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Conference n° 21

THE POISSON SUMMATION FORMULA FOR A DIRIGHLET PROBLEM

WITH GLIDING AND GLANCING RAYS

by M< J. BENNETT and F. G. FRIEDLANDER

!• Int roduot i on • Let M be a compact Riemannian manifold, with smooth

boundary, and let /^ be the Laplaoian on M» This is an unbounded opera-
p

tor on L (M) which has a self adjoint extension with domain the Sobo-

lev space [u f c H (M)x u ( ^M <s 0 J , whose spectrum subset of 1ET , say

{ 0>-^ ^ -^ ^ .*.^-<X)^The corresponding eigenfunotions e. are a corn-
- J

plete orthonormal set in L (M)^ in fact, they are G °° and satisfy

(i) A^ t ̂ ^ -o, ^J^M.o, 6-^^..

in the classical sense. So the LL and e, are, respectively, the eigen-

values and the eigenfunotionsr of the Diriohlet problem for /\ on M.

The eigenvalues LL. , which we take to be positive, satisfy Weyl's

estimate ^ { ^ ^ T J « 0( T lm ) as T -^ w • Hence the spectral measure

60

(2) 6 - ( T ) ^ Z,S[T^
^\

is a tempered distribution.

Consider now the following initial value problem for the wave

equation on M )< 3R :

^ f ( ^ - A ) n - 0 , u l^»feG^(M) , b^^o'O,

I ^ M ^ m - 0 -
For any •t, this defines a map G (M) 3 f —^ u(«,t) 6 C (M) whose

Sohwartz kernel is a function K» ]R --? «0'(M<M) which can "be expanded as
w
^

(4) K(x,y,t) - -̂» e (x) e,(y) cos Lu t .
j » 1 v w J

One can also look upon this as a function MX M —•> S^'( B), and as such

it has a trace given "by



00

(5) tr K « /K(x,x,t)dg « -1L cos ̂ t ,
s/ A j » i ' J

where dg is the Riemann measure on M» ESy (2) one can write this

identity also as

(6) t r K « S^t)
^

where <5 is the even part of the Fourier transform of 6" ,e

(7) ^^= 1^^) + ^C-t)) - 5: C<^T) t^-T^.

Andersson and Melrose ^1^ have shown that, if ^M is everywhere

geodesioally oonoave ar convex, then (6) extends the Poisson formula for

compact "boundaryless manifolds due to Chazarain ^3Jand Duistermaat and

Guillemin [^43 > to the Dirichlet problem for A . In particular, the
^

singular support of ^ is contained in the sete

{ T 6 1R( 1'El is the length of a closed "broken geodesic on M or of a

closed boundary geodesic J •

Here, the broken geodesic flow includes reflection, with the usual (equal

angles9 law, at the boundary, and the boundary is equipped with the induced

Riemann metric^ Furthermore, if IT I is the length of a closed broken

geodesic which meets M transversally a finite number of times, and satis-

fies a certain non-degeneracy condition, then Guillemin and Melrose [.53

have established an extension to manifolds with boundary of the asymptotic

expansions of [,33 and ^4! for the restriction of y (t) to a sufficientlye
small neighbourhood of T»

This leaves two open questions• The first is that of the contribution

of closed broken geodesies which graze the boundary^ this can happen if

^M has a geodesioally concave connected component. The second one, which
^

may be called the gliding ray problem, concerns the behaviour of <Te

in the rieighbourhood of T when T is the length of a boundary geodesic.



We shall discuss a simple two-dimensional example which -throws some

light on these questions. The results are primarily due to the first author.

2* The eigenvalue problem. The manifold is a portion of a cylinder,

M • (0,d) X( K/2T®), where T ̂  0 and d > 0, equipped with the metric
? ^

(l+x)(dx + dy ). So the eigenvalue problem (l) for our example can be put

into the form

(^ ^ +^) t + ^(1+x) i - 0 on (0,d)x-3B,
(9)

^ I x«0 • ^lx«d m 0) y ̂  ^ has P6111001 2Y ,

and we take UL^ 0.

