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Sufficiency of Condition (^) for Local Solvability in Two Dimensions

NICOLAS LERNER1

Purdue University

Introduction

In this paper, we establish the existence of local solutions of the equation

Pu = / ,

when P is a classical pseudo-differential operator in two dimensions, of principal type, of

order m, which satisfies condition (V»): the imaginary part p2 of the principal symbol of P

does not change sign from - to + along any oriented bicharacteristic of the real part pi of

the principal symbol. Let us recall briefly part of the well-known history of this problem.

Nirenberg and Treves [8] proved the sufficiency of condition (P) (i.e. pa does not change

sign along the bicharacteristic of pi, which is equivalent to (^) for differential operators) for

local solvability in the analytic case. The analyticity assumption was removed by R. Beals

and C. Fefferman [2] who proved local existence of H9^^1 solutions for H9 right-hand

side. Using a propagation of singularities argument, Hormander [4] proved local existence

of C°° solutions for C°° right-hand sides and obtained also semi-global existence results

([4], Chapter 26 in [5]).

Nirenberg and Treves [8] also conjectured the necessity of condition (^) for local

solvability and proved its invariance (by multiplication by an elliptic factor). They proved

the necessity of condition (P) in the differential case. Later on, Moyer [7] gave a proof of

the necessity of condition (^) for local solvability in two dimensions. Hormander (Corollary

26.4.8 in [5]) fully proved the necessity of condition (^).

Summing up, Nirenberg-Treves ̂  conjecture for local solvability of pseudo- differential

equations of principal type (that is, condition (^) is equivalent to local solvability) is proved

for differential operators. On the other hand, the necessity of condition (^) is established

^his research was partially supported by NSF Grant DMS 8601755
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for pseudo differential equations, but the sufficiency remains open. Here we prove that

sufficiency holds in two dimensions.

Our proof relies at a first level on a generalization of a Nirenberg-Treves' energy

estimate (cf. e.g. th. 28.6.1 in [5]). Let us say briefly that these authors proved an

estimate for an operator,

^ + A(t}B ,

where A((),B were bounded operators in a Hilbert space ft, with A(t) < 0. We use here

the fact that it is possible to derive an estimate for

^+A(t)B{t) ,

provided that the sign of the operator B(t) (in the spectral sense) is non-decreasing (and

A(t) < 0). At a second level, the specificity of the two-dimensional case allows us to use a

factorization of our operator.

As it is clear through the title of this paper, we focused our attention on the local

solvability problem (Th. 1.2.1 below). Nevertheless, we think that the energy estimates

(lemmas 2.3.5 and 3.3.1 below) may have their own interest.
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The paper is organized as follows.
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§1. Statement of the Main Results

1.1 Notations.

Let 0 be a C00 n-dimensional manifold and P be a properly supported (see e.g.

def. 18.1.21 in [5]) pseudo-differential operator on 0 (see e.g. def 18.1.20 in [5]) with

an homogeneous principal symbol of degree m,p = pi + »p2(pi»P2 real-valued). Assume

moreover that P is of principal type, i.e. Hp A L ̂  0, where L is the Liouville vector field.

Our main assumption will be that p satisfies condition (V?) (see def. 26.4.6 in [5]).

1.2 Results.

THEOREM 1 . 2 . 1 . Let 0,P as above (section 1.1) with n = 2 and XQ € 0. Then for
each 6, there is a neighborhood 0^ ofa;o such that

Pu= /

has a solution u € H^^^n^ for every f 6 H^(fl^).

It was shown by Nirenberg and Treves [8] that this theorem can be reduced by localiza-

tion and homogeneous canonical transformation to an analogous statement for a first-order

pseudo-differential operator of the following form:

(1.1) ^+»g(^P.)

where g((, x, ̂ ) € C°°(Rt x R^~1 x R?~1) is real-valued, positively homogeneous of degree

one for |^| > 1, i.e.

