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Vesselin M- Petkov and Luchezar N. Stojanov

1 . Introduction

^
Let Q ciR"' be an open domain wth C" smooth boundary a Q and

^
bounded complement E = E" \ Q c {s : |x| ^ p}. The scattering operator S,
related to the Dirichlet problem for the wave equation in R s ft, is an

•? ? •? 2
unitary operator from L" (R x S") into L" (R s S ). The kernel s(t-t', 9, to) of

'> 2
S-Id is called scattering (echo) kernel. For fixed (9, (o) e S" s S" ,
s(t,6,oj) s §' (|R) and

•Tl

( 1 ) S(t.8.co) = ( 1/01T") I ——— W(<X.9> - t. S, CO) dS .
3(2 9x3n, x

Here w(-r, s, 10) is the solution to the problem

(a^ - & )w = Om(Rxf t ,
" T X

(2) w = O o n l R s 3 Q ,
w^ = .5 (r - <XM>),' i < - p

n is the interior unit normal to 8 Q pointing into ^ and the integral (1 ) is
interpreted in the sense of distributions.

If s (A, 8, CD) is the Fourier transform of s(t, 6, ©), then a(A, 9, co) =
,-\

(2n/iA) s (A, 8. a)) is called scattering amplitude and its asymptotic as A -» w

is closed related to the singularities of s(t, 9, co). As was remarked in [3], [6],
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in general, these singularities are connected with the sojourn times of the
so called (00, 65 -rays defined below. The assumptions in [§] are too difficult
for verifications. Nevertheless, some of them are fulfilled for generic
obstacles (see [10], [11]).

We e:q>ect that for generic directions («), 9) the sojourn times of all
ordinary (1:0, 8) -rays are included in the singular support of s(t, 9, (o). in tills
talk we prove tins in the case when

^f
K = u K , K n K = 0 i ^ j, K are strictly convex fori = l i " i } ! i

(3)
1 = 1, . . . ,M.

For a large class of obstacles K of the type (35 the sojourn times of
(co/8) -rays are not bounded, provided oci and 9 suitably chosen. This enables
us t^ study the asymptotics of the sojourn times when the number of
reflections goes to infinity and to obtain some scattering invariants. In
particular, for two strictly convex obstacles we recover as scattering
invariants the distance d between the obstacles and the number co
determined by the first sequence of pseudo-poles of the scattering matrix
(see [41 [2]).

2. Main results.

Ir '^Let V = u ' 1 be a curve in (R' such that 1 = [x / x ]/1=0 i i i i+1

i = l,..,k- l(k s: 1), are finite segments, ^ e a Q, while 1 (1 ) is the infinite
segment starting at x (resp. at x ) and having direction -oj (resp. 8). Then Y

1 jf

is called (oj, 8)-ray if the following conditions hold :

(!) the open segments 1°, i=0,l,..,k do not intersect, transverss.lly

•?a
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(ii) for every i=0,l,..,k-l the segments 1 and 1 satisfy the
i i+l '

reflection law at s. ̂  (see C 10], [ 11 ]).

A (®, 6)-ray Y will be called ordinary one if Y has no segments tangent to
dQ. For ordinary ((D, 9) -rays Y we can introduce the sojourn time T and the

•Y

map J^ (see [3], [$3 for the precise definitions). A subset ^tc S2 is called
Y

residual if -SR.. is a countable intersection of open dense sets. Throughout, we
assume that K has the form (3).

Theorem 1. Let oj e S" be fixed. Then there easts a residual
2

subset. R c S such that for each 8 e R we have
(4) singsupp s(t, 6, (o) = { -T : Y e S. }, where SL is the union of all'•< w,Q" »,e
ordinary (cu, 8)-rays.

Nakamura and Soga [7] established (4) for 9 = -«) and for tw
disjoint, balls 0^ ft making some restrictions on the distance (& , & ) and

1 6

the diameters of &., i= 1,2.

The equality (4) is similar to the Poisson relation for generic

bounded domains in (R" connecting the spectrum of the laplacian and the
lengths of closed geodesies ([91 £l2]5. For this reason we will cat {T : Y e'{
•̂  J- scattering length spectrum related to co, 8.

Under the assumption of Theorem 1 we can describe the leading
singularity at. -T , V e ̂  ̂ . For this purpose denote by s (resp. y ) the first.

(resp. the last) reflection point of Y. Let Z be a plane orthogonal to w such
that 2 n E = 0. Denote by A e 2 the point where the segment starting at x•f '-' •-' .̂
with direction -® hits Z. Therefore, following [§], near -T we hav^•Y
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(5)sM.»), (^^(-i)-1!'!^^!:!-172 ̂ ,,
<n(y ), e > ' o^+i ^

f '
+ a 6"(t+T ) + smoother termso Y

Here c e IN is a Maslov index and m is- the number of reflections
of V.

To study the existence of (co, 8)-rays we are going to introduce the
notion of a configuration. By a configuration a with length m (ms: 1 ) we
mean a symbol a = (î .....̂ ) with î  e {i,2,.,M} for alii and i. /i.^' for
j = 1.2,..,m-l.

Definition 1. Let ̂  6 e s^ and let Y be a (co, 6) -ray with successive

reflection points ̂ ,.,:̂ . We say that'/has type .x = (i...,i ) if ;< e , K f^r
I m j î

every j = l,...,m.

