forall \mathrm{M} \in \mathbb{N}, \exists \mathrm{M}^{\prime} \in \mathbb{N}, \exists \delta>0, \exists C>0 \tag{3}\\
\forall\left(\mathrm{t}_{0}, \mathbf{x}_{0}\right) \in \mathrm{K}^{\prime} \text { s.t. }\left|\mathrm{t}_{0}-\hat{\mathrm{t}}_{0}\right| \leqslant \delta, \forall \mathrm{U}_{0} \in \mathrm{C}^{M}(\mathrm{~K}) \\
\forall \mathrm{f} \in \mathrm{C}^{M-1}(\mathrm{~K}), \exists \mathrm{u} \text { solution of }(1) \text { in } \mathrm{K}^{\prime \prime},\left(\mathrm{K}^{\prime \prime}=\left\{\left|\mathrm{t}-\mathrm{t}_{0}\right| \leqslant \delta\right\} \times\left\{\left|\mathbf{x}-\mathrm{x}_{0}\right| \leqslant \delta\right\}\right)
\end{array}\right.
$$

and u satisfies
(4) $\quad|\mathrm{u}|_{\mathrm{M}, \mathrm{K}^{\prime}} \leqslant \mathrm{C}\left\{\left|\mathrm{u}_{0}\right|_{\mathrm{M}^{\prime}, \mathrm{K}_{0}}+|\mathrm{f}|_{\mathrm{M}^{\prime}-1, K^{\prime}}\right\}$,
where $|u|_{M, K}=\sum_{|\alpha| \leqslant M} \max _{(t, x) \in K}\left|D_{t, x}^{\alpha} u(t, x)\right|$.

By the estimate (4), we have the following theorem.
Theorem 0. (P. D. Lax and S. Mizohata)
If (1) is uniformly well posed, all characteristic roots of P_{p} are real in $\Omega \times \mathbb{R}_{\xi}^{\ell} \backslash 0$.

From now on, we always suppose the conclusion of the above theorem.
Definition 0.1. (Strong hyperbolicity)
We say that P_{p} is strongly hyperbolic when the Cauchy problem (1) of $P_{p}+B$ is uniformly well posed in Ω for arbitrary choice of $B(t, x)$.

Throughout this note, we assume the following :
Assumption. A_{i} depends only on $t,(1 \leqslant i \leqslant l)$.

Let $\left\{\lambda_{j}\right\}_{j=1}^{d}$ be the different characteristic roots of P_{p} at $t=t_{0}$ and $\xi=\xi_{0} \neq 0$.
We set
$A^{(0)}=\sum_{i=1}^{\ell} A_{i}\left(t_{0}\right) \xi_{0 i}$,
$\mathrm{A}^{(1)}=\sum_{\mathrm{i}-1}^{\ell} \frac{\partial}{\partial \mathrm{t}} \mathrm{A}_{\mathrm{i}}\left(\mathrm{t}_{0}\right) \xi_{\mathrm{oi}}$,
$\mathscr{P}_{\mathfrak{j}}$: the projection to the generalized eigenspace of λ_{j},
$A_{j}^{(i)}=A^{(i)} \mathscr{P}_{j},(0 \leqslant i \leqslant 1,1 \leqslant j \leqslant d)$.

Theorem 1. If P_{p} is strongly hyperbolic in Ω, the following holds
(5)

$$
\begin{aligned}
& \mathscr{P}_{j}\left(\mathrm{~A}_{\mathrm{j}}^{(0)}-\lambda_{\mathrm{j}} \mathrm{I}_{\mathrm{N}}\right)\left(\mathrm{A}_{\mathrm{j}}^{(1)}\right)^{\mathrm{k}}\left(\mathrm{~A}_{\mathrm{j}}^{(0)}-\lambda_{\mathrm{j}} \mathrm{I}_{\mathrm{N}}\right)=0 \\
& \text { for } 1 \leqslant \mathrm{j} \leqslant \mathrm{~d} \text { and } \mathrm{k} \in \mathbf{Z}_{+}=\{0,1, \ldots\} .
\end{aligned}
$$

Remark. Let m^{j} be the multiplicity of λ_{j}. At least for $k \geqslant m^{j}$, Condition (5) becomes trivial.

Corollary 2. The lengths of Jordan chains of $\mathrm{A}^{(0)}$ are at most 2.

By virtue of Bronshtein-Mandai's theorem, the characteristic roots $\lambda^{(\mathrm{j})}(\mathrm{t})$ $(1 \leqslant j \leqslant N)$ of $P_{p}\left(t_{i} ; \xi_{0}\right)$ belong to C_{t}^{∞}. (See T. Mandai [17] and M. D. Bronshtein [16]). Let us set

$$
\lambda_{0}^{(j)}(t)=\lambda^{(j)}\left(t_{0}\right)+\left(t-t_{0}\right) \frac{\partial}{\partial t} \lambda^{(j)}\left(t_{0}\right) .
$$

Theorem 3. If $\ell=1$ and $\left\{\lambda_{0}^{(j)}(t)\right\}_{j-1}^{N}$ are distinct for $0<\left|t-t_{0}\right| \leqslant \delta_{0}$, condition (5) is suficient for the strong hyperbolicity of P_{p} near t_{0}.

Remark. $\lambda_{0}^{(j)}(t)$ is obtained by $\sum_{i}\left(\frac{\partial}{\partial t}\right)^{k} A_{i}\left(t_{0}\right) \xi_{0 i}$ with $0 \leqslant k \leqslant 2$.

In the following sections 1,2 and 3 , we give a proof of Theorem 1 for $k=0$ and 1. The proof of Theorem 1 for $k \geqslant 2$ and that of Theorem 3 will be given in the forthcoming paper [19].

sI. Reduction.

