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Intertwining methods in the problem of inverse scattering.

Anders Melin,University of Lund,Sweden

0. Introduction.

We shall consider the Sch^ioding^t Op^iCUto^i H = - A+ v(x) in 3R11 , n=3 ,5 , . . . .

The potential v(x) will have a short range and for simplicity we assume that there

are positive constants C and e such that

(0.1) ID^X)) ^ C^d+lxl)"2"6"^! , xER11 .

/ 0 \ 1

By ||v [| we denote the L norm of the differential of order n-2 of v, and we

shall say that v is small if this norm is small. Throughout operators in IR11 will

be identified with their distribution kernels^ and the >intd^tU}^LVU.ng relation

(0.2) H A = AH

may then be expressed in the form of a differential equation

(0 .2 ) 1 (A^-A -v(x))A(x,y) = 0 .

We shall see that these equations always have solutions which are invertible ope-

rators in some weighted L^-spaces. In the case of a small potential at least this

gives us rather explicit expressions for the \^Ci\)(L Op^dtoU

W^ = lim e^v e^^O
t ^ j^ CD

and also for the ^CO^teU.ng op^dto^i

S = W^

From these expressions it will easily follow that (in contrast to the one-dimensional

situation) the potential is always uniquely determined from the scattering operator.

We shall also discuss some equations of Gelfand-Levitan-Marchenko type which give

relations between A and S.

In the paper [ 4] the author studied the inverse scattering problem on the real

line and also the characterization problem for scattering matrices. This was

carried out by deriving some sharp estimates for the intertwining operators. That

research, as well as its generalization to higher dimensions, was to a large extent

inspired by Faddeev's papers about one- and multi-dimensional scattering [ l ] , [ 2 ] ,

However, in contrast to Faddeev , we use explicit formulas for fundamental solutions
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of A^-Ay with support conditions. Using this we may construct intertwining operators

in a rather straightforward and elementary way, where the main problem consists of

estimating some big integrals. For other methods in inverse scattering we refer to

Saito [7] ,[8] and Newton [5 ] , [6 ] . We also remark here that the method of using

intertwining relations is fairly old (cf. Marchenko [3"J) .

1. Fundamental solutions of the ultrahyperbolic operator.

We consider A^-Ay in Î xR" where n= 3,5,... . For h) a unit vector in R11 we
define L S.^'OR" x 1R11) by

(1 .1) L (u) = ^ (^.a+S^^uKx.x^x.tOhOdx.
<x,(jj>^0 y

We observe that |y|=|x| .y-xeiHJ in supp(L ) and that
' co

(1.2) LJ(A^-A )u) = S (A^^U^dx ,
' <X,(D>=0

where U(x) =u(x,x) . When proving (1.2) we may assume h)= e and setting x' =
(x,,...,x - ) we have

^^ ""^ )n~2(Ax"Ay)u}(x'»xn;x'»~xn) = .z 9w./9x. + 9 w / 8 x ,n n j^n J J n

where w^(x) = {(9^ +9y )n~2(^^^-^y^)u}(x',x^;x',-x^) and

w(x) = ((3^ +9y )n~lu)(x•,x^;x•,-x^.

The Wj do not contribute to the right-hand side of (1.1) with u replaced by

(AX'^^" an<^ t^e contribution from w equals

\ ^,n-lU(x)dx = ^ A^-^/^dx .
x^=0 n x^=0

Now we note that there are constants c' and c" such thatn n

^^ ^ f da)< ^ ^^dx ) = f |x |~ l f (x)dx ,
n-1 <x,o)>=0 ^nb ]R

and

<1-4) ^[jxl^A^-^^gt^dx = g(0) .

This together with (1.2) shows that
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^= ^nV I V"
<(j0,8> >0

is a fundamental solution of A -A when 6 £ S11 , and

( 1 - 5 ) ^Hyl 9<V~^^> >0 in supp(E.) .— y

In addition to these conditions E satisfies a growth condition at infinity which
makes E unique.\j

/\
Remark. Let E be the Fourier transform of E. and Y denote the characteristic———— u y +
function for ~R . Then "~

(1.6) E (S,n) = lim ( Y^+ri^Klnl2-^!2-^)"1 + Y (<S+n,9>) ( | n | 2-! S | ^ie)"1) .
c-^0

2. Construction of intertwining operators.

Let M denote the set of all measurable functions R(x,y) in 1̂  x ]R11 such
that

| | R | | ^ = max ( s u p ^ | R ( x , y ) l d y , sup ] |R(x,y) | dx ) < oo .
x y

Any such R defines a continuous operator on L^ when Kp<oo and

N^p^ll^ .

Tk^o^m 2.1 . Ut e^S11"'1 . Tkw (0 .2) 1 ^104 a a^qac ^o^a^on A = A., = 6(x-y)
Q

+R(x,y) ^ac^i that

(i) <y-x,6> ^0 ^n supp(A) .