(10) Proposition^ With x € 3B» ^ fc 3R4' , and. 76 B , write

(11) ^- ^(^»Z) - ^""4/3(^2 - (1+x)^2) ,

and let Ai(2), Bi(as) be the standard solutions of Airy^s equation

F- (as) « » F(a). (See [9'] , for example.) For each m • 0, l^..^ let

JL^^. , where j « l » 2 , • • • ,be the roots of

(12) Ai(^) Bi(z;) - Ai(^) Bi(^) « 0,

arranged in ascending order) here a"1 m z (p,, mY/fT ), Then the kx x / mj
are the eigenvalues of (9)^ they are simple if m « 0, and of multi-

plicity 2 if m ;> 0.

The proof is straightforward, and omitted. It is convenient to

let m range over TL and put

(13) ^^- ̂  , m < 0 , j - 1 , 2, ... ,

tl^Ls takes care of the multiplicities .The spectral measure (2) is then

<o0 <o

(14) <s-^) - 2L L ^(T-^^ ) ,
Wl^-OO '̂l
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and the even part of its Fourier transform, (7), becomes
y? W

(15) (5^(1) - JL JL c4^^.
m—^o j « 1

3. The broken geodesic flow* For our example, the wave equation is

Pu « (1+x) ̂u - ̂ u - b ̂  •

The geodesic flow on T̂ M is just the bioharaoteristio flow of P< Leaving
aside the zero section Ogeodesios of zero length'), one can restrict this
to S»M » ^(x,y, ̂  ,^ ) 6 T»X( ^2 + ̂ 2 • 1 ̂  x^and t then gives the
(signed) length of the geodesies, which are the bioharaoteristio curves•

/\/On the covering manifold M » ( 0 , d ) X & 9 one can visualize these as the
trajectories of a billiard ball on an infinitely long inclined billiard
table whose (parallel) edges are horizontal, and perfectly reflecting*

^jFrom now on, we shall refer to the broken geodesies, both on M and
on M, as geodesies. A closed geodesic on M, of length T / 0, is the image

r^under M -^M of a geodesic on M such that x(T) « x(0), y(T) « y(0)^ 2nY ,
where n 6 Z5 , consisting of parabolic arcs reflected or grazing at the
boundary* Here n is the winding number) one must also associate an integer
k ̂  0 with the geodesic, where ( k| is the number of reflections at x » d,
with k > 0 if T ;> 0, and k < 0 if T < 0. We denote such a geodesic by y „
It will be said to be of type I if it does not meet x » 0, of type II if
it is reflected alternately at x » d and at x « 0, and grazing if it
is tangent to x » 0» Geodesies of type II are of no interest for the
problem in hand, and will be ignored* Elementary computations give the
foil owingt



(l6) Proposition. Let ^ be a real number, and put

(17) ^ « 2^(l-Hi-^2)i , T^« | (l+d-^2)^ (l+d+2^2) ,

let n and k be nonzero rational integers. There is ft closed geodesic y

of type I, with length 2kT^ , if there is a ^ such that 1<^2 < 1+d

and

(18) kT^ « nY .

Thia has no (real) solutions if In/kl ;> (l+d)/Y. If (n/kl ^ (l+d)/Y ,

then (18) has one solution ^ ,̂  such that ?\2 ^ Kl+d)? if also

\n /k l> Sd^/Y, then the second solution ?\( of (l8), for whichnicf\ î
^nk < M1^)? is also admissible. If d^/Y is a rational number, and

ln/k( » 2d2/Y, then (l8) holds for ^ » 1 or for ^ «. -1, and the corres-

ponding ^^ is grazing.