We may assume $t_{0}=0$. We take B as constant matrix and $f=0$. Let us take Fourier image of (1) on the variable x ;
(1.1) $\left\{\begin{array}{l}\left\{D_{t}-\sum_{i=0}^{\ell} A_{i}(t) \xi_{i}-B(t)\right\} \hat{u}=0 \\ \hat{u}(0, \xi)=\hat{u}_{0}(\xi) .\end{array}\right.$

Setting $\xi=n \xi_{0}$, we expand $\sum_{i=1}^{\ell} A_{i}(t) \xi_{0_{i}}$ as $A^{(0)}+t A^{(1)}+t^{2} A^{2}(t)$. Further, we transform $A^{(0)}$ to Jordan's normal form Λ :

$$
\begin{aligned}
& \Lambda=\left(\begin{array}{cc}
\Lambda_{1} & \\
& \\
& \\
\Lambda_{d}
\end{array}\right), \quad \Lambda_{j}=\lambda_{j}{ }_{{ }_{m}}+J^{j}, \\
& J^{j}=J^{j}\left(r_{j}, 1\right) \oplus J^{j}\left(r_{j}, 2\right) \oplus \ldots \oplus J^{j}\left(r_{j}, m_{r_{j}}^{j}\right) \oplus \ldots \oplus J^{j}\left(1, m_{1}^{j}\right), \\
& J^{j}(k, h)=\left(\begin{array}{cc}
0 & 1 \\
\cdot & \cdot \\
& \cdot \\
& \\
& \\
& 0
\end{array}\right) ; k \times k,(1 \leqslant j \leqslant d) .
\end{aligned}
$$

Thus, we arrive at
(1.2) $\left\{\begin{array}{l}\left\{D_{t}-n\left(\Lambda+t \tilde{A}^{(1)}+t^{2} \tilde{A}^{(2)}\right)-\tilde{B}(t)\right\} \hat{u}_{1}=0, \\ \hat{u}_{1}(0)=\hat{u}_{10} .\end{array}\right.$

Corresponding to Λ, we can transform (1.2) by the similar transformation by $\mathrm{N}(\mathrm{t})=\mathrm{I}+\mathrm{t} \mathrm{N}_{\mathrm{i}}$!
(1.3) $\left\{\begin{array}{l}\hat{P} \hat{\mathrm{u}}=\left\{\mathrm{D}_{\mathrm{t}}-\mathrm{n}\left(\Lambda+\mathrm{t} \tilde{\tilde{A}}^{(1)}+\mathrm{t}^{2} \tilde{\tilde{A}}^{(2)}(\mathrm{t})\right)-\tilde{\tilde{B}}(\mathrm{t})\right\} \hat{\mathrm{u}}_{2}=0, \\ \hat{\mathrm{u}}_{2}(0)=\hat{\mathrm{u}}_{\mathrm{x}_{0}},\end{array}\right.$
where, decomposing in blocks $\tilde{\mathrm{A}}^{(1)}$ and $\tilde{\tilde{A}}^{(1)}$ corresponding to Λ, say, $\left(\tilde{A}^{(1)}\left(\mathrm{j}, \mathrm{j}^{\prime}\right)\right)_{1<\mathrm{i}, \mathrm{j}^{\prime}<d}$ and $\left(\tilde{\tilde{A}}^{(1)}\left(\mathrm{j}, \mathrm{j}^{\prime}\right)\right)_{\text {<<i,i, }{ }^{\prime}<d}$, it holds that $\tilde{\tilde{A}}(\mathrm{j}, \mathrm{j})=\tilde{\mathrm{A}}(\mathrm{j}, \mathrm{j})$ and $\tilde{\tilde{A}}\left(\mathrm{j}, \mathrm{j}^{\prime}\right)=0$ for $j \neq j$ '.

Ex.

$\Lambda=$| Λ_{1} | |
| :--- | :--- | :--- | :--- | :--- |
| | |
| | Λ_{2} |$\quad A=$| $A(1,1)$ | $A(1,2)$ |
| :--- | :--- | :--- |
| $A(2,1)$ | $A(2,2)$ |

As our consideration becomes independent of the part which has the factor $\mathrm{t}^{2} \mathrm{n}$, from now on, we take out (j, j) block and omit the subscript " j ". We may assume $\lambda=0$. Further, we set $\mathrm{t}=\mathrm{n}^{-\sigma} \mathrm{s}(\sigma>0)$. Thus, we arrive at
(1.4) $\left\{\begin{aligned} P_{0} v & \equiv\left\{n^{\sigma} D_{s}-\left(n J+n^{1-\sigma} s A_{1}+n^{1-2 \sigma} s^{2} A_{2}(s)+B\right\} v\right. \\ & =0, \\ v(0) & =v_{0},\end{aligned}\right.$
where v, v_{o} are vectors of dimension m, J, A_{1}, A_{2}, B are square matrix of order m and
$\mathrm{J}=\mathrm{J}(\mathrm{r}, 1) \oplus \ldots \oplus \mathrm{J}\left(\mathrm{r}, \mathrm{m}_{\mathrm{r}}\right) \oplus \mathrm{J}(\mathrm{r}-1,1) \oplus \ldots \oplus \mathrm{J}\left(\mathrm{r}-1, \mathrm{~m}_{\mathrm{r}-1}\right) \oplus \mathrm{J}(\mathrm{r}-2,1) \oplus \ldots \oplus \mathrm{J}\left(1, \mathrm{~m}_{1}\right)$, $\sum_{j-1}^{\mathrm{r}} \mathrm{j} \mathrm{m}_{\mathrm{j}}=\mathrm{m}$.
Here, condition (5) for j in $\$ 0$ is equivalent to (1.5) $J\left(A_{1}\right)^{k} J=0$ for $k \in Z_{+}$.

