Journées ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Giovanni M. Troianiello
 A class of weighted function spaces, and intermediate Caccioppoli-Schauder estimates

Journées Équations aux dérivées partielles (1988), p. 1-7

<http://www.numdam.org/item?id=JEDP_1988 \qquad A9_0>

L'accès aux archives de la revue «Journées Équations aux dérivées partielles » (http://www. math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

A CLASS OF WEIGHTED FUNCTION SPACES ,

AND INTERMEDIATE CACCIOPPOLI-SCHAUDER ESTIMATES

Giovanni M. TROIANIELLO
Dipartimento di Matematica
Università di Roma 1

1-A THEOREM OF D. GILBARG AND L. HORMANDER

Consider the Dirichlet problem

$$
\begin{equation*}
L u=f \text { in } \Omega,\left.u\right|_{\partial \Omega}=\varphi, \tag{1}
\end{equation*}
$$

where Ω is a bounded open subset of $\mathbb{R}^{N}, \partial \Omega$ its boundary, and L a linear second order uniformly elliptic differential operator with coefficients defined on $\bar{\Omega}$. The classical Caccioppoli-Schauder approach to (1) provides, under suitable regularity assumptions about $\partial \Omega$ and the coefficients of L, a priori bounds on norms

$$
\left.|u|_{C^{k, \delta(\Omega)}}, k=2,3, \ldots \quad \text { and } \quad \delta \in\right] O, 1[;
$$

this of course requires, to start with, the membership of f in $C^{k-2, \delta}(\bar{\Omega})$ and of φ in $C^{k, \delta}(\partial \Omega)$.

What happens now if we weaken our assumption about φ by requiring that it belong to $C^{k^{\prime}}, \delta^{\prime}(\partial \Omega)$ for some $k^{\prime}=O, 1, \ldots$ and some $\left.\delta^{\prime} \in\right] O, 1[$ such that $k^{\prime}+\delta^{\prime}<k+\delta$? An answer to this question was given by Gilbarg and Hörmander [4] : they provided weighted $C^{k, \delta}$ norm estimates for solutions of (1), the weight consisting of the α-th power of the distance from $\partial \Omega$ with $\alpha \equiv k+$ $\delta-\left(k^{\prime}+\delta^{\prime}\right)$. Note that, for what correspondingly concerns f, the natural regularity requirement is now only that its weighted $C^{k-2, \delta}$ norm be finite.

In order to illustrate the key point of [4] we introduce some notations. Letting

$$
\begin{aligned}
B_{r}\left(x^{o}\right) & \equiv\left\{x \in \mathbb{R}^{N}| | x-x^{o} \mid<r\right\} \\
B_{r}^{+}\left(x^{o}\right) & \equiv\left\{x \in B_{r}\left(x^{o}\right) \mid x_{N}>x_{N}^{o}\right\} \\
S_{r}^{+}\left(x^{o}\right) & \equiv\left\{x \in \partial B_{r}\left(x^{o}\right) \mid x_{N}>x_{N}^{o}\right\} \\
S_{r}^{o}\left(x^{o}\right) & \equiv \partial B_{r}^{+}\left(x^{o}\right) \backslash \overline{S_{r}^{+}\left(x^{o}\right)}
\end{aligned}
$$

(under the convention that the dependence on x^{0}, r be depressed if $x^{0}=0$, $r=1$), we define $C_{\alpha}^{k}, \delta\left(B_{R}^{+}\right)$as the space of functions $u=u(x), x \in B_{R}^{+}$, having finite norms

$$
|u|_{C_{\alpha}^{k, \delta_{\left(B_{R}^{+}\right.}^{+}}} \equiv \sup _{S>0} S^{\alpha}|u|_{C^{k, \delta_{\left(B_{R}\right.}^{+}[S)}}
$$