(ii) T7icAc ^6 a con .̂tan^ X = X , M;<<̂ I \ = 0 ^ v wcUUL^mch that

(2.1) He-^-^^RH. < 1/2 .• ' M

(iii) ' Je"'x<y~x)e> |R(x,y)|dx -> 0 06 |y | -^oo , y / |y | -^ -e ,

(iii)11 ^e"'x<y ' 'x)e> |R(x,y)|dy-^ 0 04 |x| ^oo , x / | x | - ^ e .

There are several consequences of this result. If v is small, then A is an iso-

morphism on any L* and H is conjugated to H under A and we have no bound states

then. When v is big A will still be an isomorphism if we replace L13 by

<9 = {f ' ex<x)e>f €LP ^ •
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From this fact one may obtain information about the eigenfunctions and eigenvalues
^

of H . In particuler, -X gives a lower bound for the spectrum.

To construct A one makes use of the operator Tu =E x(vu) .where (vu) (x ,u )=© y
v(x)u(x ,y) . With u (x,y) =6(x-y) one finds that the series

00 NR(x,y) = Z T u

converges in L- OR x IR. ) and that A = I+ R solves (0 .2 ) . In fact, setting R =
N .T u one has the estimateso

(2.2) II^'^HM ^3-N

with X as above. Moreover, one can prove inequalities of the form

(2.3) | |R^O( I . - ) ( (CD) ) [ | ^ ^ 3^ , N ^ ,

where X € C (R ) equals 1 near the origin and c is small, and also that

I + R C I - X C ^ O ) ) ^s invertible in any Lp then.

To derive estimates of the form (2 .2 ) for example one has to express R^(x,y) as
i •>,. IN

the integral over (S ) of expression of the following form:

J(0) -.,...,0) ) \ ' - \ v (x+X ,^)...v (x+X +...+X o))6(y-x-2 Z<X. ,oo.>03. )dX ..dX^.
<X.,0).> >0 IN i IN j j j i IN

J J -

Here o o . ^ S and the norm of J(OL , . . . ,0) ) in L ( (S ) ) growths at most as
•KT -3 / 0 \

C as N tends to infinity , while each |v.| may be majorized by |v | .

Remark. Using (2.3) and the fact that I + R(I-)((cD)) is invertible one can find an

operator B which is bounded and invertible in any L such that

(2.4) H^B = BH^ + v(x)x(cD)

with )( as above. Thus when v is sufficiently small at infinity the operator H

is then conjugated to -A + K , where K is of trace class for example.

3. Formulas for the wave operators and the scattering matrix.

We set

(3.1) u,(x,n) = [^ l [(x^e^^dy.
4- -J — / ' '

These functions always exist for small v and are then bounded functions in both vari-
ables. The same is true for v large too as soon as we require n to be far away from
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the origin: | r i | _^C where C depends on v . The following result shows that

l 12the u_ are the generalized eigenf unctions ( solutions of H u = | r i | u ) thatv+
enter in the distorted Fourier transforms.

Tk^o^iW 3 .1 . Tka ^mncLtion^ u (x,ri) cum tko, fee/incZ4 o^ tha ge,n^AaLiz.nd (adjoint)
«j ~~

FOO^C/L fytdYi^^onm^ W_ F , c îe^LC. F dwotu tka ^tandcuid FOO^CCA tAan^^onm.
+

We shall give a heuristic motivation for this result by considering wave packets.

For the case of simplicity we also assume that v is small. Let u£C OR11) be
-itH °supported near ~R 9. Then e 0 u is concentrated near oo in the direction of

-9 as t tends to -oo . By the condition (iii)1 of Theorem 2.1 we may expect that

Ae 0 u is close to e ^u for such t . Hence we have

,, itH,. -itHn , itIL, . -itHnW_u ^ e v e ^ u ^ e V A e u u = A u

if we apply (0.2) . The complete proof of the theorem requires a partition of unity

on the Fourier transform side together with more precise estimates.

Since (A - A )A = vA we may expect that A is essentially determined fromx v y \j \j i i i i
the behaviour of (^a) (^^^ restricted to the set [ £ , [ = | r | [ . This motivates us

(apart from the normalization factor ) to introduce the integral operators K (r)

on L (S ) depending on r^lR and with kernels

K^(r$())^) = (-iTTmTO'V^vAQ) (r(j),-r^) .

These are defined for all r when v is small and for large r in the general case.

The scattering operator S commutes with H,. . In order to describe it w . r . t .

polar coordinates on the Fourier transform side we define the unitary map

y: I^QR11) -^ I^OR.^L^S11''1)) by the formula

/ f\ / \ (n—l) /2_ , \ i / ^ \n/2(Yf)(r,oo) = r' f(ro))/(2Tr)

For any operator Q on L (IR ) we set Q = yQY

Th^o^m 3.2. Tk^ feeAnc£ o^ SY (conA^de/ied <u an opoAato^ on L OR ) acting on v^cto^L
\}atm^d ^mnction^ ) ka^ tka ^oUo^ng ^o^im

(3.2) Sy(r,p) = ^(r-p^r) = 6(r-p) (I+T(r)) ,

wh^Az T(r;c(),^) = K (r;(j),^) .{w^ a^^am^ r to be JH^ig^ ̂  v /c6 not WcUUi.^
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Remark. S(r) is the <6 catt^iing matrix, and T(r) the ^cattQA>ing amplitude,.