Proposition 1.1. We assume that (1) is uniformly well posed in Ω. If, for P_{0} in (1.4), there exists an invertible matrix $N(s, n)$ for $0<|s| \leqslant{ }^{3} \delta$ and $\ell \geqslant 2,(l \in \mathbb{N})$ such that

$$
\tilde{P}=N^{-1} L N=n^{\sigma} D_{s}-n^{\mu}(\tilde{J}(s)+\tilde{K}(s))-n^{\mu^{\prime}} C(s, n),
$$

$\mu>\mu^{\prime}, \mu>\sigma, C(s, n)$ is bounded,
$\widetilde{J}=\underset{\substack{1 \leqslant k \leqslant R \\ 1 \leqslant h \leqslant M_{R}}}{\oplus} \widetilde{J}(k, h), \widetilde{J}(k, h)=\left(\begin{array}{ccc}0 & a_{1}, h & \\ & 0 & \\ & & \begin{array}{c}k, h \\ a_{k-1} \\ \\ \\ \\ \\ \end{array} \\ & & 0\end{array}\right)$,
$\mathrm{a}_{\mathrm{i}}^{\mathrm{k}, \mathrm{h}}$ is not identically zero, and is analytic for $\mathrm{s} \neq 0$,
$\tilde{\mathrm{K}}=\left(\mathrm{K}\left(\mathrm{k}, \mathrm{h}, \mathrm{k}^{\prime}, \mathrm{h}^{\prime}\right)\right)_{\substack{1 \leqslant k, k^{\prime} \leqslant R \\ 1 \leqslant h \leqslant \mathrm{R}_{k} \\ 1 \leqslant h^{\prime} \leqslant \mathrm{M}_{k^{\prime}}}}$: block decomposed with respect to $\tilde{\mathrm{J}}$,
with
$\mathrm{K}\left(\mathrm{k}, \mathrm{h}, \mathrm{k}^{\prime}, \mathrm{h}^{\prime}\right)=\left(\begin{array}{ll}\alpha_{1}^{k, h, k^{\prime}, h^{\prime}} & 0 \\ \cdot & 0 \\ \alpha_{k}^{k, h, k^{\prime}, h^{\prime}} & 0\end{array}\right) ; \mathrm{k} \times \mathrm{k}^{\prime}$

$$
\alpha_{i}^{k, h, k^{\prime}, h^{\prime}}=0 \text { for } i \neq 0 \bmod l
$$

then, we have the following ;

1) If $\ell \geqslant 3, \tilde{\mathrm{~J}}+\tilde{\mathrm{K}}$ is nilpotent.
2) \quad Let $\operatorname{det}(\lambda I-(\tilde{J}+\tilde{K}))$ be $\sum_{\mathrm{i}=0}^{\mathrm{m}} \mathrm{C}_{\mathrm{i}}(\mathrm{s}) \lambda^{\mathrm{m}-\mathrm{i}}$.

If $\ell=2$ and $C_{2 i}(s)\left(C_{2 i+1}(s)\right.$, resp.) is even function (odd function, resp.),
$\tilde{\mathrm{J}}+\tilde{\mathrm{K}}$ is nilpotent.

Now, we assume (5) does not hold for $k=0$ or $k=1$.
In order to make B stronger than $n^{1-2 \sigma} s^{2} A_{2}(s)$, we take $1-2 \sigma<0$ ie $\sigma>\frac{1}{2}$.
§2. Maximal connection.
Let us consider

$$
\widetilde{J}=\underset{\substack{1 \leqslant k \leqslant R \\ 1 \leqslant h \leqslant M_{R}}}{\oplus} \widetilde{J}(k, h), \widetilde{J}(k, h) \text { is that in Prop. 1.1, } M=\sum_{j=1}^{R} j M_{j} .
$$

Corresponding to the blocks of \tilde{J}, we decompose $M \times M$ matrix K to ($\left.\mathrm{K}\left(\mathrm{k}, \mathrm{h}, \mathrm{k}^{\prime}, \mathrm{h}^{\prime}\right)\right)_{1 \leqslant k, k^{\prime} \leqslant R} \cdot$

$$
\begin{aligned}
& 1 \leqslant h \leqslant M_{k} \\
& 1 \leqslant h^{\prime} \leqslant M_{k^{\prime}}
\end{aligned}
$$

Ex.

$$
\begin{aligned}
& \tilde{\mathrm{J}}(2,1) \quad \tilde{\mathrm{J}}(2,1,2,1) \quad \tilde{\mathrm{J}}(2,1,2,2) \quad \tilde{\mathrm{J}}(2,1,1,1) \\
& \tilde{J}=\quad \tilde{J}(2,2) \quad, \quad K=\tilde{J}(2,2,2,1) \quad \tilde{J}(2,2,2,2) \quad \tilde{J}(2,2,1,1) \\
& \tilde{J}(1,1) \\
& \tilde{\mathrm{J}}(1,1,2,1) \quad \tilde{\mathrm{J}}(1,1,2,2) \quad \tilde{\mathrm{J}}(1,1,1,1)
\end{aligned}
$$

We call ($\mathrm{K}\left(\mathrm{k}, \mathrm{h}, \mathrm{k}^{\prime}, \mathrm{h}^{\prime}\right)$) the block decomposition of K with respect to $\tilde{\mathrm{J}}$.
The following notions are important.

