Journées ÉQUATIONS AUX DÉRIVÉES PARTIELLES

JOHANNES SJÖSTRAND

Semiclassical resonances in some simple cases
Journées Équations aux dérivées partielles (1986), p. 1-12
<http://www.numdam.org/item?id=JEDP_1986 \qquad A10_0>
© Journées Équations aux dérivées partielles, 1986, tous droits réservés.
L'accès aux archives de la revue «Journées Équations aux dérivées partielles » (http://www. math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

```
Johannes Sjöstrand ,
Dept. of Mathematics , University of Lund ,
Box 118 , S-221 00 Lund , SWEDEN.
```

0. Introduction.

In this talk we report on some further developpements of the work on resonances in the semiclassical limit, started with B. Helffer in [7] . (See also [8] for a survey.) We start by recalling briefly the theory developped in [7], which is essentially a microlocal version of the method of complex scaling initiated by Aguilar-Combes [1] and Balslev-Combes [2] • Let $P=-h^{2} \Delta+V(x)$, where V is analytic and real-valued, and let $p(x, \xi)=\xi^{2}+V(x)$ be the corresponding (principal) symbol. (All our results are actually valid for a more general class of operators.) In order to define resonances (i.e. certain complex eigenvalues) near 0 , we make the following assumptions :
(0.1) There exist smooth functions $r, R \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $r \geq 1, r R \geq 1, \partial^{\alpha_{r}}=O\left(r R^{-|\alpha|}\right), \partial^{\alpha} R=O\left(R^{1-|\alpha|}\right)$ uniformly on \mathbb{R}^{n} for all $\alpha \in \mathbb{N}^{n}$.
(0.2) There exists $C>0$ such that V extends holomorphically to $\left\{x \in \mathbb{C}^{n} ;|\operatorname{Im} x| \leq C^{-1} \operatorname{R}(\operatorname{Re} x)\right\}$, and satisfies $|V(x)| \leq C r(\operatorname{Re} x)^{2}$.
(0.3) There exists a real-valued (escape-)function $G \in$ $C^{\infty}\left(\mathbf{R}^{2 n}\right)$ with $\partial_{X^{\alpha}}^{\alpha}{\underset{\xi}{G}}_{\beta}^{G}=0\left(\mathfrak{r}^{1-|\beta|} R^{1-|\alpha|}\right.$) for $|\alpha|+|\beta| \geq 1$, such that $H_{p} \geq r^{2} / C$ in $p^{-1}(0) \backslash K$, where K is some compact set and $C>0$ is some constant. Here $\tilde{r}(x, \xi)=$ $\left(r(x)^{2}+\xi^{2}\right)^{\frac{1}{2}}$.

After a suitable modification of G in the region where $|\xi| \gg r(x)$, we can define certain weighted Sobolev spaces $H\left(\Lambda_{t G}, m\right)$, when $t>0$ and $h>0$ are small enough. (See [7] for details.) Here $\Lambda_{t G} \subset \mathbb{c}^{2 n}$ is given by $\operatorname{Im}(x, \xi)=t H_{G}(\operatorname{Re}(x, \xi))$, and very roughly , we have $u \in H\left(\Lambda_{t G}, 1\right)$ iff $u \in L^{2}\left(e^{-2 t G / h} d x d \xi\right)$, where $\tilde{u}=u(x, \xi)$ is a suitable FBI-transform of u. In [7] , we obtained the following basic result :

Theorem 0.1. For $t>0$ sufficiently small, there exists $h_{0}>0$ and a neighborhood $\Omega \subset \mathbb{C}$ of 0 such that for $0<h<h_{0}$: For all $z \in \Omega$ the operator $(P-z): H\left(\Lambda_{t G}, \boldsymbol{N}^{2}\right) \rightarrow H\left(\Lambda_{t G}, 1\right)$ is Fredholm of index 0 . Moreover , there is a discrete set $\Gamma(h) \subset \Omega$ such that $P-z$ is bijective for $z \in \Omega \backslash \Gamma(h)$, and splits in a natural way into a direct sum of one bijective operator and one nilpotent operator $: F_{z} \rightarrow F_{z}$, when $z \in \Gamma(h)$. Here $F_{z} \subset H\left(\Lambda_{t G}, \tilde{r}^{2}\right) \subset H\left(\Lambda_{t G}, 1\right)$ is a non-trivial finite dimensional space.