Proof. We assume v is small for simplicity and then we use the fact that

oo i |
((S-I)f,g) = lim -i [ e^^vW^^Of^e^^dt

e-K) -oo
0

for a dense set of f and g in L . Hence

oo _ | |
(FO-DF^g) = lim -i ( e c ' L I ( G ^ f , g ) d t ,

C-^0 -OD

where G = e1 F^W^F^e 1 and M = multiplication by | £, [ . The kernel of G

equals

e^l^-lnl^A^i^.-n)

by Theorem 3.1. The theorem follows therefore from the definition of K and the fact
v7

that

JP^c|t|^it(|S|2-|ri|2)^ -^r^del-H) as c ^ O .
-oo

Tk^o^iw 3.3. TTie pot^nticUi ^ d t̂eAnuned ^om tk^ 4co^M;eA^cng m<ztwc ^ v& L
(^n addition to (0,1)).

Proof. Set R^R, (l-)((cD)) with c and \ as above. For large r we have

/\ /^. /\
(vA ) (r(j),-np) = (vu^) (r((),-rip) + (vR^) (r((),-ri(;) .

Since v(x)R (x,y) € L QR x 1R ) it follows from the Riemann-Lebesgue lemma that
c /s lr

(vR.) (r((),-ri(;) -^ 0 as r-^oo (uniformly w.r.t. «}>-and ^) . On the other hand

(vu^) (r((),-r^) = v(r((})-^)),

and any ^€lR can be obtained as a limit as r.-^oo of r .((().-^.) where ((). and ip.
/\ J J J J J J

are sequences of unit vectors. Hence v is determined from S'.

4. The fundamental identity and a Gelfand-Levitan equation(in the case of small v ) .

In this section we shall restrict to the case of a small potential . What happens
in the general case is not yet clear for us.

Th^oftm 4 . 1 . (Hie ^andam^nta^ td^ntity] Lat K be (U ^n Suction 3. Tk^n——————.— ^
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(4.1) K (r;^) = K (r;(()^) - 1 K ( r$(( ) ,a) )K,( r$o)^)da) .
T <o)-ip,e> ^o y

When proving this formula one may consider both sides of (4.1) as analytic functions

of z after v has been replaced by zv.It suffices then to show that (4.1) holds for

the Taylor expansion at the origin , and it turns out then that (4.1) follows from

(1.6) and the equation A = E x(vA ) +6(x-y) . The fundamental identity is also true
for large v as long as we take r large.

Let Y (s) be as in (1.6) and set

K^(r$(() , ip) = Y^(<ip-((),e>)K^(r;((),ip) .

Then K^ = K^ + K is the decomposition of K (r) considered as a matrix into upper

and lower triangular ones w. r . t . the ordering of S11"" defined by 6 . The equation
(4.1) now takes the form

( 4 . 1 ) ' I + K^(r) = ^(r)(l-K,(r)) , r>0 .y y
f>j

This gives a factorization of S(r) into a lower and upper triangular matrix. Note
also that

(4 .2) (i+K^d+i^) =a^ya^)
in view of the unitarity of the scattering matrix.

Remark 4 .2 . In the one-dimensional case the operator in (4 .2 ) takes the form

( o ) , where p is the reflection coefficient.

We shall next show that it is possible to describe the operator in (4 .2 ) without

working on the Fourier transform side. When doing this we use the identity

(4.3) (A^)"1 = A^ .

This is a consequence of the uniqueness assertion of Theorem 2.1 since both sides of

(4.3) are intertwining operators.The Gelfand-Levitan-Marchenko equation (w.r . t the
direction ~9 ) may be written as

(^) ^eV'e- T -
1/2Here Q^ is a positively definit operator and A Q / is unitary . By (4.3)

(4.5) ^ = A^
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and QQ commutes with H . It is natural therefore to consider (^

The.o^em 4.3. M^wne. that v -a woJUi. Hien

(^•6) Q^r,?) =(5(r-p)(^(r) , r > 0 ,<Q\'-9^/ ^\^ P / K Q V ^ / >

arficAe

< 4 - 7 ) ^e(r) = (^e^))^^)) = (I-K^rn^I-K^r)) .

In principle this gives a method to compute v from the scattering matrix.
When doing so Q^ is first computed from ( 4 . 7 ) and the fundamental identity.
After that ( 4 . 4 ) is converted into a linear equation for A . as in the one-dimen-~"©
sional case by using the support condition on A . Finally v is computed from A__
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