here, $k=O, 1, \ldots, O<\delta \leq 1, \alpha \geq O$, and $B_{R[S]}^{+} \equiv\left\{x \in B_{R}^{+} \mid x_{N}>S\right\}$. (When $\alpha<O$ the right-hand side in the above definition of norm is finite only for $u=O$). Through direct investigation of Green's function for the Laplace operator in the upper half space Gilbarg and Hörmander proved the following result (Theorem 3.1 of their paper) : let $k=2,3, \ldots, O<\delta<1, O \leq \alpha<k+\delta$ and $k+\delta-\alpha \notin \mathbb{N} ;$ then there exists a constant C such that
(2) ${ }_{k}$

$$
|u|_{C_{\alpha}^{k, \delta_{\left(B^{+}\right)}}} \leq C|f|_{C_{\alpha}^{k-2, \delta_{\left(B^{+}\right)}}}
$$

whenever u is a function from $C_{\alpha}^{k, \delta}\left(B^{+}\right)$which vanishes near S^{+}and satisfies (in the pointwise sense)

$$
\begin{equation*}
\left.u\right|_{S^{o}}=O, \Delta u=f \text { in } B^{+} \tag{3}
\end{equation*}
$$

What we are going to describe in the present article is an alternative approach to (3), which yields a slightly more general result than the bounds (2) ${ }_{k}$. Notice that the passage from Δ to more general variable coefficient operators L can be achieved through a perturbation argument as in [4, prop. 4.3] ; the case of nonvanishing Dirichlet data φ on S^{0} can be handled through suitable extensions of the φ 's to the upper half space [4, lemma 2.3] ; finally, partitions of unity and changes of variables near boundary points lead to the general setting of (1) [4, theorem 5.1]. This procedure exhibits rather delicate technical features, if one wants to adopt the "natural" generality for what concerns regularity assumptions about the coefficients of L as well as $\partial \Omega$. The crux of the matter lies, howewer, within the study of (3).

We are going to deal with weak solutions to a problem such as

$$
\begin{equation*}
\left.u\right|_{S^{o}}=O, \Delta u=f+f_{x_{i}}^{i} \text { in } B^{+} \tag{4}
\end{equation*}
$$

i.e., for some $p \in] 1, \infty[$,

$$
\begin{aligned}
& u \in H^{1, p}\left(B^{+}\right),\left.u\right|_{s^{o}}=O \\
& \int_{B^{+}} u_{x_{i}} \varphi_{x_{i}} d x=\int_{B^{+}}\left(-f \varphi+f^{i} \varphi_{x_{i}}\right) d x \quad \forall \varphi \in C_{o}^{\infty}\left(B^{+}\right)
\end{aligned}
$$

(summation convention of repeated indices). Here and throughout, $H^{k, p}$ and $H_{o}^{k, p}$ are the standard notations for Sobolev spaces.

For our study of regularity we find it convenient to introduce new (norms and) function spaces. Namely, for $1 \leq p<\infty, \alpha \in \mathbb{R}$ and $O \leq \lambda \leq N+p$ let

$$
[u]_{L_{\alpha}^{p, \lambda_{\left(B_{R}^{+}\right.}}} \equiv \sup _{x^{o} \in B_{R}^{+}, \rho>0} \rho^{-\lambda} \inf _{c \in \mathbb{R}} \int_{B_{R}^{+} \cap B_{\rho}\left(x^{o}\right)} x_{N}^{p \alpha}|u-c|^{p} d x
$$

and denote by $L_{\alpha}^{p, \lambda}\left(B_{R}^{+}\right)$the space of functions $u=u(x), x \in B_{R}^{+}$, having finite norms

$$
|u|_{L_{\alpha}^{p, \lambda}\left(B_{R}^{+}\right)} \equiv\left(\int_{B_{R}^{+}} x_{N}^{p \alpha}|u|^{p} d x+[u]_{L_{\alpha}^{p, \lambda}\left(B_{R}^{+}\right)}^{p}\right)^{1 / p}
$$

It is clear that, for any value of $\alpha, L_{\alpha}^{p, \lambda}\left(B_{R}^{+}\right)$at least contains $C_{o}^{\infty}\left(B_{R}^{+}\right)$.
$L_{o}^{p, \lambda}\left(B_{R}^{+}\right)$is the by now classical campanato space, and $L_{o}^{p, \lambda}\left(B_{R}^{+}\right) \sim$ $C^{o,(\lambda-N) / p\left(\overline{B_{R}^{+}}\right)}$if $N<\lambda \leq N+p$ [2]. But we have more :

