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Semilinear waves with cusp singularities

RICHARD B. MELROSE
Massachusetts Institute of Technology

Let P be a second order strictly hyperbolic operators with C°° coefficients in some
open domain n C R1'4""'. The propagation of conormal regularity for bounded solutions of
the (weakly) semilinear hyperbolic equation

n Pu{z] = g[z,u) z C n, u G L^(n), g € C00^ x R)

uy^h -̂n f.Tip wavp-Frrmt. a rTiararf.pr1sf.ir snrfarp fnr P. }ia.s cwill be described when the wavefront, a characteristic surface for P, has cusp singularities.
The case where the characteristic surface is smooth, or two characteristic surfaces

intersect transversally was treated by Bony [2] under somewhat more stringent conditions
(see also [7]). The present case of a surface with cusp singularities is much closer to
that of two characteristic surfaces tangent along a common submanifold of codimension
one examined in [8]. In particular the methods used here are similar to those in [8]
except that more explicitly microlocal results are used. The spaces of 'marked Lagrangian5

distributions introduced below seem particularly useful for the treatment of these problems
and they will be further exploited in a similar (though necessarily more complicated)
resolution of the case of a characteristic surface developing a swallowtail singularity (a
caustic). In practice it is not possible for a cusp singularity to arise without the appearance
of a swallowtail or other singularity which is of effective codimension three (see [l]). See
also the recent work of Bony and Lerner [4].

In order to describe the propagation theorem for (*) precisely we need first to introduce
the spaces of conormal functions associated to a hypersurface with cusp singularities. These
should be the 'simplest5 functions which are singular on the surface in question. Here the
space is defined in terms of a resolution of the cusp to normal crossings through (radial)
blow up. This also reveals the relationship of the cusp to the case of simple tangency
referred to above.

The outline of proof following the statement of the theorem consists of four main
elements. First a general propagation theorem for (*) is given. This reduces the proof
to the verification of a multiplicative property and a linear propagation property for the
spaces involved. The multiplicative property follows directly from the definition in terms
of blow up, since it reduces to a from of the Gagliardo-Nirenberg estimates for a Lie
algebra of vector fields on the blown up manifold. Next it is shown that the spaces of
(finitely) conormal functions have purely microlocal interpretations in terms of spaces of
marked Lagrangian distributions. The 'marking5 refers to a submanifold of the Lagrangian
at which the iterative regularity properties are weaker. This identification is made using
(though not in an essential way) the calculus of totally characteristic pseudodifferential
operators in [5]. Finally the appropriate (microlocal) linear propagation theorems can be
proved for these spaces using standard Fourier integral operator techniques.

This research was supported in part by the National Science Foundation under Grant MCS 8306271



X-2

In the case of analytic geometry the results described here are contained in recent
work of Giles Lebeau.

The author would like to express his appreciation for the generous hospitality offered
by the Max-Planck-Institut fur Mathematik in Bonn and Ecole Normale Superieure, where
some of this work was carried out.

§1: CUSPS AND CONORMALITY

Let V be a C°° manifold without boundary and A C T**y\0 be a C°° conic embedded
closed Lagrangian submanifold. If A e A is a point near which the differential of the
projection TT : A —> Y restricted from T*Y has constant rank then H = 7r[N) is a
C°° submanifold of Y if N C A is a sufficiently small neighbourhood of A and moreover
A = N * H near A. The only stable case of this is when H is a hypersurface in Y and then
the rank of TT* is N — 1, N = dimY.

The simplest (generic) singular case is where the rank of TT* drops by one across

(1.1) E C A a C°° hypersurface s. t. TT* : T\K —> T^)Y has rank N - 2 V A £ E

and where there is an additional non-degeneracy condition
(1.2)

3 / G C°°(y), / == 0 on 7r(E n N) with TT*/ vanishing to precisely second order at E.