The elements of $\Gamma(h)$ are called resonances, and if $z \in \Gamma(h)$, then $\operatorname{dim} F_{z}$ is the corresponding (algebraic) multiplicity. In [7] we showed that a different choice of $t>0$ or of G gives rise to the same resonances and the same spaces F_{z} in some sufficiently small neighborhood of 0 . We also showed that the resonances belong to the closed lower half plane.

$$
x-3
$$

In order to formulate the general problems and the rather special results that we have obtained so far , we first recall a simple geometric discussion from Gérard-sjöstrand [6] (related to the geometric scattering theory , see Reed-Simon [11]).

Let $\varepsilon_{0}>0$ be so small, that the conclusions of (0.3) remain valid also on $p^{-1}(\varepsilon)$ for $\varepsilon \in\left[-\varepsilon_{0}, \varepsilon_{0}\right]$. For $\rho \in$ $p^{-1}\left(\left[-\varepsilon_{0}, \varepsilon_{0}\right]\right)$, put $\Phi_{t}(\rho)=\exp t H_{p}(\rho)$ for t in the maximal interval of definition $] T_{-}(\rho), T_{+}(\rho)\left[, T_{ \pm}(\rho) \in I 0, \pm \infty\right]$. We then define the outgoing (+) and incoming (-) tails by

$$
\Gamma_{ \pm}=\left\{\rho \in \mathrm{p}^{-1}\left(\left[-\varepsilon_{0}, \varepsilon_{0}\right]\right) ; \Phi_{t}(\rho) \nrightarrow \infty, t \rightarrow T_{+}(\rho)\right\}
$$

We then have the following properties :
$1^{\circ} \quad \Gamma_{ \pm}$are closed,$\Gamma_{+} \cap\{G \leq T\}$ and $\Gamma_{-} \cap\{G \geq-T\}$ are compact for all $T \in \mathbb{R}$.
2° For some $T_{0}>0$, we have $\Gamma_{+} C\left\{G \geq-T_{0}\right\}$, $\Gamma_{-} C\left\{G \leq T_{0}\right\}$. $3^{\circ} \quad \mathrm{K}=\Gamma_{+} \cap \Gamma_{-}$is compact.
4^{0} If $\Gamma_{-} \neq \varnothing$ (or if $\Gamma_{+} \neq \emptyset$) then $K \neq \emptyset$.
5° If we define the true tails, $\mathcal{T}_{ \pm}=\Gamma_{ \pm} \ K$, then the symplectic volume of $\boldsymbol{T}_{ \pm}$is equal to 0 .
6° The following statements are equivalent :
(i) $\mathcal{T}_{+} \neq \varnothing$, (ii) $\mathcal{T}_{-} \neq \varnothing$,
(iii) The set $\left\{\rho \in \mathrm{p}^{-1}\left(\left[-\varepsilon_{0}, \varepsilon_{0}\right]\right) \backslash K\right.$; $\left.\operatorname{dist}(\rho, K) \leq \alpha\right\}$ is non empty for every $\alpha>0$.

We also introduce $\Gamma_{ \pm}^{0}=\Gamma_{ \pm} \cap \mathrm{p}^{-1}(0), K^{0}=K \cap \mathrm{p}^{-1}(0)$. The properties $1^{\circ}, \ldots, 4^{\circ}$ are true also with $K, \Gamma_{ \pm}$replaced by $K^{0}, \Gamma_{ \pm}^{0} \cdot 4^{0}, 5^{0}$ also remain valid under the additional assumption that $d p \neq 0$ everywhere on $p^{-1}(0)$. (We then replace the symplectic volume by the corresponding Liouville measure.) We have the following unwritten theorem of [7] :

Theorem 0.2. If $K^{0}=\varnothing$, then there are no resonances in some fixed h-independent neighborhood of 0 .