Lemma 1

For $\alpha \geq O$ and $N<\lambda \leq N+p$ the spaces $L_{\alpha}^{p, \lambda}\left(B_{R}^{+}\right)$and $C_{\alpha}^{o,(\lambda-N) / p}\left(B_{R}^{+}\right)$ are isomorphic.
$L_{o}^{p, N}\left(B_{R}^{+}\right)$is a $B M O(\equiv$ Bounded Mean Oscillation) space [6]. The importance of $B M O$ spaces as "good substitutes" for C^{0} and L^{∞} has since long been acknowledged in PDE's (and Harmonic Analysis ...). Take for instance our initial considerations about the classical Caccioppoli-Schauder approach to (1) :
$B M O$ spaces are known to fill the gaps left over by the exclusion of the two values $\delta=O$ and $\delta=1$ [3]. But weighted norms lead to another example. Precisely, consider the continuous imbedding

$$
\begin{equation*}
C_{\alpha+\beta}^{o, \delta+\beta}\left(B_{R}^{+}\right) \subset C_{\alpha}^{0, \delta}\left(B_{R}^{+}\right) \tag{6}
\end{equation*}
$$

which is proven in [4] for $\alpha \geq 0, O \leq \delta<1$ and $\beta>0$ with $\delta+\beta \leq 1$, under the restriction $\alpha \neq \delta$. This restriction has far-reaching consequences, such as the above-mentioned requirement $k+\delta-\alpha \notin \mathbb{N}$ for the validity of (2) ${ }_{k}$. But, why cannot $\alpha=\delta$ be allowed? For sure, (6) is false when $\alpha=\delta=O$, as the one-dimensional example given in [4], that is, $u(x) \equiv \log x, O<x<1$, clearly shows. But, as it happens, this function u belongs to $L_{o}^{p, N}$ (] $O, 1[$) ... We can indeed prove the following result, which contains (6) in all cases except $\alpha \neq 0=\delta$.

Lemma 2

For $\alpha \geq O, O \leq \delta<1$ and $\beta>O$ with $\delta+\beta \leq 1$, the continuous imbedding

$$
L_{\alpha+\beta}^{p, N+p(\delta+\beta)}\left(B_{R}^{+}\right) \subset L_{\alpha}^{p, N+p \delta}\left(B_{R}^{+}\right)
$$

is valid.

We can now arrive at our results about solutions to (5). Adopting the symbol $L_{\beta}^{\infty}\left(B^{+}\right)$to denote the space of measurable functions $h=h(x), x \in B^{+}$, such that

$$
|h|_{L_{\beta}^{\infty}\left(B^{+}\right)} \equiv\left|x_{N}^{\beta} h\right|_{L^{\infty}\left(B^{+}\right)}
$$

is finite, we begin with first derivatives.

Theorem 1

Let $O \leq \delta<1, O \leq \alpha<1+\delta$. If, for a suitable value of $p>1, u$ satisfies (5) with $f \in L_{1+\alpha-\delta}^{\infty}\left(B^{+}\right)$and $f^{1}, \ldots, f^{N} \in C_{\alpha}^{o, \delta}\left(B^{+}\right)$, then all its first derivatives belong to $L_{\alpha}^{p, N+p \delta}\left(B_{R}^{+}\right), 0<R<1$, and satisfy

$$
\begin{aligned}
\sum_{i=1}^{N}\left|u_{x_{i}}\right|_{L_{\alpha}^{p, N+p \delta_{\left(B_{R}^{+}\right)}}} & \leq C\left(|f|_{L_{1+\alpha-\delta^{\left(B^{+}\right)}}^{\infty}}\right. \\
& \left.+\sum_{i=1}^{N}\left|f^{i}\right|_{C_{\alpha}^{0, \delta_{\left(B^{+}\right)}}}+|u|_{H^{1, p}\left(B^{+}\right)}\right)
\end{aligned}
$$

with C independent of $u, f, f^{1}, \ldots, f^{N}$.