In view of the following result the Lagrangian immersion TT : A —> Y is then said to have
a cusp singularity:

(1.3) THEOREM (ARNOI/D [1]). Jf A cT*y\0 is a C°° conic Lagrangian submanifold
satisfying (1.1) and (1.2) then there are local coordinates (rc,y,^) 6 R x R x R^"2 in Y
near 7r(A) in terms of which A = (1,0,0) and

(1.4)
( K\'S==N*(Cres}\Onear\
\C^^{{x^z}^=x\x^Q}, C=C-i

The Lagrangian distributions associated to such a Lagrangian, as introduced by
Hormander [Hoi], are completely independent of the position of the projection. How-
ever such spaces are not multiplicative and one needs some multiplicative properties for
spaces which propagate under (*).

To define the conormal functions associated to the model cusp C in (1.4) we shall
introduce polar coordinates in (^,y), i.e. consider the C°° (blow down) map

(1.5) /?i : Xi = [0,oo) x S1 X R^2 9 (r,o/,^) ̂  [ruj^r^z] C HN.

This correspond to normal blow up of the singular variety of the cusp

(1.6) L = {x = y == 0} C C

under which the lift

(1.7) /^(C)^--1^1^) isC00.
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7

Y^y^-^^-<t^
5^ X

Resolving the cusp to normal crossing

This is easily seen by noting that on /^C, 0:2 > 0 so in the manifold X\ the projective
coordinates s = ^ ^ t / , z are valid near /^(C) and in terms of these

y

(1.8) ^{C)={y=s2}.

Clearly this is a C°° hypersurface simply tangent to the boundary 5 = 0 along the subman-
ifold {s = y = 0}. Since the boundary is in a natural way the lift of the singular variety
9X\ = /^n-^)? this shows the close relationship between the cusp and the case of simply
tangent hypersurfaces alluded to above.

To fully resolve the cusp we need to make two further blow ups (see [8]). First
introduce polar coordinates in (s^y) giving the new manifold with corner X^ and blow
down map /?2 : X^ —> Xi. Under this the lift of the cusp (/?i • /?2)*(C') is C°° but still
passes through the corner of the manifold, although it is not tangent to any codimension
one boundary face. A final blow up of the two components of the corner of X^ gives a
normal resolution.

Let the resulting manifold with corner be denoted X and consider the overall blow
down map /? : X —> RN. Then /?* (C) = ̂ -1(0^) is a C°° hypersurface in X which meets
the boundary transversally and only in codimension one boundary components. Moreover
if 11 is Lebesgue measure on R^ then there is a unique C°° measure v on X such that
/?+(^) == fi. On X consider the Lie algebra of vector fields

(1.9) •Vb(/3*(C)) = {V € C°°(X,rX);y is tangent to QX and /T(C')}.

The relative divergence of such vector fields

(1.10) ^-div(y)6C°°(x) vye^(/?*(c')),
so that the transpose, with respect to i/, of any V € 'V&(/?*(C')) acting as a differential
operator has C°° coefficients. Furthermore notice that

(1.11)

for any open set 0 C R^.

r:^^)—^,^-1^))



X-4

We then define the space of (Z^-based) conormal functions associated to the cusp C
by iterative regularity on X :

(1.12) J,L^(n,C) = {u C L^W-WCyu C L^,^"1^)) Vp < k} .

The most interesting case corresponds to full conormality, when k = oo, but it is convenient
to have the finite order spaces to allow inductive proofs.

The definition (1.12) is actually completely coordinate independent in view of the
coordinate independence of the blow up procedure (see for example [5]), so applies directly
to any hypersurface having just local cusp singularities. In any region where the surface
does not have singularities this definition reduces to the standard one for finite order
conormality, giving the spaces denoted JfcLJ^(X,C) in [8].

§2: THE MAIN RESULT

Let f! C Rf x R"' be an open domain and suppose that Jk(^) is a decreasing sequence
of function spaces on H normalized by

(2.1) ^oc^) =JoW ^ JiW ^ • • • 3 ^ ( H ) D • • • D C ° ° ( n ) .