The interesting problem is then to find out what happens when $K^{0} \neq \varnothing$. In [7] , (see also [4] ,) we analyzed the case of a potential well in an island. In that case the resonances are generated by tunneling through a potential barrier and they are exponentially close to the real eigenvalues of a certain self adjoint eigenvalue problem . Moreover , we have $\Gamma_{+}=\Gamma_{-}=K$, so the true tails are empty.

We shall here describe two other simple cases , when it is possible two give a rather complete description of the resonances in certain regions. In both cases , it is rather easy to make some simple WKB-constuctions in order to guess the asymptotics of the resonances . The difficulty is rather to prove that
 and that there are no others. There is no place to discuss the methods of the proofs here and we refer to [6] and [12] for further details.

1. The case of a closed trajectory of hyperbolic type.

This is joint work with C. Gérard analogous to Gérard's extension [5] of Ikawa's results [9] , [10] in the case of obstacles . We assume
(1.1) $p=0 \Rightarrow d p \neq 0$.
(1.2) K^{0} is the image of a simple closed trajectory $\left[0, T^{0}\right] \rightarrow t \mapsto \exp \left(t H_{p}\right)\left(\rho^{0}\right)=\gamma^{0}(t)$.

Let $H \subset p^{-1}(0)$ be a hypersurface which intersects γ^{0} transversally at ρ^{0}. We then have the Poincaré map $H \rightarrow H$ obtained by following the flow of H_{p} once along $\gamma^{0} \cdot \rho^{0}$ is then a fixed point and we let p^{0} be the differential at ρ^{0}. We assume,
(1.3) γ^{0} is of hyperbolic type.

This means that p^{0} has no eigenvalues of modulus 1 . By the implicit function theorem , the whole situation is stable if we replace $p^{-1}(0)$ by $p^{-1}(\varepsilon)$ for $\varepsilon \in\left[-\varepsilon_{0}, \varepsilon_{0}\right]$, if $\varepsilon_{0}>0$ is small enough . Let then $\gamma^{\varepsilon}:\left[0, T^{\varepsilon}\right] \rightarrow p^{-1}(\varepsilon), \rho^{\varepsilon}$, p^{ε} be corresponding quantities. Let $\theta_{1}(\varepsilon), \ldots, \theta_{n-1}(\varepsilon)$, $1 / \theta_{1}(\varepsilon), \ldots, 1 / \theta_{n-1}(\varepsilon)$ be the eigenvalues of p^{ε} with $\left|\theta_{j}(\varepsilon)\right|>1$. We can show the following geometrical facts:
$\Gamma_{ \pm}$are involutive analytic manifolds intersecting transversely along $\bar{\gamma}=U \gamma^{\varepsilon}$.

Let L_{+}^{ε} be the sum of the eigenspaces of p^{ε} corresponding to the eigenvalues θ_{j}, and let $\mathcal{P}^{N-1}\left(L_{+}{ }_{+}\right)$be the space of complex polynomials of degree $\leq \mathrm{N}-1$ on this space. Then $\mathrm{p}^{\varepsilon} \mid \mathrm{L}_{+}^{\varepsilon}$ induces a map $\mathrm{D}_{*}^{\varepsilon}: \mathcal{P}^{\mathrm{N}-1} \rightarrow \mathcal{P}^{\mathrm{N}-1}$, which has the eigen-
values $\theta^{-\alpha}=\theta_{1}^{-\alpha} \cdots \theta_{\mathrm{n}-1}^{-\alpha_{\mathrm{n}-1}} \quad,|\alpha| \leq \mathrm{N}-1$. If we introduce the action :

$$
C(\varepsilon)=\int_{\gamma^{\varepsilon}} d x
$$

then $C^{\prime}(\varepsilon)=T(\varepsilon)$.
In [6] we also define a certain analytic function $\rho(\varepsilon)$
satisfying $\rho(\varepsilon)=\left|\theta_{1}(\varepsilon) \cdots \theta_{n-1}(\varepsilon)\right|^{-\frac{1}{2}}$.