Definition 2.1. (Maximal connection of Jordan chain).
Let ($\mathrm{K}\left(\mathrm{k}, \mathrm{h}, \mathrm{k}^{\prime}, \mathrm{h}^{\prime}\right)$) be the block decomposition of K with respect to \tilde{J}. If
1)
(2.1) $\begin{cases}K\left(R, h, k^{\prime}, h^{\prime}\right)=\left(\begin{array}{cc}0 & 0 \\ \cdot & 0 \\ 0 & 0\end{array}\right), ~ \\ K\left(k, h, k^{\prime}, h^{\prime}\right)=0 \quad(k<R) & \end{cases}$
for arbitrary h, k^{\prime} and h^{\prime},
(2) $\mathrm{K} \neq 0$,
(3) $\mathscr{A}=\left(\alpha^{R, h, R, h^{\prime}}\right)_{1 \leqslant h, h^{\prime} \leqslant M_{R}}$ is nilpotent,
$\tilde{J}+\mathrm{K}$ is again nilpotent. We say that in $\tilde{\mathrm{J}}+\mathrm{K}$, the Jordan chains of $\tilde{\mathrm{J}}$ are maximally connected by K , or that K brings a maximal connection (of Jordan chain) to \tilde{J}.
Definition 2.2. (Selfsimilar matrix).
Let us take $1<R_{0}<R_{1}<\ldots<R_{p}<R_{p+1}$, such that

$$
R_{j+1}=k_{j} R_{j}+R_{j}^{0}, k_{j} \geqslant 1,0 \leqslant R_{j}^{0}<R_{j}, k_{j}, R_{j} \in \mathbb{N} .
$$

We set

$$
A_{0}=\left(\begin{array}{cccc}
0 & 1 & & \\
& 0 & . & \\
& & \cdot & 1 \\
& & & 0
\end{array}\right) ; R_{0} \times R_{0},
$$

$$
A_{j+1}=A_{j} \oplus \ldots \oplus A_{j} \oplus A_{i}^{o}+K_{i} ; R_{i+1} \times R_{i+1}
$$

$$
\mathbf{k}_{\mathbf{j}}
$$

$A_{j}^{0}=$ the first R_{j}^{0} rows and R_{j}^{0} columns part of A_{j},
(2.2) $K_{i}=\left(K_{j}\left(k, k^{\prime}\right)\right)$; block decomposition w.r.t. A_{j+1}
$K_{j}(h, h+1)=\left(\begin{array}{ll}0 & 0 \\ \cdot & 0 \\ 0 & 0\end{array}\right), 1 \leqslant h \leqslant k_{j}$,
$\hat{J}(i): i \times i=$ the first i rows and i columns part of A_{p+1}.
We call

$$
\hat{J}=\underset{1 \leqslant i \leqslant R_{p+1}}{\oplus}\left(\underset{\mathrm{~J}}{\mathrm{~J}}(\mathrm{i}) \oplus \ldots \oplus\left(\underset{M_{i}}{\ldots}(\mathrm{i})\right)\right.
$$

a self similar matrix of step $p+1$ and A_{j} and A_{j}^{o} the factors of step j.

Let \mathfrak{J} be $M \times M$ selfsimilar matrix and K is a $M \times M$ matrix block decomposed w.r.t \hat{J}. Let an element of a block of K belong to $q_{p}^{(r)}-\operatorname{th} A_{p}$ in the direction of row and to $q_{p}^{(c)}-$ th A_{p} in the direction of column. $\left(\left(k_{p}+1\right)-\operatorname{th} A_{p}=A_{p}^{o}\right)$. Further, in A_{p}, let it belong to $q_{p-1}^{(r)}$ th A_{p-1} in the direction of row and to $q_{p-1}^{(c)}$ - th A_{p-1} in the direction of column. We continue this procedure up to $q_{o}^{(*)}$. At last, let it be the $\left(q_{-1}^{(r)}, q_{-1}^{(c)}\right)$ element of A_{0}. We set $q_{h}=q_{h}^{(r)}-q_{h}^{(c)}+1(-1 \leqslant h \leqslant p)$.
Definition 2.3. (Address)
We call $q=\left(q_{p}, q_{p-1}, \ldots, q_{-1}\right)$ the address of the element.

To the set of addresses, we give the dictionary order.
Definition 2.4. (Acceptable matrix).
Let us take $1>v_{-1}>v_{0}>\ldots>v_{p}>0, v=\sum_{j--1}^{p} v_{j}$, and $\sigma>0\left(v_{j}, \sigma \in \mathbb{R}_{+}\right)$. For a block decomposed matrix K w.r.t. a selfsimilar matrix \mathfrak{J}, if the adress q of its element has a q_{j} such that $q_{j}=k_{j}+1$ and $\sum_{h=0}^{i-1}\left(q_{h}-1\right) R_{h}+q_{-1}=R_{j}^{0}$ (that is, the element is found at the left-down corner of $R_{j+1} \times R$ matrix in step of $j+1, R\left(\leqslant R_{j}+1\right)$; free $)$, the element has the form $c(s) n^{1-v^{\prime}}, v^{\prime}=v^{\prime}(q)=2 \sigma-\sum_{j--1}^{p}\left(q_{j}-1\right) v_{j}$ and otherwise, it has the form $c n^{1-v^{\prime}}, v^{\prime}=v^{\prime}(q)=\sigma-\sum_{j=-1}^{p}\left(q_{j}-1\right) v_{j}$ and c is constant. Further, if all $v(q)$ are greater than v, we say that K is acceptable w.r.t. $n^{1-v} \hat{J}$. We call $\varepsilon(q)=\left(v^{\prime}-v\right) /\left(\sum_{j=0}^{p}\left(q_{j}-1\right) R_{j}+q_{-1}\right)$ the descent index of the element with the address q.