(1.2) itp>l and |$| > l,q(t,x,p^) = pq(t,x^),

and such that

(1.3) WD^D^X,^ < C^(l + |e|)1-"9'.
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Moreover, condition (iff) in that framework can be expressed as follows:

for each fixed (a;, $) e R"-1 x R"-1 the function t •-»• q(t, x, $) does not change sign from -

to + as ( increases. These non-trivial reductions are now classical and we refer the reader

to the theorem 21.3.6 in [5] (which follows from the Malgrange preparation theorem ([6],

th. 7.5.6 in [5]) and to the Egorov theorem ([3], th. 25.3.5 in [5]). Using this background

we are reduced to prove the next theorem, dealing with an estimate for the transposed

operator.

Let us first state a definition.

D EFINITION 1 .2.2. We shall say that q is a normalized (^M function ifq € C°° (Rf x

R^~1 x R^~1), is real-valued, satisfies (1.2), is supported in

(1.4) To = Ri x {z, \x\ < 1} x f{^ 0,1— - $o| ̂  1} U {$, |e| < 1}1 ,

with ^o = (0,...,0,1) € R""1, is such that

mg|(D^;Df<7)(t,z.()|<C'^,
t,x

with

(1.6) max Coa/? < 1.
|a|+|/9|^M -p -

Moreover we assume tAat

(1.7) q(t, x, $) > 0 imphes q{s, x, ̂ ) >. 0 if s ̂  (.

THEOREM 1.2.3. Assume n = 2. TAere exist Co,Mo,To positive ("universal")

constants, such that, ifq is a normalized (^M function (definition 1.2.2) with M > Mo,

ifu 6 S(Rf x R?~1), u((,a;) = 0 when \t\ >. T and 0 < T <, To, we have

(1.8) Co\\DtU+iq(t,x,DM^^) ^ T^^^n).
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1.3 Remarks: a. The symbol r + iq satisfies condition (^) (see def. 26.4.6 in [5]).

The estimate stated in theorem 1.2.3 implies a local solvability result for an operator with

principal symbol r — ig; the lower order terms are unimportant because of the "large^

constant T~~1 in (1.8).

b. It would have been possible to state the result in the theorem 1.2.3 by saying that

the constant TQ depends only on a finite fixed number of semi-norms of g((,- ,-) (i.e. the

Coc^). Let us first remark that if q(t,x^} € C°°{Rt xR^-1 xR^~ 1 ) is real-valued, satisfies

(1.2) and (1.7) is supported in I'o (1.4) and is such that

(î ) iwz?^)(t,z^)i < c^(i + lei)1-^,

then, setting o/o = 3 max Coa/9 and 0((,x,$) = ̂ ^(a;^1*,^, $), we obtain that Q
|O(|-H/?|$MO

is a normalized (^Mo function. Then, if v(t,x) C S(Rf x R;""1) is 0 for [t| > ?, with

0 < r < (^o1^), the function u((,z) = t/^o^z)^^ is in S(Rn) and is 0 for |(| > o/o?,

with 0:07' <, To. Applying theorem 1.2.3, to Q and u, we get

Co\\{Dtv)(t^\x)u;^ + Wo^q^x.DM^t.x)^^^^

>^l^-l||t/||^,

that is

(1.10) Co\\DtV+iq(t,x,D^v\\^ ^T^\\v\\^.

Now from (1.10) it is possible to remove the assumption of support in (1.4) by using

a classical pseudo-differential (homogeneous) partition of unity. Eventually the theorem

1.2.3 can be extended to the following result.

THEOREM 1.3.1. Assume n = 2.

Let q{t,x, $) € C°°(Rt xRS""1 xR^~1) reaJ valued such that (1.2) and (1.7) are fulfilled

and
max |(Z??^g)((,z,$)| = C^ < +00

(eR^eR'1"1

(eR"-1,^^
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for each (a,/?). Then tAere exist some positive constants Go, To, depending on a finite

fixed numbers of semi-norms of q (the C^), such that, for every u € S^) such that

u = 0 for \t\ > T, with 0 < T < To,

\\DtU+iq{t,x,D^u\\^(nn) > Co^r-^HI^Rn)

c. These theorems have been proved by R. Beals and C. Fefferman [2] (in any dimen-

sion) replacing condition {^} by condition (P) (i.e. (1.7) by q{t,x, ̂ )q{s,x^) > 0).

d. The specificity of the two-dimensional case comes from the fact that q(t, x, ̂ )
satisfies (1.2) where $ is one real variable.
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§2. Some Hilbertian Lemmas

The lemmas stated and proved in this section are a natural sequel of the Nirenberg-

Treves estimate ([8], Th. 26.8.1 in [5]). They are of course unrelated to the assumption
n=2 .

