JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

MOHAMED S. BAOUENDI LINDA P. ROTHSCHILD CR mappings and their holomorphic extension

Journées Équations aux dérivées partielles (1987), p. 1-6 http://www.numdam.org/item?id=JEDP_1987____A23_0

© Journées Équations aux dérivées partielles, 1987, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CR MAPPINGS AND THEIR HOLOLOMORPHIC EXTENSION

M. S. BAOUENDI

LINDA PREISS ROTHSCHILD

PURDUE UNIVERSITY

UNIVERSITY OF CALIFORNIA, SAN DIEGO

WEST LAFAYETTE, IN 47907

LA JOLLA, CA 92093

If M is a smooth manifold of real dimension 2n+1, we say that M is a CR manifold of codimension one with CR bundle V, if V is a subbundle of CTM, the complexified tangent bundle of M, satisfying

$$dim_{\mathbb{C}}\mathcal{V}=n, \qquad \mathcal{V}\cap\overline{\mathcal{V}}=0.$$

Any smooth real hypersurface M in \mathbb{C}^{n+1} is a CR manifold of codimension one, where \mathcal{V} is the subbundle of antiholomorphic tangent vectors to M.

Let (M, \mathcal{V}) and (M', \mathcal{V}') be two CR manifolds of codimension one. A smooth mapping from M into M' is called CR if for all $p \in M$

$$H'(\mathcal{V}_p)\subset \mathcal{V}'_{H(p)}.$$

We recall the following definition introduced in Baouendi-Jacobowitz-Treves [3]. If M is a real analytic hypersurface in \mathbb{C}^{n+1} containing the origin and defined locally by $\rho(z,\overline{z})=0,\ d\rho\neq 0$, we say that M is essentially finite at 0 if for any sufficiently small $z\in\mathbb{C}^{n+1}\setminus\{0\}$, there exists an arbitrarily small $\zeta\in\mathbb{C}^{n+1}$ satisfying: $\rho(z,\zeta)\neq 0,\ \rho(0,\zeta)=0$.

Our main result is the following:

THEOREM 1. Let M and M' be real analytic hypersurfaces in \mathbb{C}^{n+1} and $H:M\to M'$ a smooth CR mapping, defined near $p_0\in M$ with $H(p_0)=p_0'$, and satisfying

$$(1) H'(\mathbb{C}T_{p_0}M) \not\subseteq \mathcal{V}'_{p'_0} \oplus \overline{\mathcal{V}}'_{p'_0},$$

where \mathcal{V}' is the CR bundle of M'. If M and M' are essentially finite at p_0 and p'_0 respectively then H extends as a holomorphic mapping from a neighborhood of p_0 in \mathbb{C}^{n+1} to \mathbb{C}^{n+1} .

Theorem 1 was first proved for n = 1 by S. Bell and the authors (see [1], [2]). It generalizes the result in the diffeomorphic case proved in [3]. We refer to the references of [2] and [3] for earlier works on holomorphic extendibility of CR mappings under stronger conditions.

The following is a key ingredient in the proof of Theorem 1. If j is a smooth CR function defined on M then there exists a unique formal (holomorphic) power series $J(z) = \sum a_{\alpha}z^{\alpha}$, $a_{\alpha} \in \mathbb{C}$, such that, if $U \ni u \mapsto Z(u) \in \mathbb{C}^{n+1}$ ($U \subset \mathbb{R}^{2n+1}, Z(0) = 0$) is a parametrization of M, then the Taylor series of j(Z(u)) at 0 is given by J(Z(u)). On the other hand it is clear that a CR mapping between two hypersurfaces M and M' in \mathbb{C}^{n+1} is given by (n+1) CR functions (j_1, \ldots, j_{n+1}) . Such a mapping is called of finite multiplicity at 0 if

$$dim_{\mathbb{C}}\mathcal{O}[[Z]]/(J(Z))<\infty,$$

where $\mathcal{O}[[Z]]$ is the ring of formal power series in (n+1) indeterminates and (J(Z)) is the ideal generated by $(J_1(Z), \ldots, J_{n+1}(Z))$. Here the dimension is taken in the sense of vector spaces. We have the following:

THEOREM 2. If M and M' are essentially finite at p_0 and p'_0 respectively then a CR mapping $H: M \to M'$ is of finite multiplicity at p_0 if and only if condition (1) of Theorem 1 holds.