Definition 2. We say that a configuration <x = (i ,..,i ) satisfies the
1 in

condition of visibility with respect to ((o, 9) if the following conditions hold :
(a) for every s e BK (resp. x e a K ) the ray starting at s v îth

1 m ''

direction -to (resp. 6) has no common points with u i (resp u F)
^i 3 ^m *) '

(b) for all j = l,.,m -1 the convex hull of K. u K. do not contain
^ ^i

points in u F
r^! ^

Theorem 2. If a) ? 8 for every configuration <x there easts at. most.
one (cc, 9)-ray of type .x. Moreover, if <x satisfies the condition of visibility
with respect to (<o, 9), then there easts a ((o,9) -ray of type .x.

In the case M=2 the obstacle K satisfies the conditon to visibility
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with respect to (10, 95 if the condition (a) holds for {i ,i^} = {1,2} and {i ,i } =
1 <• 1'' 2

{2/1}.

CorollarvJ.- Let oj ^ 8 and let K = K u K, satisfies tlie condition of
1 6

visibility with respect to (co, 8). Then for every m s: 1 there exist exactly

two different ordinary (co, 6)-rays / with m reflection points so that thein

first reflection point of ^ belongs to aK.. i= 1,2.

A partial case of Corollary 3 for 8 = -w and two disioint balls has
been obtained by Nakamura and Soga £7].

By Theorem 2 we conclude that if we can find a configuration <x
satisfying the condition of visibility with respect to (co, 9), then we can
construct ordinary (co, 9)-rays with arbitrary large number of reflections.
Thus we get

(6) sup{T : Y e £. } = »
-? 0..9

It is natural to make the following.

conjecture. For every obstacle K in the form (3) there exist co, 9
such that (6) holds.

It is not hard to see teat for M=2,3 the above Conjecture is ful
filled. Moreover, for a large class of obstacles we can apply Theorem 2.
Notice that (6) is a typical property of trapping obstacles since for
non-trapping ones the sojourn times of (co, 6)-rays are uniformly bounded
with respect to (®. 8).

,'v Scattering invariants.

In this section we assume K = K u E^ and we consider two
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directions CD ? 8 for which the assumption of Corollary 3 holds. Let Y11 be
the ordinary (00, 8)-ray having m reflections and such that the first (resp.
the last) reflection point of Y15 belongs to aK (resp. aK). Let T15 be the

tfl - 1 • J (tl

sojourn time of Y^ .
fc&k

Theorem 4. There esist constants L1} depending on ((u, 8) such
that

(7) T15 = m d . L 1 1 . c 5
m tt,9 in

with s11 -» 0 as m -+ w and d = dist (K , K 5.in 1 2

The invariants L^) are connected with the rays having infinite
(0,Q

number relfections ans initial directions (D or -8. Consider the rav Y1 (to),
M

i= 1,2 starting at s s Z with direction (D and havin? relfection points
M ^ 1

^Xi^i e ^.Setl^(<.) = <^> . 2^;; 1^^ - ̂ ||.

Then applying the results of Ikawa [5] (see also [13]), we obtain
($) I1 (oj)=md + L1 + 0(m 'N 5, v N.m (a

A similar result holds for the ray I1 (- 8) with initial direction - 8 and

reflection points {y^}" , 7\ e 3K.. Thus we obtain the constants L1 , L^
X } S = l l j © " 9

and L1' = L1 + L5 .'»,8 w -e

We e '̂ect that the asymptotic (75 is true with s 1 } replaced by 0(m' 5, v N.in

From (7) we get
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(9) lim (T1) - T 1 ) ) = d,nt-̂ M m +1 (n

hence we can recover the distance d from the scattering length spectrum.
For two disjoint balls (9) has been obtained in [7].

We may compare (7) with the asyrnptotics of the lengths of the
periodic reflecting rays established in [6] and [1]. In these works the
authors consider periodic reflecting rays approximating the boundary [6] or
an elliptic periodic ray £1]. In our case we approximate a stable hyperbolic
ray related to a hyperbolic fixed point of the billard ball map and this is
one of the reasons leading to the asymptotic (6).

Now we turn to the analysis of the asymptotic behavior of the
amplitudes c* ̂  2a JC1 ) |, C1 j being the coefficient in front of 6'(t.+T1)) in

til tTL ttl ^

the form (5) of the leading singularity at -T1 ) . Consider the (linear)
m

Poincare map P corresponding to the periodic (trapping) ray orthogonal to
both 8K^ i= 1/2. Let ^., i= 1,2 be the eigenvalues of P greater than 1 and let

, /, ^ - i / 4 .
^ = log^i ̂  )•

Theorem '5. Yv'e have

(10) log c1 ) = me + 0( 1), m ̂
m o "

We conjecture that the asymptotic (10) must. have a sharp form

like (o) with remainder 0(m ) for each N.

The result of Theorem 1 tells us that we can determine T 1 ) and c1 -1
m. m.

as the time and the amplitude of the scattering data. Therefore, the
asyrnptotics (7) and (10) imply that we can recover from the scattering
data the constants d and c, hence we can recover the first sequence of

pseudo-poles
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1C ,o . d . _
^---i-^-r2-

of the scattering matrix S(X) (see £2], [4], [5]). On the other hand, the poles
of S(A) coincide with their multiplicities with those of the meromorphic
continuation of the scattering amplitude a(-A, 6, oo) and these poles do not
depend on M, 9. Choosing suitably w and 8, we could study a(-A, 8, w)
instead of S(A). We hope that such approach will be useful for the analysis
of the poles of the scattering matrix for trapping obstacles.
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