If the Jfc(^) are C°°(n)-modules:-

(2.2) ct> e C°°(n), u e JkW ^=^(f>ue JkW
then they can be localized to any open subset fl' C n :

(2.3) W) ={ue L^(n'); v <f> e ̂ (n7), <f>u e JkW}.
The spaces defined by (1.12) are obviously C°°(n)-modules and it is clearly that this
localization to open subsets gives the same space as the direct definition (1.12) for the
subset.

If P is ("hyperbolic and f! is in the (-forward influence domain of

(2.4) n- = {(t,x) e n c Rf x R^;« 0}
then we shall say that J^-regularity propagates for bounded solutions of (*) provided

(2.5) u e ̂ (^L (*) holds and ̂ JDU ̂  Jk{^~~} ^=> u,Du e Jfc(n).
(2.6) THEOREM. Suppose H C R^ x R^ is in the influence domain of fl~ defined by
(2.4) for a second order strictly t-hyperbolic operator P and that H C f! is a closed
hypersurface which is characteristic for P and which is C°° except for cusp singularities
then JfcL2^, jEf)-regularity propagates for bounded solutions of (*).

Note that there is a difference between this and the true 'interaction5 results for two or
three hypersurfaces discussed in [3] and [7]. Namely i f p G L c J E f i s a point in the singular
locus of H then, assuming that H has only cusp singularities, any open set D C f! which
contains p in its forward domain of influence must also meet L. That is, cusp singularities
cannot arise spontaneously but must be produced by some other singularity such as a
swallowtail caustic. For this reason the present result should only be considered as a
(necessary) step toward the full analysis of the swallowtail.
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§3: PROPAGATION THEOREM

Suppose that J(n) C £q^(f!) is a linear subspace, then J(f2) is said to be a C°°
algebra if

(3.1) / e C°°(n x R9), u, e J(n), z = i,... ,g => f{z, ui(^,... ,uq{z)) e J(n).

In particular this is true of jL^(fl) itself.
We shall say that a sequence of spaces JkW propagates under P if

(3.2) u,Du e Jfc(n"~), Pu e JkW =>ue JkW v k > i.

Here of course we assume that Ft is in the forward dependence domain of fl.

(3.3) THEOREM. Let P be a second order strictly hyperbolic operator and n such that
for some € > 0, ft is contained in the dependence domain of

(3.4) ^7 = {z e n;t < s} v |6| < c,

then, provided Jjk(n) is a sequence of spaces satisfying (2.2), (3.1) and (3.2), JkW-
regularity propagates for bounded solutions of (*).

Thus to prove Theorem (2.6) it is only necessary to check that the spaces J/cLj^
satisfy (3.1) and (3.2).

§4: MULTIPLICATIVE PROPERTY

It is easy to check that JfcL^^(n,jff), for H a closed subspace with only cusp singu-
larities, satisfies (3.1). Indeed from (1.12) JkL^(n^H) can be identified with the space
IkL^^[X^P*(H}) defined by the iterative regularity with respect to the vector fields
T/&(^*(ff)). The multiplicative property (3.1) now follows from a suitable form of the
Gagliardo-Nirenberg estimates (see [7]).

(4.1) THEOREM. Let ̂  C C°°(n,rn) be a Lie algebra ofC°° vector fields which is locally
finitely generated as a C°°(n)-module and for which (1.10) holds, then the spaces

(4.2) hL^(^ T/) = {u G LL,.("); Vu C £?oc,.(") V p < k}

satisfy (3.1), i.e. L^(n) H hL^{^} is a C°° algebra.

§5: MARKED LAGRANGIAN DISTRIBUTIONS

Suppose A C T*y\0 is a closed embedded conic Lagrangian submanifold. Consider
the space of poly homogeneous (Kohn-Nirenberg) properly supported pseudodifferential
operators which are characteristic on A :

(5.1) X(A) = {A € v&KN,p0^i(A) = 0 on A} .