We may restate Condition (1) in terms of local coordinates. We may assume $p_0 = H(p_0) = 0$ and M and M' are given locally by

(2)
$$Im \ w = \varphi(z, \overline{z}, \text{ Re } w), \qquad Im \ w = \psi(z, \overline{z}, \text{Re } w)$$

with $\varphi(z, 0, \text{Re } w) = \psi(z, 0, \text{Re } w) = 0; z \in \mathbb{C}^n, w \in \mathbb{C}$. The map H is then given by n+1 CR functions $(f_1, \ldots, f_n, g) = (f, g)$ defined on M. Therefore we have

(3)
$$\frac{g-\overline{g}}{2i}=\psi(f,\overline{f},\frac{g+\overline{g}}{2}).$$

With this notation Condition (1) is equivalent to

$$\frac{\partial g}{\partial s}(0) \neq 0,$$

with $s=\mathrm{Re}\ w.$ (Here f_j and g are considered as smooth functions of $z,\ \overline{z},\ s).$

Using Theorem 1 as well as Diederich-Fornaess [5], [6], Fornaess [7] and Bell-Catlin [4], we obtain the following

THEOREM 3. Let D and D' be two bounded pseudoconvex domains in \mathbb{C}^{n+1} with real analytic boundaries and $H:D\to D'$ a proper, holomorphic mapping. Then H extends holomorphically to a neighborhood of \overline{D} , the closure of D.

We give here an outline of the proof of Theorem 1. By solving (3) for \overline{g} we obtain a holomorphic function Q

$$\overline{g} = Q(f, \overline{f}, g).$$

As in [3] by writing

$$Q(f,\lambda,g) = \sum Q_{\S^{\alpha}}(f,\overline{f},g) \frac{(\lambda - \overline{f})^{\alpha}}{\alpha!}$$

we are reduced to showing that for $z_0 \in \mathbb{C}^n$ fixed, $|z_0| < r$,

$$Q_{\zeta^{\alpha}}(f(z_0,\overline{z}_0,s),\overline{f}(z_0,\overline{z}_0,s),g(z_0,\overline{z}_0,s))$$

extends as a holomorphic function in s + it, |s| < r, -R < t < 0, for some r, R positive, and satisfies

$$|Q_{\varsigma^{\alpha}}| \leq C^{\alpha+1}\alpha!, \qquad C > 0.$$

The main ingredients used in proving the above are the following.

LEMMA 1. If j is a smooth CR function defined on M then the Taylor series of j in the coordinates (z, s) is given uniquely by

(7)
$$j \sim \sum a_{\alpha k} z^{\alpha} w^{k}|_{w=s+i\varphi(z,\overline{z},s)}, \qquad a_{\alpha k} \in \mathbb{C}.$$

A basis for the CR vector fields on M is given by

(8)
$$L_{j} = \frac{\partial}{\partial \overline{z}_{j}} - i \frac{\varphi_{\overline{z}_{j}}}{1 + i \varphi_{s}} \frac{\partial}{\partial s}, \qquad 1 \leq j \leq n,$$

LEMMA 2. If $j(z, \overline{z}, s)$ is a CR function on M, then for all multi-indices α

$$\overline{L}^{lpha} j(0) = \left(rac{\partial}{\partial z}
ight)^{lpha} J(0,0),$$

where $J(z, w) \sim \sum a_{\alpha k} z^{\alpha} w^k$ is as defined in Lemma 1.

Using the Nullstellensatz we may prove the following.

LEMMA 3. For $j=1,\ldots,n$ let $F_j(z,w)$ be the formal power series associated to f_j as in Lemma 1. Let I be the ideal generated by $F_j(z,0)$, $1 \leq j \leq n$, the ring $\mathcal{O}[[Z]]$ of formal power series in the indeterminates z_1,\ldots,z_n . Then under the assumptions of Theorem 1,

(9)
$$\dim_{\mathbb{C}} \mathcal{O}[[z]]/I < \infty,$$

and therefore

(10)
$$\det(\frac{\partial F_k}{\partial z_i}(z,0)) \not\equiv 0.$$

An immediate consequence of Lemmas 2 and 3 is that there exists a multi-index α such that

$$(11) \overline{L}^{\alpha}(\det(\overline{L}_{j}f_{k}))(0) \neq 0.$$

LEMMA 4. For every multi-index α and every z_0 , $|z_0| < r$ there exist functions a(s), b(s) holomorphic in the domain $\mathcal{R} = \{s + it; |s| < r, -R < t < 0\}$, smooth in $\overline{\mathcal{R}}$ such that

$$Q_{\varsigma^{\alpha}}(f,\overline{f},g)(z_0,s)=rac{a(s)}{b(s)}.$$

Lemma 4 is proved by applying successively \overline{L}^{β} to (5) and using (11).