Theorem 1.1. Let $\varepsilon_{0}>0$ be sufficiently small. Let $C_{0}>0$. Choose N so large that the following set does not increase if we further increase N :

$$
\Gamma^{0}(h)=\left\{E \in\left[-\varepsilon_{0}, \varepsilon_{0}\right]-i\left[0, C_{0} h\right] ; \operatorname{det}\left(I-e^{i C(E) / h} \rho(E) D_{*}^{E}\right)=0\right\}
$$

Then if we count the elements of each set with their natural multiplicities , there is for $h>0$ sufficiently small an injective map $b(h): \Gamma^{0}(h) \rightarrow\{$ resonances of $P\}$, such that $b(h)(\mu)-\mu=o(h)$ uniformly in h and μ. The image of $b(h)$ contains all resonances in a slightly smaller rectangle , $\left[-\varepsilon_{0}+\delta h, \varepsilon_{0}-\delta h\right]-i\left[0,\left(C_{0}-\delta\right) h\right]$.

Notice that if E belongs to the rectangle in the definition of $\Gamma^{0}(h)$, then E belongs to $\Gamma^{0}(h)$ iff there are $k \in \mathbf{Z}$ and $\alpha \in \mathbb{N}^{n-1}$ such that

$$
C(E)=2 \pi k h+i h \log \rho(E)-i h \sum \alpha_{j} \log \theta_{j}(E)
$$

There is actually a more refined result:

Theorem 1.2. Let ε_{0}, C, N be as in Theorem 1.1. Then we have a classical symbol , holomorphic for (z, E) in a suitable h -independent domain :

$$
F_{-+}(E, z, h) \sim \sum_{0}^{\infty} A_{j}(E, z) h^{j / 2},
$$

with $A_{0}(E, z)=I-z^{-1} \rho(E) D_{*}^{E}$, such that if $\Gamma^{\infty}(h)=$ $\left\{E \in\left[-\varepsilon_{0}, \varepsilon_{0}\right]-i\left[0, C_{0} h\right] ; \operatorname{det} F_{-+}\left(E, e^{-i C(E) / h}, h\right)=0\right\}$, then there is an injective map $b(h): \Gamma^{\infty}(h) \rightarrow$ \{resonances of P \}, such that $b(h)(\mu)-\mu=O\left(h^{\infty}\right)$. Again the image of $b(h)$ contains all resonances in a slightly smaller rectangle.

2. The case of a non-degenerate critical point.

Here we describe the results of [12] . Not only the results , but also the proofs are close to those of [6] , and the proofs are even a little simpler. In the special case of a potential maximum , intersecting results have recently and independently been obtained by Briet-Combes-Duclos [3] .

We assume that K^{0} is reduced to a point :

$$
\begin{equation*}
K^{0}=\left\{\left(x_{0}, \xi_{0}\right)\right\} \tag{2.1}
\end{equation*}
$$

Since the Hamilton field of p has to vanish at that point, we have $\xi_{0}=0$, and after a translation, we may also assume that $\mathrm{x}_{0}=0$. Then we also have that $\nabla \mathrm{V}(0)=0$, so 0 is a critical point with critical value 0 . We shall also assume that this point is non-degenerate ,

```
(2.2) det v"(0) f 0.
```

(For operators more general than the Schrödinger operators an additional assumption is necessary , but we shall not discuss this here.)