The passage to second derivatives is performed, so to speak, through "differentiation" of (5) with respect to x_{1}, \ldots, x_{N-1}. Without loss of generality, it can be assumed that $f^{1}=\ldots=f^{N}=O$; as for f, the "natural" requirement becomes

$$
f \in C_{\alpha}^{o, \delta}\left(B^{+}\right)
$$

for $O \leq \alpha<2+\delta$. It is the range $1+\delta \leq \alpha<2+\delta$, of course, that poses new difficulties : no longer is then f in some $L^{p}\left(B^{+}\right)$, so that the $H^{2, p}$ regularity theory does apply to (5), and the above results about u are not inherited by $u_{x_{S}}, S=1, \ldots, N-1$. But $H^{2 p}$ regularity does apply to $x_{N} u$, and $U \equiv x_{N} u_{x_{S}}$ satisfies, in the weak sense,

$$
\left.U\right|_{S_{R_{1}}^{o}}=O, \Delta U=-x_{N} f_{x_{S}}+2 u_{x_{S} x_{N}} \text { in } B_{R_{1}}^{+}
$$

for any $\left.R_{1} \in\right] O, 1[$. We can thus arrive at.

Theorem 2

Let $O \leq \delta<1, O \leq \alpha<2+\delta$. If, for a suitable value of $p>1, u$ satisfies (5) with $f \in C_{\alpha}^{0, \delta}\left(B^{+}\right)$and $f^{1}=\ldots=f^{N}=O$, then all its second derivatives belong to $L_{\alpha}^{p, N+p \delta}\left(B_{R}^{+}\right)$when restricted to $B_{R}^{+}, O<R<1$, and satisfy

$$
\begin{equation*}
\sum_{i, j=1}^{N}\left|u_{x_{i} x_{j}}\right|_{L_{\alpha}^{p, N+p \delta_{\left(B_{R}^{+}\right)}^{p}}} \leq C\left(|f|_{C_{\alpha}^{o, \delta_{\left(B^{+}\right)}}}+|u|_{H^{1, p}\left(B^{+}\right)}\right) \tag{7}
\end{equation*}
$$

with C independent of u, f.
(If we want to be more specific in the choice of p, we take $p=2$ for $O \leq \alpha<\frac{1}{2}+\delta$ and $1<p<\frac{1}{\alpha-\delta}$ for $\frac{1}{2}+\delta \leq \alpha<1+\delta$ in both Theorems 1 and $2, p=2$ for $1+\delta \leq \alpha<\frac{3}{2}+\delta$ and $1<p<\frac{1}{\alpha-1-\delta}$ for $\frac{3}{2}+\delta \leq \alpha<2+$ δ in Theorem 2).

When supp $u \cap S^{+}=\emptyset$, (7) holds for $R=1$ without the term $|u|_{H^{1, p}}{ }_{\left(B^{+}\right)}$on its right hand side. This means that (2) ${ }_{2}$ holds for all values of α in the range $[O, 2+\delta[, O<\delta<1$, that is, without exception for $\alpha=\delta$ and $\alpha=1+\delta$. Since the procedure leading to Theorem 2 can be repeated for all higher order derivatives, $(2)_{k}$ holds whenever $k=2,3, \ldots$ and $O \leq \alpha<k+\delta, O<\delta$ <1, no exception being made for $k+\delta-\alpha \in \mathbb{N}$.

As for $\delta=O$, we simply mention that $C_{\alpha}^{0, o}\left(B^{+}\right)$could safely be
replaced by $L_{\alpha}^{\infty}\left(B^{+}\right)$throughout. The above results can therefore be said to contain "weighted versions of the $L^{\infty} \rightarrow B M O$ type of regularity".