2.1 Notations. Let H be a complex Hilbert space and C{H) the Banach algebra of

bounded linear operators on H. An operator L € £(H) is selfadjoint (or real) if L = L*

and antiselfadjoint (or purely imaginary) if L* = —L. For L e £(H), we set

(2.1) ReL == ^(L + L'), ImL = ^-{L - L*).
2 2t

If J is real and K purely imaginary in £(H)^

(2.2) [ J , K } = J K - K J = 2 R e { J K ) (thus real).

Finally, if B 6 t{H) is real, using its spectral decomposition, we get

fB±=^(\B\±B} , |B|=B++B-

(2.3) < B = B+ - B_ , B± >: 0,

»> .D-^JD— = .B—.B-i- := 0 •

We can define the sign 5 of B, 5 = S^ — 6'-, and we have

(2.4) S± > 0 , 5+SL = 5-5^ = 0, Id = 5+ + 5^,

(2.5)

and thus

(2.6)

S-^B-^ = 0 = B^S^ , 5±B± = J3±5± = B±,

5+B = BS+ = B+ , 5-B = BS- = -B-,

5B+ = B+ = B+5, 5B_ = -B_ = B-S.
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We get also

(2.7) SBJ^ = ±S^BJ, = ±BJ, = BJ,S.

DEFINITION 2 .1 .1 . Let B real € £(ff). An operator 5 = S^ - S_ is a p5eudo-5tffn

o/ B if the properties (2.4), (2.5) and (2.7) (and tAus f2.6^ are fulfilled. Note that, from

(2.4), we obtain that a pseudo-sign is unitary and selfadjoint.

2.2 The Nirenberg-Treves Estimate.

We shall not recall here the basic estimate proved by Nirenberg and Treves in [8],

used also by R. Beals and C. Fefferman [2]. The reader can consult the theorem 26.8.1 in

[5]. Nevertheless we'll recall the basic lemma leading to this estimate, namely the lemma
26.8.2 in [5].

LEMMA 2.2.1. (Nirenberg'Treves [8], lemma 28.6.2 in [ 5 ] . ) Let A and B C £ (H), B
real. Then, with operator norms,

(2.8) ll^iJBtAJjil^^llAlltlK^A]^!!^,^^]]^.
L L J J ^j

Remark 2.2.2: Let g be a fixed positive definite quadratic form on R2" and set, for
TeR2",

g<r(T)= sup \T,U\\
g(U)=l

where [,] is the symplectic form on R2". We define A = (sup l^)"^ and assume A > 1.

A function 0 € C^R2") belongs to S^.g} if the following estimates hold:

|^)(^)rfc( ^ \^Ck(6)g{T}^.

Assume that A,B are operators on L^R") with Weyl symbols a, 6 such that a € 5(A,g),6 6

5(1, g),b real-valued, a, 6 supported in a fir-ball of radius ^ 1. (See section 18.5 in [5]). The
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lemma 2.2.1, in spite of the fact that (fe*")^ is not a pseudo-differential operator, shows

that the £{L2) norm of ||(B^,(B^,A]]|| is bounded by a»nC'p(n)(a)C'p(^(6)Ai.l.A-i =

^nCp^^c^Cp^)^), where a;n,p(n) depend only on the dimension. The important fact

here is of course that the right-hand side of (2.8) is estimated by semi-norms of the symbols,

independently of A.

2.3 A New Energy Estimate.

We are interested in this section in an ordinary differential equation in a Hilbert space

H. Let Q(t) <E £. {H) function of ( 6 R. We'll study the operator

(2.9) ^-Q(t}

acting on u : R —> jH\ continuously differentiable.

We shall assume

(2.10) 0(()=Re(B(()A(t)),

where A((),J9(() are in £(H), real, uniformly continuous as functions of ( € R, with

(2.11) A(() > 0.

Our main assumption is that there exists a t-weakly measurable pseudo-sign of B(t)

(definition 2.1.1), M(t), which is non-decreasing, i.e.