After a linear change of the x-coordinates, we may assume that
(2.3) $2 p(x, \xi)=\sum_{1}^{n-\alpha} \lambda_{j}\left(\xi_{j}^{2}+x_{j}^{2}\right)+\sum_{n-d+1}^{n} \lambda_{j}\left(\xi_{j}^{2}-x_{j}^{2}\right)+o\left(|(x, \xi)|^{3}\right)$,
near $(0,0)$, and the eigenvalues of the linearization of H_{p} at $(0,0)$ are then $\pm z_{j}, j=1, \ldots, n$, where $z_{j}=i \lambda_{j}$, $j=1, \ldots, n-d$, and $z_{j}=\lambda_{j}=\frac{\mu_{\text {ef }} .}{} \mu_{j-n+d}, j=n-d+1, \ldots, n$.

The H_{p}-flow then has a stable outgoing manifold ; L_{+}, of dimension d, which passes through (0,0) and such that
$T_{(0,0)}\left(L_{+}\right)=$the sum of eigenspaces corresponding to μ_{1}, \ldots, μ_{d}. It is easy to show that $L_{+}=\Gamma_{+}^{0}$. Similarly Γ_{-}^{0} is the stable incoming manifold corresponding to $-\mu_{1}, \ldots,-\mu_{d}$.

After a linear symplectic change in the last group of variables, we may write ,

$$
\begin{equation*}
p(x, \xi)=p^{\prime}\left(x^{\prime}, \xi^{\prime}\right)+\frac{1}{2} A x^{\prime \prime} \cdot \xi^{\prime \prime}+O\left((x, \xi)^{3}\right) \tag{2.4}
\end{equation*}
$$

where $x^{\prime}=\left(x_{1}, \ldots, x_{n-d}\right), x^{\prime \prime}=\left(x_{n-d+1}, \ldots, x_{n}\right)$, and where p^{\prime} is a positive definite quadratic form , while A is a matrix with spectrum $=\left\{\mu_{1}, \ldots, \mu_{d}\right\}$. Then $T_{(0,0)}\left(\Gamma_{+}^{0}\right)$ is spanned by the directions $\partial_{x "}$. Choose scalar products
 $x^{\prime \prime}, \xi^{\prime \prime} \neq 0$. We can then consider a local escape function :

$$
G(x, \xi)=\langle x ", x "\rangle-[\xi ", \xi "] .
$$

It turns out that $H_{p} G \sim|(x, \xi)|^{2}$ on $p^{-1}(0)$, and that on $\Lambda_{t G}$ intersected with a sufficiently small neighborhood of the origin , the function $\left.p\right|_{\Lambda_{t G}}$ takes its values in a sector $\arg z \in\left[\theta_{2}-\pi, \theta_{1}\right]$, where $\theta_{j}>0$, and for every fixed (sufficiently small) t, we may take θ_{1} as small as we like. Furthermore , $\left.|p|_{\Lambda_{G G}}|\sim|(x, \xi)\right|^{2}$.

We are here in a situation completely analogous to the well-known case of degenerate elliptic operators with double characteristics, if we think of $\Lambda_{t G}$ as our new $\mathbb{R}^{2 n}$. Let Λ_{+}be the complex stable outgoing (Lagrangian) manifold of dimension n associated to the flow of $e^{-i \theta_{H}}$, for $\theta>0$ small. Then $T_{(0,0)}\left(\Lambda_{+}\right)$is the sum of the eigenspaces associated to the eigenvalues z_{j}. We then know from [13]
that Λ_{+}is strictly positive with respect to $\Lambda_{t G}$. It turns out that the resonances close to 0 correspond to WKB-functions associated to Λ_{+}, and as in section 1 , we first state a simplified version of the result :
Theorem 2.1. Choose $C_{0}>0$ such that none of the values
(2.5) -ih $\Sigma\left(\alpha_{j}+\frac{1}{2}\right) z_{j}, \alpha \in \mathbb{N}^{n}$
is on the boundary of the disc $D\left(0, C_{0} h\right)$. Let $\Gamma^{0}(h)$ be the
set of values (2.4) inside the disc. We count the elements
of $\Gamma^{0}(h)$ with their natural multiplicity. Then for suffi-
ciently small h there is a bijection $b(h)$ from $\Gamma^{0}(h)$
to the set of resonances of P inside $D\left(0, C_{0} h\right), ~ s u c h ~ t h a t ~$
$b(h)(\mu)-\mu=O(h)$ uniformly with respect to μ and h.