When the descent index is smaller, we say that it is more effective.
Remark. Corresponding to the above J, we take a shearing operator with weight ε

$$
W=\underset{\substack{1 \leqslant k \leqslant R_{p+1} \\ 1 \leqslant h \leqslant M_{k}}}{\oplus} W(k, h, \varepsilon),
$$

$W(k, h, \varepsilon)=\operatorname{diag}\left(1, n^{\varepsilon}, n^{2 \varepsilon}, \ldots, n^{(k-1) \varepsilon}\right), \varepsilon=v(q)$. Then, the element with the adress q
obtain the order $1-v-\varepsilon$ of $W^{-1}\left(n^{1-v} \hat{J}\right) W$ by the shearing transformation $W^{-1} K W$.

Now, we return to the equation (1.4). We assume that (1) is uniformly well-posed.
Let us set $W=\underset{\substack{1 \leqslant k \leqslant r \\ 1 \leqslant h \leqslant m_{k}}}{\oplus} W\left(k, h, \frac{\sigma}{r}\right)$.
setting $w_{1}=W^{-1} w, w_{1}$ satisfys $P_{1} w_{1}=0$,

$$
\begin{equation*}
P_{1}=W^{-1} P_{0} W=n^{\sigma} D_{s}-\left(n^{1-\sigma / r} J+n^{1-\sigma / r} s K_{1}+s A_{1}^{1}(n)+s^{2} A_{2}^{1}(s ; n)+B^{1}(n)\right), \tag{2.3}
\end{equation*}
$$

where $s\left(n^{1-\sigma / r} K_{1}+A_{1}^{1}(n)\right)$ is brought from $n^{1-\sigma} s A^{1}$ and the order of $A_{1}^{1}(n)$ is less than $1-\sigma / r . s A_{1}^{1}(\mathrm{n})+\mathrm{s}^{2} \mathrm{~A}_{2}^{1}(\mathrm{~s} ; \mathrm{n})$ is acceptable w.r.t. $\mathrm{n}^{1-\sigma / \mathrm{r}} \mathrm{J}$.

$$
\operatorname{In} K_{1}=\left(K_{1}\left(k, h, k^{\prime}, h^{\prime}\right)\right)_{\substack{1 \leqslant k, k^{\prime} \leqslant r \\
1 \leqslant h \leqslant m_{k} \\
1 \leqslant h^{\prime} \leqslant m_{k^{\prime}}}} \quad, \quad K_{1}\left(, k, k^{\prime}, h^{\prime}\right)=\left(\begin{array}{cc}
0 \\
\cdot & 0 \\
0 & 0 \\
\alpha^{h, k^{\prime}, h^{\prime}}
\end{array}\right)
$$

and $K_{1}\left(k, h, k^{\prime}, h^{\prime}\right)=0$ for $k<r$. By virtue of Proposition 1.1, $\left(\alpha^{n, R, h^{\prime}}\right)_{1 \leqslant h, h^{\prime}<m_{r}}$ must be nilpotent, and then, K_{1} brings a maximal connection to J if $K_{1} \neq 0$. We can take each Jordan chain in $\mathrm{J}+\mathrm{K}_{1}$ composed by vectors of $\mathbf{s}^{\mu} \mathbf{v}, \mathbf{v}$: constant vector. Replacing $\mathrm{s}^{\mu} \mathbf{v}$ by vn we can have a constant matrix N which transform J to J_{1}, a selfsimilar matrix. We have

$$
\begin{equation*}
\tilde{P}_{1}=N^{-1} P_{1} N=n^{\sigma} D_{s}-\left(n^{1-\sigma / r} \hat{J}^{1}(s)+s \tilde{A}_{1}^{1}(n)+s^{2} \tilde{A}_{2}^{1}(s ; n)+\tilde{B}^{1}(n)\right) . \tag{2.4}
\end{equation*}
$$

Let us set the length of the longest Jordan chain of $\hat{J}_{1}(s)$ as $R_{1}=k_{0} R_{0}+\ell, R_{0}=r$, $0 \leqslant \ell<R_{0}$. In s $\tilde{A}_{1}^{1}(\mathrm{n})+\mathrm{s}^{2} \tilde{\mathrm{~A}}_{2}^{1}(\mathrm{~s} ; \mathrm{n})$, the highest order on n is given only by the elements with the address $\left(k_{0}+1, r-1\right)$ if $l \geqslant R_{0}-1$, and by those with the adress ($\mathrm{k}_{0}, \mathrm{r}-1$) (and also by those with $\left(\mathrm{k}_{0}+1, \mathrm{r}-2\right)$ in cas e of $\mathrm{k}_{0}=1$) if $\ell<\mathrm{R}_{0}-1$. In the former case, if an element with the address ($\mathrm{k}_{\mathrm{o}}+1, \mathrm{r}-1$) does not vanish, after the shearing transformation with weight $\frac{\sigma}{R_{0} R_{1}}$ a maximal connection occurs by virtue of Proposition 1.1. In the latter case, no maximal connection occurs. Continuing this procedure, we arrive at the following proposition.