LEMMA 5. For each $j, 1 \leq j \leq n, f_j$ satisfies a polynomial equation of the form

$$f_j^{N_j} + a_{N_{j-1}}^j f_j^{N_j-1} + \cdots + a_0^j = 0,$$

where $a_k^j=a_k^j(L^{\gamma}\overline{f},L^{\gamma}\overline{g})$ is a holomorphic function of the $L^{\gamma}\overline{f}$, $L^{\gamma}\overline{g}$, for $|\gamma|\leq \gamma_0$.

The proof of Lemma 5 uses Lemma 3, as well as repeated applications of the Weierstrass Preparation theorem and the Nullstellensatz.

LEMMA 6. There exists N such that for each multi-index α , $Q_{\zeta^{\alpha}}(f, \overline{f}, g)(z, \overline{z}, s)$ is a root of a polynomial of the form

(12)
$$X^{N} + b_{N-1}^{\alpha} X^{N-1} + \dots + b_{0}^{\alpha} = 0$$

where the b_k^{α} are holomorphic functions of $L^{\gamma}\overline{f}$ and $L^{\gamma}\overline{g}$, $|\gamma| \leq \gamma_0$, and satisfies

$$|b_j^{\alpha}(L^{\gamma}\overline{f},L^{\gamma}\overline{g})| \leq (C^{\alpha+1}|\alpha|!)^{N-j}$$

at
$$(z, \overline{z}, s + it)$$
 for $|z| < r$, $|s| < r$ and $-R \le t \le 0$.

From Lemmas 4 and 6 it follows, using the Lemma in [2], that each $Q_{\zeta^{\alpha}}(f,\overline{f},g)$ extends holomorphically to \mathcal{R} . Finally, the estimate (6) follows from (13).

For higher codimension, a slight modification of the proof of Theorem 1 yields the following.

THEOREM 4. Let M and M' be real analytic generic CR submanifolds of real codimensional ℓ in $\mathbb{C}^{n+\ell}$ and $H:M\to M'$ a smooth CR mapping defined near $p_0\in M$, $H(p_0)=p_0'$, and satisfying

$$\dim_{\mathbb{C}}(H'(\mathbb{C}T_{p_0}M)/\mathcal{V}'_{p_0}\oplus\overline{\mathcal{V}}'_{p'_0})=\ell$$

where V' is the CR bundle of M'. Assume that M and M' are essentially finite at p_0 , and that near p_0 , H extends holomorphically to a wedge of edge M. Then H extends as a holomorphic mapping from a neighborhood of p_0 in $\mathbb{C}^{n+\ell}$ to $\mathbb{C}^{n+\ell}$.

Complete details of the proofs will appear elsewhere.

REFERENCES

- BAOUENDI, M.S., S. R. BELL, AND L. P. ROTHSCHILD, CR Mappings of Finite Multiplicity and Extension of Proper Holomorphic Mappings, Bull. AMS 16 (1987), 265-270.
- [2] _____, Mappings of three-dimensional CR manifolds and their holomorphic extension, (to appear).
- [3] BAOUENDI, M.S., H. JACOBOWITZ AND F. TREVES, On the analyticity of CR mappings, Ann. Math. 122 (1985), 365-400.
- [4] BELL, S. AND D. CATLIN, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), 385-396.
- [5] DIEDERICH, K. AND J. E. FORNAESS, Boundary regularity of proper holomorphic mappings, Invent. Math. 67 (1982), 363-384.
- [6] DIEDERICH AND J. E. FORNAESS, Pseudoconvex domains with real analytic boundary, Ann. of Math. 107 (1978), 371-384.
- [7] FORNAESS, J. E., Biholomorphic mappings between weakly pseudoconvex domains, Pacific J. Math. 74 (1978), 63-65.