(2.12) (M(h) - M(d))((2 - ti) > 0,d,(2 real .

Note that if B is time-independent M = sign(B) satisfies obviously (2.12).

LEMMA 2.3.1. Let u € C^(R,Jf) (continuously differentisLble functions from R to

H with compact support). Then, for a t'weakly measurable real operator M(t) G £(H)

satisfying (2.12) and

(2.13) sup||M(()|| < +00,



11-11

we have

(2.14) Re / < M(()tl((),u(t) >jy A < 0,

(u=^,<e,e>jf inner product in H).

Before proving this lemma, let us remark that (2.13) means, after a formal integration
•

by parts, that the operator M is non-negative (it should be a natural consequence of (2.12)).

It would have been possible to use the theory of distributions valued in £(H)[9} to prove

this fact. Here we've preferred a simple elementary argument dealing with the very weak

assumption of regularity on M(() (boundedness and measurability). Note that (2.13) is

automatically fulfilled if M(t) is a pseudo-sign of B(t)(M(t) unitary is a consequence of

(2.4)). Let us now prove the lemma.

By the Lebesgue's dominated convergence theorem, we have, setting

SE (u) = Re / < M(()ti((),u(t) > dt,

= (u) = lim(=^ (u) = Re / < M(t)h^(u(t + h) - u(()),u(() > dt).
h—»0 J

But, we have the identity

^ (u) =Re / </l-l(M((-/l)-M(())u((),u(t) > dt

+Re I <M(t)u(t+h),h^l(u(t)-u(t+h)} > dt.

Using (2.12), we get

=h (u) < Re I < M{t}u(t + h}, h^^t} - u(( + h)) > dt,

and applying the Lebesgue's dominated convergence theorem, we obtain

= (U) < - EE (U),

which completes the proof of the lemma.
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LEMMA 2.3.2. Let A, B be reaJ operators in £ (ft), A > 0 and M a pseudo-sign of

B (cf. def. 2.1.1). Then

Re(MRe(AB)) > -^1|A||^||[A,B]||^||[B,[B,A]]||^

Proof: Set up

L = MReAB = ^MAB^B^ - ^-MAB^B^
M 2i

+ \MB^B^A - ̂ -MBiatA.
2i Zi

So using (2.7) for the pseudo-sign M we get

L==JM[A.Bt]Bt+|B^ABt

- ̂ [A.BtjB5 + ̂ -BlABi
2i L

^\B\[B\,A\^\B\AB\

+^B11[B^A}+^B7ABL

Now the assumption A > 0 yields

2ReL^Re{M[[A,B^],B^] +MB^[A,B^]

-M[[A,Bi],B5] -MB^A.Bi]

+B^[B^,A]+Bi(B!,A]}.

Now remarking that B^ is real, [B^,A] purely imaginary (by (2.2)) we get, by using (2.2)

and (2.7),

ReL > R^JM [[A.B^] ,Bt] - JM [[A,Bi] ,B^

^M^hl^M]
.|[^,[Bt,A]].|[^[Bt,A]].

which gives the result (the sum of the last four terms is 0 and ||M|| < l), as a consequence

of (2.8) in lemma 2.2.1.
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LEMMA 2.3.3. Let A, B, rea/ operators in ̂  (H), M a pseudo-sign of B. Then

(2.16) ||[M,[M.Re(BA)]]|| < ̂ W||[B,A]||^||[B,[B,A]]||i

Proof: Notice that [M,Re(BA)] is purely imaginary (2.2) so [M,[M,Re(BA)]] is real

(2.2).

Let us set

L=2[M,[M,ReBA]],

L = M(M(BA + AB) - (BA + AB)M) - (M(BA + AB) - (BA + AB)M)M.

So, using M2 = I (cf definition 2.1.1), we get

^-L = BA + AB - MBAM - MABM = 2Re(BA - MB AM).

Moreover, we have, using (2.6),

MBAM = B^B^AM + B^AM,

MBAM = [af, [at.A]] M+ B^AB^M-}- [B^.AJ B^M

+ [B^, [ai,A]] M + BtABiM + [B^.AJ atM.