Proposition 2.1. Let us set $R_{-1}=1, R_{o}=R, R_{j+1}=k_{j} R_{j}+R_{j}-R_{j-1}(0 \leqslant j \leqslant p+1)$ and $\hat{R}=k_{p} R_{p}+\ell,\left(k_{j} \in \mathbb{N}=\{1,2, \ldots\}, 0 \leqslant \ell<R_{p}\right)$.
(1) In the above procedure, if p times maximal connections occur, the highest order part must be the selfsimilar matrix of step $\mathrm{p}+1$ replacing $\mathrm{R}_{\mathrm{p}+1}$ by \hat{R} and has the order $1-v$ on $n, v=\sum_{j=0}^{p} v_{j}, v_{j}=\frac{\sigma}{R_{j-1} R_{j}}$.
(2) The operator $\tilde{\mathrm{P}}_{\mathrm{p}+1}$ has the following form;

$$
\begin{equation*}
\tilde{P}_{p+1}=n^{\sigma} D_{s}-\left(n^{1-v} \tilde{J}_{p+1}(s)+s A_{1}^{p+1}(n)+s^{2} A_{2}^{p+1}(s ; n)+B^{p+1}\right) \tag{2.5}
\end{equation*}
$$ where $s A_{1}^{p+1}(n)+s^{2} A_{2}^{p+1}(s ; n)$ is acceptable w.r.t. $n^{1-v} \tilde{J}_{p+1}$. In $s A_{1}^{p+1}(n)+s^{2} A_{2}^{p+1}(s ; n)$, if $\ell \geqslant R_{p}-R_{p-1}$, the highest order is given only by the elements with address $\left(\mathrm{k}_{\mathrm{p}}+1, \mathrm{k}_{\mathrm{p}-1}, \ldots, \mathrm{k}_{\mathrm{o}}, \mathrm{r}-1\right)$ and if $\ell<\mathrm{R}_{\mathrm{p}}-\mathrm{R}_{\mathrm{p}-1}$, it is given by those with the address ($\mathrm{k}_{\mathrm{p}}, \mathrm{k}_{\mathrm{p}-1}, \ldots, \mathrm{k}_{\mathrm{o}}, \mathrm{r}-1$) (and also by those with ($1, \ldots, 1,2, \mathrm{k}_{\ell}-1, \mathrm{k}_{\mathrm{C}_{-1}}, \ldots, \mathrm{k}_{0}, \mathrm{r}-1$) in case of $\mathrm{k}_{\ell_{+1}}=\ldots=\mathrm{k}_{\mathrm{p}}=1$ and $\mathrm{k}_{\ell} \geqslant 2$ and also by those with $(1, \ldots, 1,2,1, \ldots, 1, \mathrm{r}-2)$ in case of $k_{0}=k_{1}=\ldots=k_{p}=1$).

Proof By the induction on p.
$\$ 3$ Proof of Theorem 1 , case of $k \leqslant 1$.
The maximal connections can occur at most $\left[\frac{m-r}{r-1}\right]$ times. Let no maximal connection occur on \tilde{P}_{p+1}, that is, in $\hat{R}=k_{p} R_{p}+\ell, \ell \neq R_{p}-R_{p-1}$ or $\ell=R_{p}-R_{p-1}$ but all elements with the address ($k_{p}+1, k_{p-1}, \ldots, k_{0}, r-1$) vanish.
Let W be the shearing operator corresponding to \tilde{J}_{p+1} in (2.5) with weight ε $\left(\varepsilon=\frac{\sigma}{R_{p} R_{p+1}}\right.$ in case of $\ell>R_{p}-R_{p-1}$ and $\varepsilon=\frac{\sigma}{R_{p}\left(R_{p+1}-R_{p}\right)}$ in case of $\left.\ell \leqslant R_{p}-R_{p-1}\right)$. We set

$$
\begin{align*}
& \hat{P}_{p+2} \equiv W^{-1} \tilde{P}_{p+1} W= \tag{3.1}\\
& n^{\sigma} D_{s}-\left\{n^{1-v-\varepsilon}\left(\tilde{J}_{p+1}(s)+s K_{p+2}\right)+s A_{1}^{p+2}(n)+s^{2} A_{2}^{p+2}(s ; n)+B^{p+2}(n)\right\}
\end{align*}
$$

where the orders of A_{1}^{p+2} and A_{2}^{p+2} are less than 1-v- ε. Here the highest order in $\mathrm{B}^{\mathrm{p}+2}(\mathrm{n})$ is σ and it is given by the elements with the address $\left(\mathrm{k}_{\mathrm{p}}+1, \mathrm{k}_{\mathrm{p}-1}, \ldots, \mathrm{k}_{0}, r\right)$ in
case of $\ell>R_{p}-R_{p-1}$ and ($\left.k_{p}, k_{p-1}, \ldots, k_{0}, r\right)$ in case of $\ell \leqslant R_{p}-R_{p-1}$.
By a suitable choice of B in the original operator P, we can take B^{p+2} such that it has only one non-zero element, ($g, 1$)-element $c_{0} n^{\sigma}$ (c_{0} is a large constant), where $\mathrm{g}=\mathrm{k}_{\mathrm{p}} \mathrm{R}_{\mathrm{p}}+\sum_{\mathrm{j}-\mathrm{o}}^{\mathrm{p}-1}\left(\mathrm{k}_{\mathrm{j}}-1\right) \mathrm{R}_{\mathrm{j}}+\mathrm{r}$ if $\ell>\mathrm{R}_{\mathrm{p}}-\mathrm{R}_{\mathrm{p}-1}$ and $\mathrm{g}=\sum_{\mathrm{j}=0}^{\mathrm{p}}\left(\mathrm{k}_{\mathrm{j}}-1\right) \mathrm{R}_{\mathrm{j}}+\mathrm{r}$ if $\ell \leqslant \mathrm{R}_{\mathrm{p}}-\mathrm{R}_{\mathrm{p}-\mathrm{i}}$. We consider the characteristic polynomial of the full operator \hat{P}_{p+2} :

$$
\begin{aligned}
& \operatorname{det}\left(\lambda I-\left\{n^{1-v-\varepsilon}\left(\tilde{J}_{p+1}(s)+s K_{p+2}\right)+s A_{1}^{p+2}(n)+s^{2} A_{2}^{p+2}+B^{p+2}(n)\right\}\right) \\
& =\sum_{j=0}^{m} \alpha_{j}(s ; n) \lambda^{m-j}
\end{aligned}
$$