A few words about our techniques. The main tools are estimates such as

$$
\begin{equation*}
\int_{B_{\rho}\left(x^{o}\right)}|\nabla w|^{p} d x \leq C(p)\left[\left(\frac{\rho}{r}\right)^{N} \int_{B_{\left.r^{(} x^{(}\right)}}|\nabla w|^{p} d x+\sum_{i=1}^{N} \int_{B_{r}\left(x^{o}\right)}\left|h^{i}\right|^{p} d x\right] \tag{8}
\end{equation*}
$$

and
(9)

$$
\begin{aligned}
\int_{B_{\rho}\left(x^{o}\right)}\left|\nabla w-(\nabla w)_{\rho ; \alpha}\right|^{p} d x & \leq C(p, \alpha)\left[\left(\frac{\rho}{r}\right)^{N+p} \int_{B_{r}\left(x^{o}\right)}\left|\nabla w-(\nabla w)_{r, \alpha}\right|^{p} d x\right. \\
& +\sum_{i=1}^{N} \int_{B_{r}\left(x^{o}\right)} \mid h^{i}-\left(\left.h_{r, \alpha}^{i}\right|^{p} d x\right]
\end{aligned}
$$

which hold whenever w satisfies

$$
\begin{aligned}
& w \in H^{1, p}\left(B_{r}\left(x^{o}\right)\right), \\
& \int_{B_{r}\left(x^{0}\right)} w_{x_{i}} \varphi_{x_{i}} d x=\int_{B_{r}\left(x^{0}\right)} h^{i} \varphi_{x_{i}} d x \forall \varphi \in C_{o}^{\infty}\left(B_{r}\left(x^{0}\right)\right)
\end{aligned}
$$

where $O<\rho \leq r<\infty, x^{0} \in \mathbb{R}^{N}$; in (9), the symbol (.) $)_{\rho ; \alpha}$ denotes average over $B_{\rho}\left(x^{0}\right)$ with respect to $x_{N}^{\alpha} d x, \alpha \geq O$. We need p from 11,2]. For $p=2$, (8) and (9) are obtained [3] through typical techniques of the Hilbert space theory of elliptic PDE's. The passage to $1<p<2$ requires some preliminary results from the corresponding $H^{k, p}$ theory which can be found, for instance, in [7].

If spheres $B_{\rho}\left(x^{0}\right)$ are replaced throughout by hemispheres $B_{\rho}^{+}\left(x^{0}\right)$ - and w is required to vanish on $S_{r}^{0}\left(x^{0}\right)$ - the counterpart of (8) is obviously valid for $1<p \leq 2$, while the counterpart of (9) is only needed here for $p=2$ as in [3].

Detailed proofs will appear in a forthcoming article.

The results mentioned here could be compared with those of [1] , [5] , where the perturbing role of the boundary appears through degeneration of operators rather than explosion of some norms of free terms (and boundary data).

BIBLIOGRAPHY

[1] : P. BOLLEY - J. CAMUS - G. METIVIER
Estimations de Schauder et régularité Höldérienne pour une classe de problèmes aux limites singuliers.
Comm. in P D E 11, 1135-1203 (1985).
[2] : S. CAMPANATO
Proprietà di Hölderianità di alcune classi di funzioni.
Ann. Sc. Norm. Sup. Pisa 17, 173-188 (1963).
[3] : S. CAMPANATO
Equazioni ellittiche del secondo ordine e spazi $L^{2, \lambda}$.
Ann. Mat. Pura Appl. 69, 321-382 (1965).
[4] : D. GILBARG - L. HORMANDER
Intermediate Schauder estimates.
Arch. Rat. Mech. An. 74, 297-318 (1980).
[5] : C. GOULAOUIC - N. SHIMAKURA
Régularité Höldérienne de certains problèmes aux limites elliptiques dégénérés.
Ann. Sc. Norm. Sup. Pisa, 10 (1983).
[6] : F.JOHN - L. NIRENBERG
On functions of bounded mean oscillation.
Comm. Pure Appl. Math. 14, 415-426 (1961).
[7] : G. M. TROIANIELLO
Elliptic differential equations and obstacle problems.
Plenum Publ. Co., New-York, (1987).