Now, using (2.7), we obtain

MBAM = [at, [af.A]] M+ [ai, [Bi,A]] M
+BtAB^+[Bt,A]B^

-B^AB^-^^A^BL

Thus, we get

-BA + MBAM = [at, [5+^]] M + [a5, [at.A]] M
+2[B^,A]B^+AB+

-2[BT,A]Bi-AB-

-BA.
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So, using (2.2), we have

^L = Re(BA - MBAM) =

=- Re{[at, [J^,A]]M+ [B7, [BU]] M}

-[[Bt,A],B^]+[[Bi,A],B!]

+ Re([B, A]) (Note that this last term is 0).

The lemma 2.2.1 and the previous identity give (2.16).

LEMMA 2.3.4. Let u(t),M(t) as in lemma. 2.3.1 with M(t)2 = Id. Let w{t) be a

smooth rea.1 valued function. Then

-2Re t < (E(t)M(t)E(t)}H(t),u(t) >ji dt
(2.17) J

>y(2^)-2|a;(()(;(()|)||u(()||^,

with E(t) = Id + u(t)M(t).

We can note here that this lemma is a minoration of -^(EME) = 2Re(EME) +EME

(cf remark after the lemma 2.3.1). Let us prove the lemma:

We have 6(u) = -2Re f < {E(t)M(t)E{t))i(t),u(t) >» dt, and using M(<)3 = J, we

get

0(u) = -2Re / < (l+c^^M^t),^) >H dt

-2Rej2w(t){!i(t},u(t)}Hdt.

So, by the lemma 2.3.1

6{u) ̂  -2Re I < M(t}^(t}u{t))^(t)u{t) >n dt

+2Re f(M(t)^(t}u(t),u{t) >s

+ f' 2^t)\\u(t)\\]fdt.
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Using again the lemma 2.3.1 we get

9(u) > f^(t} - 2|a/(^(()|)||u(t)||^,

which completes the proof.

Let us introduce some notations. We shall note by V the Hilbert space ^(R, H) with
inner product

(2-18) M^/= f{u{t),v{t}}sdt.
JH

If A(t),B(() are operators in £{H), functions of ( € R we shall note

(2.19) ^(A,B)=m^||A(t)||i||(A((),B(()]||?l|[B((),(B(().A(()]]||?

The main result of this section is the following:

LEMMA 2.3.5. Let H be an Hilbert space and A(t),B(t) real operators in Ji{H),

uniformly continuous as functions of t £ R, with A(t) > 0. We assume that there exists

a t-weakly measurable pseudo-sign of B{t} (definition 2.1.1), M(t), satisfying (2.12). We

set Q{t} = Re(A(()B(()),P == ̂  + iQ(t}. Then if0<6^ 2-^o(A,B)-1 (cf. (2.19)),

v, € C^(R,H) with diameter (supp u) < 6

(2.20) ||Pul|̂  ^2-4^-1|H|^ (ct. (2.18)).

Proof: Let us set N(t) = E(t}M(t)E{t), where M{t) is a (-weakly measurable pseudo-
sign ofB(() satisfying (2.12),

(2.21) E(t) =Id+w(t)M(t),

with w(t} = t6-lx{t6-'i) where x € C^°(R, [0, l}),x(s) ^ 1 on \s\ < ^x(s) = 0 on

\s\ ̂  1,6 a positive parameter.
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Let us compute, for u € C^(R, ff), u = 0 if |t| ̂  j,

2Re(Pu,»^M£?u)^ = A(u),

A(u) = y2Re<^(() +t(Re(A(()B(()))u((),»£7(()M(t)£?(()u(())Hdt,

(2.22) f ,
A(u) = -2Re / {u(t),E(t}M{t)E{t)u[t)}Hdt

+2Rej{E{t)M(t)E(t)Q{t)u(t),u(t)}Hdt.