To state the complete asymptotic result , choose complex symplectic coordinates centered at $(0,0)$; (x, ξ), such that Λ_{+}is given by $\xi=0$ and such that the corresponding incoming manifold for $e^{-i \theta_{H}}$ is given by $x=0$. Then $p=B x \cdot \xi+O\left((x, \xi)^{3}\right)$, where the spectrum of B is $\left\{z_{1}, \ldots, z_{n}\right\}$. Then we put

$$
P_{0}=-i B x \cdot \partial_{x}-\frac{1}{2} i \sum z_{j}
$$

The eigenvalues of P_{0} in the space \mathcal{P}^{N} of polynomials of degree $\leq N$ are then the values $-i \sum\left(\alpha_{j}+\frac{1}{2}\right) z_{j}$ with $|\alpha| \leq N$. With C_{0} as before, we fix N so large that no such values with $|\alpha|>N$ are in the disc $D\left(0, C_{0}\right)$.

Theorem 2.2. There exists a matrix $F_{-+}(z, h): \mathcal{P}^{N} \rightarrow \mathcal{P}^{N}$, depending holomorphically on $z \in D\left(0,\left(C_{0}+\delta\right) h\right.$) (for some $\delta>0$) , which is a classical symbol in h with an asymptotic expansion $F_{-+}(z, h) \sim \sum_{0}^{\infty} A_{j}(z) h^{j / 2}$, where $A_{0}=P_{0}$ such that the following holds :

Let $\tilde{\Gamma}(h)$ be the set of roots in $D\left(0, C_{0} h\right)$ of det $F_{-+}(E / h, h)$, counted with their natural multiplicity. Then for sufficiently small $h, \tilde{\Gamma}(h)$ is equal to the set of resonances of P inside $D\left(0, C_{0} h\right)$.

3. Examples of resonances, which are second order poles for the resolvent.

Here we only give a rough sketch and refer to [12] for detailed statements and proofs. We shall produce our examples by a perturbation argument. In R^{2}, we consider the unperturbed Scrödinger operator

$$
\begin{equation*}
P_{0}=-h^{2} \Delta+V_{0}(x) \tag{3.1}
\end{equation*}
$$

where $V_{0}(x)=-x^{2}$. (This potential is very large near infinity, but enters into the general framework of [7] , besides the arguments of this section work equally well if V_{0} is a rotation invariant analytic function with $V_{0}(x)=-1+o(1)$ as $x \rightarrow \infty$ in a domain $|\operatorname{Im} x| \leq c^{-1}|\operatorname{Re} x|$, such that 0 is an absolute and non-degenerate maximum on \mathbb{R}^{n} with $V_{0}(0)=0$.) The resonances of P_{0} are then

$$
\begin{equation*}
-\operatorname{in}\left(2+2\left(\alpha_{1}+\alpha_{2}\right)\right) \quad, \quad \alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbf{N}^{2} \tag{3.2}
\end{equation*}
$$