X-6

This is a Lie algebra which is locally finitely generated as a vE^ p(y)-module. If we
define, for each s £ R,

(5.2) Woc(^A) ={u€ H^(Y)^WU C H^(Y) V p < k}

then we obtain the Lagrangian distributions of Hormander [Hoi]

(5.3) r(v,A)= |jj^jy,A).
5GR

In case 5=0 , for general fc, we use the same notation, IkL^(Y,A), as before.
Now suppose that E C A is a closed C°° conic submanifold of codimension one. Let

L = {A \ S, E} be the C°° variety (set of disjoint submanifolds) defined by S and A. In
place of (5.1) consider

(5.4) .M(£) = {A C ^KN,?(^);^ == ^i(A) = 0 on A and Ha is tangent to E} .

Again this is a Lie algebra since

(5.5) ^i([A,B]) = -z{ai(A)^i(B)} and H^b} = [H^H^

and is microlocally finitely generated as a vt^ p (^-module. The obvious generalization
of (5.2) yields the space of (Z^-based) marked Lagrangian distributions associated to L:

(5.6) IkLUY. ̂  = {u € ^ocm; Wu C L^{Y} V p < k} .

This space is microlocally equal to IkL^{Y,A) except across the 'mark' S. In any case

(5.7) ^L(^A)cJ,L^(y,^).

In case k = oo it is possible to give a full invariant symbolic description of these spaces
(see [6]). Notice that

(5.8) u C IooL^{Y, £) => WF(u) C A.

In the present setting these spaces of marked Lagrangian distributions give very con-
venient decompositions of conormal spaces. For the cusp algebra this will be discussed
below. Consider first the simple case of conormal distributions associated to a hypersur-
face M and a submanifold L of codimension one. In suitable local coordinates near a point
ofL,

(5.9) M = {rci = 0}, L = {x^ = x^ = 0}.

The two conormal bundles are

(5.10)
Ai = JTM\0 = {(0,2;2,^,$i,0,0) e TFT}
A2 = N*L\O = {(0,0,^, 6,6,0) € rw}.



X-7

The intersection of these two Lagrangian is the submanifold

(5.11) S = Ai D Aa = {(0,0,x', $i,0,0) € r'R"}

which is a hypersurface in each. Set d = {A» \ E,E) for i = 1,2. The conormal functions
associated to the C°° variety S = {M \ L,L} are defined by iterative regularity with
respect to the Lie algebra of vector fields

(5.12)
"I; (5) = {V tangent to both M and L},

IkL^(Y, S) = {u G L^ ̂ {S}^ C L^ V p < k} .

(5.13) PROPOSITION. If L CM is a submanifold of codimension one and S, d, i == 1,2
are denned as above then for each k £ N U oo

(5.14) IkL^{Y, S) = IkL^{Y, ̂ i) + IkL^{Y, ̂ 2).

This immediately extends to other cases. For example if H\ and H-^ are two C00

hypersurfaces meeting transversally set L = Hi n J/2 and consider the marked Lagrangians
in T*y\0

(5.15) ^
d == {N*Hi \ N*L, N*Hi n N*L} i = 1,2

rs = {^I/ \ (^ffi u N*H2),N"L n (Jrfi-i u N*fi-2)}
Here there are two distinct hypersurfaces in N * L but they do not intersect. If S =
{Hi \L,H-i\ L,L} is the C°° variety and JfcL^JV, S) is defined as in (5.12) then

3

(5.16) hL^ (V,5) = ̂ hL^d).
1=1

§6: MICROLOCAL DECOMPOSITION

Consider again the cusp algebra defined in (1.12). The Lagrangian obtained by closing
the conormal to the regular part of the cusp is

(6.1) Ac = ^{x,y,z,^,^x = (-||)3,!/ = (-||)2^ = °'^ °}

The singular locus is L == {x = y = 0} and the second Lagrangian

(6.2) KL = N*L\0 = {(0,0,^,»7,0)}

meets the first in a hypersurface

(6.3) E=A£DAc={(0 ,0 ,2 ; ,$ ,0 ,0 )}

in each, even though the intersection is not clean, i.e.

(6.4) TKL n TKc ^ TE at E.