We obtain easily that, for \t\ < j,

2(;(()-2|^(()| \^(t)\>6-\

and thus, using the lemma 2.3.4 we get

A(u) > ̂ HuH^Re [{E(t)M(t)[E(t),Q(t}}u(t),u{t)}ndt
(2.23) •/

+ j (2Re{M(t)Re(A(t)B(t))}(2?(()u(()), (I;(()u(Q))Hd(

Now using the lemma 2.3.2, to handle the last term in the right-hand side of (2.23), and

IÎ WII.̂ H) ^ 2' we 8^' as M{t}2 = Jd' ̂ ^g (2-21), (2.2) for the first integral in (2.23)

A(u)>^-l||u||5/-8^|M|^

+ [{[M{t),[M{t),Re{A{t}B{t))}}u{t},u{t}}H^{t)dt.

The lemma 2.3.3 gives (as 0 <, w(t) < l)A(u) > (6~1 - 81/0-81/0) ||u||^.

So the Cauchy-Schwarz inequality applied to (2.22) eventually gives

IIPull̂ -̂ lHl,/,

if 6 < 2~6l/Ql, that is the result.
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3. Pseudo-Differential Operators

3.1 Factorization.

We have to prove the estimate (1.8) for a normalized (^M function q (definition

1.2.2). Let us set

f 1 for ^ > 2
(3-!) ^ec'o^R^M),^

[ 0 for ^ < 1.

We can note that, using (1.2) (recall n = 2), we have

(3-2) g(t,x,^) = q[t,x, 1)^($) + (l-^))g((,:r,e).

But the assumption (1.4) on the support of q and (3.1) imply that the symbol (l -

^)M<,a;,0 = 0 if ̂  2 or C < -1. It is thus clearly sufficient to prove (1.8) for

the symbol q[t, z, l)^(C), because the £.(L2{Rn-'i = R1)) norm of the operator with sym-

bol (1 -u(^))q(t,x, ̂ ) is estimated (uniformly in () by a finite number (depending only on

the dimension) of Coa/9 (cf. (1.5),(1.6)). But using the classical quantization of symbols,

we have

Op(q(t,x, 1)MO) = Op(g((,;c,l))0p(^(0)

(3.3) = |(0p(g((,a;,l))0p(^(0) + Op(^))0p(q(t,x,l}))

+|(0p(<?((,a;,l)),0p(^(e))].

But the last term (the bracket) is a pseudo-differential operator of order 0 whose

semi-norms can be estimated by those of q. As above we can neglect this term and prove
(1.8) replacing q(t,x,Dx) by

(3.4)
Q=^(0p(q(t,x,l))0p{^)})

+^{Op^wW)Op{q(t,x,l)))

3.2 Non-Homogeneous Reduction.

Let us begin by a
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CLAIM 3.2.1. It is enough to prove (1.8)( with Q (cf. (3.4)) replaced by

(3-5) Q^ = R«'(0p(g(t, x, l))Op(ew(e)M^)))

v integer > 1,^ € C'§°(R, [0,1]), such that

(3.6) Va,3Ca,V^,Ve, |^($)| $ C'c.2-^10'',

fTAe important fact is that the Ca are independent ofi/)^ and

(3.7) 21'-1 < |e| < 2l/+l wnen C € supp ̂ .

Under the preceding assumptions the only point to be checked is that the constants

CO,TO,MO are independent ofv.

This claim is a very particular case of the following lemma.

LEMMA 3.2.2. Let us assume that q(t,x,^) is real valued € 5(A(z,$),g,;^) fsee

definition 18.4.2 in [5]) uniformly in t € R, with A(z, ̂ ) = ST^0"'^^ ̂  1, and g a-
T *» (

temperate (definition 18.5.1 in [5 ] ) . In order to prove (1.8) with q(t,x,Ds] replaced by

^{t^f O^ (see (18.5.3) in [5])^ it is enough to prove it for q supported in a g-ball of radius

< 1 and q 6 S(\^g) with constants Co,Tb,Mo independent of \.

We shall not prove this lemma, which is a straightforward application of sections 18.5

and 18.6 in [5]. Note that the proof involves some symbols with values in t2 (as in the

proof of lemma 18.6.10 in [5]) and can be obtained also by using the notion of confined

symbols introduced in [I],

3.3 Summarizing the Reductions.

In order to prove the theorem 1.2.3 (and thus the theorem 1.2.1) it is enough to prove

the following lemma.
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LEMMA 3 .3 .1 . Let &((, z) real va/ued 6 C^RixR;-1) such that (6((,z) =q[t,x,l}}

(3-8) sup|(D^)((,z)|^Ca , with max C^ < 1,
t,a; |oi(^M

(3.9) 6(1, z) > 0 implies 6(5, x) >. 0 it s > t.