Here the "first" resonance $-2 i h$ is simple , but the next one $; \lambda_{0}(h)=-4 i h$ is double . Now perturb the potential:

$$
v=v_{0}+\left(\operatorname{hq}_{2}(x)+q_{4}(x)\right) e^{-x^{2} / 2}
$$

where q_{j} are real j-homogeneous polynomials and q_{4} is sufficiently small so that the theory of [7] applies with the same standard escape function for $P=-h^{2} \Delta+V$ as for P_{0}. The double resonance $\lambda_{0}(h)$ then splits into two possibly equal resonances , of distance at most $o(h)$ from $\lambda_{0}(h)$, and if we let F be the corresonding 2-dimensional sum of eigenspaces, then the matrix of $\left.P\right|_{F}$ for a suitable basis in F is given by

$$
\begin{equation*}
\lambda_{0} I+h^{2} \tilde{M}\left(q_{2}, q_{4}, h\right)=\lambda_{0} I+h^{2} M\left(q_{2}, q_{4}\right)+O\left(h^{3}\right) . \tag{3.3}
\end{equation*}
$$

Here M is a real-linear function of $\left(q_{2}, q_{4}\right)$, which can take arbitrary values in the space of complex symmetric $2 x 2$ matrices, while \tilde{M} is a smooth function of $\left(q_{2}, q_{4}\right)$, with $\tilde{M}-\mathrm{M}=\mathrm{O}(\mathrm{h})$ in the C^{∞} sense. We may assume that q_{4} is allowed to be so large that we may have $M\left(q_{2}, q_{4}\right)$ take any value in some neighborhood of

$$
M_{0}=\left(\begin{array}{rr}
1 & i \\
i & -1
\end{array}\right)
$$

in the space of complex symmetric 2×2-matrices . Otherwise we could just replace M_{0} by a small positive multiple .

Now the complex 2×2-matrices near M_{0} with double eigenvalues form a hypersurface H, and the elements of H are of the form $\lambda+\mathrm{N}$, with $\mathrm{N}^{2}=0, \mathrm{~N} \neq 0$. It is easy to see that if we restrict $\left(q_{2}, q_{4}\right)$ to a suitable 2-dimensional real plane , then the corresponding matrices \tilde{M} form a smooth real 2-dimensional
surface, intersecting H tranversally at a point near M_{0} • $\left\lvert\, \begin{aligned} & \text { The conclusion is then that for all sufficiently small values } \\ & \text { of } h \text {, we can find } q_{2}, q_{4} \text { such that } P \text { has a resonance } \\ & \lambda(h) \text { of multiplicity } 2 \text { with } \lambda(h)-\lambda_{0}(h)=o(h) \text {, such that } \\ & \text { if } F \text { is the corresponding } 2 \text {-dimensional space, then } \\ & \left.P\right|_{F}=\lambda(h)+N(h) \text {, where } N^{2}=0, N \neq 0 \text {. In particular, } \\ & (P-Z)^{-1} \text { has a second order pole at } \lambda(h) \text {. It seems to have }\end{aligned}\right.$ been an open question wether such resonances exist.

References.

1. J.Aguilar,J.M.Combes , Comm.Math.Phys.22(1971),269-279.
2. E.Balslev,J.M.Combes, Comm.Math.Phys.22(1971),280-294.
3. Ph. Briet, J.M.Combes,P.Duclos, On the location of resonances...II, Preprint.
4. J.M.Combes,P.Duclos,M.Klein,R.Seiler, The shape resonance,Preprint
5. C.Gérard , Preprint
6. C.Gérard,J.Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Preprint.
7. B.Helffer,J.Sjöstrand, Resonances en limite semiclassique, Bull.de la SMF , to appear.
8. B.Helffer,J.Sjöstrand, in "Advances in Microlocal Analysis" , Reidel , Ser.C , Vol $168(1986)$.
9. M.Ikawa , J.Math.Kyoto Univ.,23(1983),127-194, and 795-802.
10. M.Ikawa , Precise information ... , Preprint , also in the procedings of the Journées des EDP , St-J.-de M. (85).
11. M. Reed,B.Simon, Methods of Modern Math. Phys.Academic Press, New York, 1974-82.
12. J.Sjöstrand, Semiclassical resonances generated by non-degenerate critical points, Preprint.

13 J.Sjöstrand, Ark.f.Mat., 12, $n^{\circ} 1(1974), 85-130$.