$\alpha_{g}(s ; n)$ has the form $c_{0} n^{\delta} s^{\mu}(1+0(1)), \delta-(g-1)(1-v-\varepsilon)+\sigma$ and ${ }^{\exists} \mu \in \mathbb{Z}_{+}$ $\left(\nu=\sum_{j=0 \frac{\sigma}{p}}^{R_{j-1} R_{j}}\right)$. Here, we cannot find Jordan chains which are composed the vector of type $s^{\mu^{\prime}} \mathbf{v}, \mathbf{v}$: constant vector.

By virtue of Proposition 1.1, $\tilde{\mathrm{J}}_{\mathrm{p}+1}+\mathrm{K}_{\mathrm{p}+2}$ is nilpotent. Let us take $\mathrm{N}(\mathrm{s})$ which transforms $\tilde{J}_{p+1}+s K_{p+2}$ to Jordan's normal form and set

$$
\begin{equation*}
\tilde{P}_{p+2} \equiv N^{-1} \cdot \hat{P}_{p+2} \cdot N=n^{\sigma} D_{s}-n^{1-v-\varepsilon} J_{p+2}-C(s ; n) \tag{3.2}
\end{equation*}
$$

Here, the commutator $n^{\sigma} N^{-1}(s) D_{s} N(s)$ has the same order σ as $B^{p+2}(n)$ and it can give an influence on $\alpha_{g}(s ; n)$. That is, setting

$$
\operatorname{det}\left(\lambda I-n^{1-v-\varepsilon} J_{p+2}-C(s ; n)\right)=\sum_{j=0}^{m} \alpha_{j}^{\prime}(s ; n) \lambda^{m-j},
$$

$\alpha_{g}^{\prime}(s ; n)$ may have the form $\left(c_{0}+c_{0}^{\prime}(s)\right) n^{\delta}(1+o(1))$. However, $c^{\prime}{ }_{0}(s)$ is decided by the principal part part of the original operator P and independent of $B^{p+2}(n)$. Thus, $\alpha_{g}^{\prime}(\mathrm{s}, \mathrm{n}) \neq 0$ and it has the order σ, if we take c_{o} sufficiently large.

Let σ be $i_{1} / i_{0}\left(i_{0}, i_{i} \in \mathbb{N}\right) .1-v-\varepsilon$ is also expressed as $i_{2} / i_{0}\left(i_{2} \in \mathbb{N}\right)$. If $1-v-\varepsilon>\sigma$, we can find a matrix $N^{\prime} \sim I+\sum_{h \in \mathbb{N}} n^{h / i}{ }^{0} N_{h}(s)$ such that
$Q \equiv N^{\prime^{-1}} \circ \tilde{P}_{p+2} \circ N^{\prime}=n^{\sigma} D_{s}-n^{1-v-\varepsilon} J_{p+2}-C^{\prime}(s ; n)$,
where $C^{\prime}(s ; n)=\left(C^{\prime}\left(k, h, k^{\prime}, h^{\prime}\right)(s ; n)\right) ;$ block decomposition w.r.t. J_{p+2},

$$
C^{\prime}\left(k, h, k^{\prime}, h^{\prime}\right)=\left(\begin{array}{cc}
\gamma_{1}^{k h k^{\prime} h^{\prime}} & 0 \\
\cdot & 0 \\
\gamma_{k}^{k h k^{\prime} h^{\prime}} & 0
\end{array}\right) \quad \text { and }
$$

$$
\gamma_{j}^{k h k^{\prime} h^{\prime}} \sim \sum_{\substack{i \in Z \\ i / i_{0}+j(v+\varepsilon)<1}} n^{i / i_{0}+(j-1)(v+\varepsilon)} \gamma_{j i}^{k h k^{\prime} h^{\prime}}(s) .
$$

(See, for example, V.M. Petkov [18] or rather its proof).
We say that a matrix which has the form as C^{\prime} is admissible to $n^{1-v-\varepsilon} J$. By this transformation, the principal part of $\alpha_{g}^{\prime}(s ; n)$ is preserved. From now on, we assume that $1-v-\varepsilon>0$.

We introduce a notion :

Definition 3.1. (Stable coefficient of characteristic polynomial)
Let \tilde{C} be admissible to $n^{\tilde{\nu}} \mathrm{J}$. We set

$$
\operatorname{det}\left(\lambda I-n^{\tilde{v}} J-\tilde{C}(s ; n)\right)=\Sigma_{\mathrm{i}=0}^{\mathrm{m}} \tilde{\alpha}_{\mathrm{j}}(\mathrm{~s} ; \mathrm{n}) \lambda^{\mathrm{m}-\mathrm{i}}
$$

When the principal part of $\tilde{\alpha}_{j}$ is preserved by any perturbation of order at most σ, we say that α_{j} is a stable coefficient of the characteristic polynomial of full operator.

On the stable coefficients, the following proposition was obtained by W. Matsumoto [9].

Proposition 3.1. If the original Cauchy problem is uniformly well-posed, the characteristic polynomial of full operator has no stable coefficient.