Let aA((,x,e) non-negative € C^Rt x R^-1 x R^~1), sucA tnat

(3.10)

sup|(D^^aA)(t,a;, 0|A^I-1 < C ,̂ wjth max C^ < 1,\ a. parameter > 1.
<,a,( |ot|+|y9|^M

Assume moreover tAat 6 and a\ are zero on \t\ > l,6((,z) = 0 for |a;| > 1,

(3.11) OA(t,z, C) = 0 for \x\2 + A-2!^2 ^ 1.

TAen, tAere exist C'o,ro,Mo, sucA tAat, ifM ̂  MQ, tAe conc/usion of tAe tAeorem

1.2.3 Ao/ds, witA q{t,x,Ds) replaced by Re^a^.
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§4. Proof's End

4.1 The ^ Condition.

Let &(t,X) € C°°(Rt x R .̂) supported in \t\ < 1, such that

(4.1) fr(t, X) > 0 implies b{s, X) > 0 if s > t.

Then we define

(4.2) t+(X) = inf{(,( € |-l,+l],6((,X) > 0},

(4.3) t-(X) = sup {t,( € [-l.+l],6((,X) < 0}

If 6((,X) < 0 (resp. > 0) for all ( we'll set t+(X) = +1 (resp. t-(X) = -1).

We have the following obvious

CLAIM 4.1.1. ForeacAXeR 4

(4.4) -1^(-(X)«+(X)^+1,

(4.5) &(t,X) ^0 for t < t-(X),

(4.6) 6(t, X) == 0 for (- (X) ^ ( ̂  (+ (X),

(4.7) &((,X) > 0 for t> (+(X).

An important consequence of this claim is that

6((,X)5<7n((-(+(X))=|6((,X)l.

(4 8) f +1 if t > ̂ Wv ' / with s{t,X) = sgn(t - t+(X)) = {
( -1 if ( < (+(X)
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Note also that 6 is a bounded measurable function, and

9s
(4.9) — > 0 as a measure.at

4.2 Specificity of the Factorization.

Let us set, for 6 as in lemma 3.3.1,

(4.10) B^Op^.z)^^)

as a bounded operator in the Hilbert space H = Z^R''1"1) (multiplication by the function
b(t,x)}. We define, with s(t,x) defined in (4.8),

(4.11) M(()=0p(6((,z)),

M(() is the bounded operator in H = L^R71'"'1) defined by the multiplication by the L°°

function s[t^xyt 6 R,z 6 R11""1). The operator M(() is obviously a t-weakly measurable

pseudo-sign of B{t) (def. 2.1.1) and satisfies (2.12) (it is obvious because only the x € R^1

variable is involved; it would not have been the case if b was depending on (z, ^) and so

s: the quantization of s by (4.11) would have been possible - a S' distribution can be

quantized - but the L2 boundedness of M and overall the non-negativity of MB would

have been false).

4.3 Final L2 estimate.

Let us set

(4.12) A^aH^+Ci,

where C\ is a constant such that

a^(<)+Ci >0 onL^R^1)
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(which is a consequence of the Girding inequality for the metric dx2 + ^g2-, cf. Th. 18.6.7

in [5]; C\ depends only on a finite number of Cap in (3.10)). The calculus of pseudo-

differential operators in the metric dx2+ ̂ r (cf. Th. 18.5.4 in [5]) and the L2 boundedness

of symbols with weight 1 (cf. Th. 18.6.3 in [5]) allows us to compute i/o(A,B) given by

(2.19).-

We have

^o(A,B) < ̂  (C^)'4 (C^0)*^-1^ = Cs,

where C^^Cz^C^C^ depends only on a finite number of Ca in (3.8) and Cap in (3.10).

Then, using the lemma 2.3.5 (for H = Z^R'1"1), A(() given in (4.12), B{t} given by (4.10),

Af(() by (4.11)) we obtain the lemma for Re^^a^ + Ci)) and we can neglect the term

C\ by using the large constant 6^1 in (2.20). The proof is complete.
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