X-8

In any case the marked Lagrangians

(6.5) Zc == {Ac \ S, S} and LL = {AL \ S, E}

are well defined. One might hope that the space in (1.12) decomposes exactly as in (5.14)
but this is not the case. The failure of this decomposition is however a relatively minor
point arising from the non-projective nature of the blow up in §1 or more accurately the
non-projective nature of the spaces of Lagrangian distributions.

Recall that in the definition of the second manifold X^ in §2 the surface K = f3^(H) H
QX\ was blown up. In QX\ there is a natural involution, arising from the sign reversal
of the defining coordinates in the original manifold (but independent of the choice of
coordinates). Let K be the image of K under this involution. Now, K does not meet
l3^(H) so we can freely blow it up at the same time as K giving the manifold X^ and
associated blow down map (3. Now proceed as before to define the projective resolution
f3:X —^R^.

Projective resolution of the cusp

The definition leading to (1.12) can now be imitated to define the slightly larger space

JkLU^ C) = {u C L^; WWYu C LL,^1^)) V p < k}

JkL^{n,C)^JkL^(^C)

The arguments in §4 show that this space too has the multiplicative property (3.1).

(6.7) PROPOSITION. IfC is the standard cusp in (1.4) and Zc, LL are the marked
Lagrangians (6.1) then for any k G N U oo

(6.8) JkL^n, C) = IkL^(^ Jlc) + hL^(^ £2.).

To prove this one can use the fact that both H(£c) and .M(-CL) are generated by a
finite number of differential operators, normalized to have first order by an elliptic factor.
These (or the regularity conditions involving them) can be lifted under the blow down
maps and the totally characteristic calculus in [5] can then be employed to analyse the
regularity of the lifts.
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§7: LINEAR PROPAGATION

Since the spaces on the right in (6.8) are defined purely microlocally we can use Fourier
integral operator methods to check the linear propagation property (3.2) for the sum.
Slightly more generally than above consider a closed embedded Lagrangian Ai C T*y\0
and suppose that Q 6 ̂ ^ p{Y) is of real principal type. Moreover suppose that

(7.1) E == Ai n E(Q) is a C°° hypersurface in Ai.

If this intersection were transversal then the geometry would be that of the microlocal
Cauchy problem for Q (see [9]). Instead we shall suppose that

(7.4) Hq is tangent to Ai to a fixed finite order along E and is not tangent to E.

In fact for the case of Ai = AL the conormal to the singular variety of the cusp the tangency
is simple.

As a consequence of (7.1) and (7.2) the (bi-directional) flow out of E under Hq is a
second C°° conic Lagrangian

(7.5) As = .Hg-flow-out of E.

Now set

(7.6) Zi = {Ai \ E, E} for i = 1,2.

Fixing an orientation of Hq near a point A £ E we can say that a distribution u is
microlocally in IkL^[Y,Jl^} in the past of A if u is microlocally in this space near each
point sufficiently near A on the backward-directed half jEfg-bicharacteristic through A.

(7.7) THEOREM. Suppose Q e ^KN p(^) ls °f resL^ principal type, Ai is a conic La-
grangian satisfying (7.1) and (7.2) and that u satisfies

(7.8) Qu C ̂  IkL^Y, d) microlocally near A G E
1=1,2

then ifu is in IkL^(Y, £2) microlocally in the past of A it follows that, microlocally near
A , u £ E IkL^(Y,£i).

1=1,2

To prove this Q can be reduced to an elliptic multiple of D^ by a Fourier integral
operator which also transforms the spaces of marked Lagrangian distributions so that in
the image

(7.9) Ai = 7T{y = ̂ }, As = {y = 0}.

Explicit computation using oscillatory representations of the marked Lagrangian distribu-
tions then yields the result.

It follows directly from Theorem (7.7) that the modified space JkL^(n,C) satisfies
the linear propagation condition (3.2). Thus Theorem (3.3) holds for this space instead. In
fact, using the close relationship between these two sequences of spaces, it is straightforward
to show that the smaller space J^L^^n^C) also satisfies (3.2), proving Theorem (3.3) as
stated.
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