We transform Q by shearing operator W' corresponding to J with weight $\varepsilon_{0}>0, \varepsilon_{0}$: very small.
(3.4) $\mathrm{Q}^{\prime} \equiv \mathrm{W}^{\prime-1} \mathrm{Q} \mathrm{W}^{\prime}=\mathrm{n}^{\sigma} \mathrm{D}_{\mathrm{s}}-\mathrm{n}^{1-\nu-\varepsilon-\varepsilon} \mathrm{oJ}-\mathrm{C}^{\prime \prime}(\mathrm{s} ; \mathrm{n})$,
where the order of $C^{\prime \prime}(s ; n)$ is less than $1-v-\varepsilon-\varepsilon_{0}$ and $C^{\prime \prime}(s, n)$ is admissible to $n^{1-v-\varepsilon-\varepsilon} o J$. Further, the elements which concern $\alpha_{g}^{\prime}(s ; n)$ has the order $\sigma+(\mathrm{g}-1) \varepsilon_{0}$ in $\mathrm{C}^{\prime \prime}(\mathrm{s}, \mathrm{n})$. This implies that $\alpha_{\mathrm{g}}^{\prime}(\mathrm{s} ; \mathrm{n})$ is stable in the characteristic polynomial of the full operator Q^{\prime}, if we can find σ such that $1-v-\varepsilon>\sigma>\frac{1}{2}$. Then, when we can find a σ such that $1-v-\varepsilon>\sigma>\frac{1}{2}$, we arrive at a contradiction. Here,
the existence of such σ is equivalent to " $g \geqslant 3$ " and further equivalent to " $r \geqslant 2$ and if $r=2$,
$\operatorname{in} A_{1}=\left(A_{1}\left(k, h, k^{\prime}, h^{\prime}\right)\right)_{\substack{1 \leqslant k, k^{\prime} \leqslant 2 \\ 1 \leqslant h \leqslant m_{k} \\ 1 \leqslant h^{\prime} \leqslant m_{k^{\prime}}}}$ in $(1.4)\left(A_{1}\left(2, h, 2, h^{\prime}\right)=\left(\begin{array}{cc}* & * \\ \alpha\left(h, h^{\prime}\right) & *\end{array}\right)\right)$,
$\left(\alpha_{h h}\right)_{1 \leqslant h, h^{\prime} \leqslant M_{2}}$ vanishes". " $r \leqslant 2$ " is equivalent to condition (1.5) with $k=0$ (Corollary
2) and the rest is equivalent to (1.5) with $\mathrm{k}=1$.
Q.E.D.

References

1. L. Hörmander

The Cauchy problem for differential equations with double characteristics, J. Analyse Math., 32, (1977) 118-196.
2. V. Ja. Ivrii

Sufficient conditions for regular and completely regular hyperbolicity,
Trans. Moscow Math. Soc., 1 (1978) 1-65.
3. V. Ya. Ivrii and V.M. Petkov

Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed,

Russ. Math. Surveys, 29 (1974) 1-70.
4. N. Iwasaki

The Cauchy problem for effectively hyperbolic equations, (a special case),
J. Math. Kyoto Univ., 23 (1983) 503-562.
5. N. Iwasaki

The Cauchy problem for effectively hyperbolic equations, (a standard type), Publ. R.I.M.S. Kyoto Univ., 20 (1984) 543-584.
6. N. Iwasaki

The Cauchy problem for effectively hyperbolic equations, (general cases),
J. Math. Kyoto Univ., 25 (1985) 727-743.
7. K. Kasahara and M. Yamaguti

Strong hyperbolic systems of linear partial differnetial equations with constant coefficients,

Mem. Coll. Sci. Univ. Kyoto, Ser. A Math., 33 (1960-61) 1-23.
8. N.D. Koutev and V.M. Petkov

Sur les systèmes régulièrement hyperboliques du premier ordre, Ann. Sofia Univ. Math. Fac., 67 (1976) 375-389.
9. W. Matsumoto

Levi condition for first order systems with characteristics of constant multiplicity, II, (in preparation).
10. T. Nishitani

Système effectivement hyperbolique, Calcul opér. fronts d'ondes, Travaux en Cours 29,

Hermann, Paris (1988) 108-132, ed. J. Vaillant.
11. T. Nishitani

On strong hyperbolicity of systems, Hyperbolic Equations, Res. Notes Math. 158 Longman (1987) 102-114, ed. F. Colombini and M.K.V. Murthy.
12. T. Nishitani

Strong hyperbolic systems with transverse propagation cone, (to appear in Note of J. Vaillant Seminar).
13. OA. Oleinik

On the Cauchy problem for weakly hyperbolic equations,
Comm. Pure Appl. Math., 23 (1970) 569-586.
14. H. Yamahara

On the strong hyperbolic systems,
J. Math. Kyoto Univ., 27 (1987) 259-273.
15. H. Yamahara

On the strong hyperbolic systems, II,
(to appear in J. Math. Kyoto Univ.).
16. M.D. Bronshtein

Smoothness of roots of polynomials depending on parameters,
Siberian J. Math., 20 (1979).
17. T. Mandai

Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter,

Bull. Fac. Gen. Ed. Gifu Univ., 21 (1985) 115-118.
18. V.M. Petkov

Microlocal forms for hyperbolic systems,
Math. Nachr., 93 (1979) 117-131.
19. W. Matsumoto

Conditions for strong hyperbolicity of first order systems.
Waichiro MATSUMOTO
Ryukoku University
Faculty of Science and Technology
Department of Applied Mathematics and Informatics
520-21 Seta, Otsu,
JAPAN
and
Hideo YAMAHARA
Osaka Electro-Communication University
Faculty of Engineering
572 Hatsucho, Neyagawa
JAPAN