Remark. Let F t S*M —^ S*M be the map obtained by letting every

point, of S*M move for a time t along the lifted (broken) geodesic issuing

from it, with a suitable convention for points lying above ^ M. If

^ C M is a closed geodesic of (signed) length T, then it is clear that

the points of ^ , lifted to S»M, and their y-translates, are the fixed
Tpoint set of F . S o this set has dimension 2. One can show that it is

•
clean, in the sense of [4] and of \J^\ 9 unless ^ is of type I and

l̂ l « ("IKl+d))2 . Such a geodesic will be called degenerate^ it occurs

when the roots of (l8) coincide, and one then also has

(19) ^W = 0 .

4» The trace formula* In our example, the first member of (5) can

be obtained without explicitly determining K by solving the initial

value problem (3). One needs a technical lemma.



(20) Lemma•Let z £ E, and put
«0 dk

W 7^. ^ f
^ \ /k^QtB^fc-)

Then iv ^ Q ( K) is positive and strictly decreasing, and one has

(22) tan<^ X (z) " Ai(z)/Bi(z) if Bi(z) / 0 .

Furthermore, - Y * ( z ) is also strictly decreasing. For z large and posi-

tive, one has ^ (z) » 0(exp(-'^/2/3) and

(23) IT y (-z) - i-n + j ,,3/2 + o(a-V2) .

This follows from standard properties of the solutions of Airy's

equation C 93 • O11® oan now reformulate Proposition (l0)» With z defined

by (11), put

(24) | - ^z^T"*^) - 9r»«o(T » ^ )» (T » ^ ) ^ ̂ ^ ® •
Then ^> 0, and T —f ^ is strictly increasing. One can therefore invert

(24) to obtain'

(25) ^ = ^l^) e c'C^^
and infer from (12) that the eigenvalues of the Dirichlet problem (9)

are given ly A^ . « (j^ mlv/Y). So one oan write (15) as

60

/- ^
(26) 0^(t) » ^_» 0(j) oos (^(j,m^Y)t) ,

m,j » -^ x

where 0 (\ ) & G100 ( ]R) is such that

(27) p ^0 ^ ^^ ^-'i ^^ 0 ^ ? < ^ < 1 .

The. seoond member of (26) converges in ^ '( »)< So, if ^ £ J( K)

is real valued^ one has
00 A

<^ ^? ^ ^ SL p(l) ^o^(o^tr/V),
t»»,^-00



^ ^ 2It is not hard to show that f> ( ^ )^o ̂ i( ^ , <^) £ Q( E ). One can therefore

appeal to the classical Poisson summation formula, and after some mani-

pulations, one obtains:

(28) Proposition> Let ^ € ^ ( ffi) be real valued. Then

^o

(29) <?^>« Re ̂  f^(T)?(T)dT » R e ^ < ̂ > ^
y^-oo y n^=-oo

where

(30) ^(T) » yA^(T,^)exp(iS^(^)d^ ,

(31) S^ « 2TTk^(T^) + 2nY^T ,

(32) I(-T,^ « ^(-r2^?^2 -d-1)) -^(T^A2 -1))

(33) (3^/2Y)A^ «

9^^,^)((2^2+l)7<^rX2/3(r^2-l) - (2^ +l+d)7Cf(^r2/3(^2-d-l))).

^u r^
Also, k . « 0 for T ̂  6 , where 6 ^> 0 depends on the choice of p •

/\
5* The singularities of <S • These can now be examined by analysing

the behaviour of \ ^k^^) as ^-^<^» Roughly speaking, the terms

with k = 0 are related to the singularity at t » 0. As this is now well

understood in the general oasef^iol , [83, [6)) , it will not be dis-

cussed here»

For k ^ 0, it is found that the asymptotic behaviour of 6" , yields
UK

/\
information on the singularity of <5 near t = T , , the length of thee me
geodesic y , of Proposition (l6)» We now go on to state the principal

results obtained^ the proofs will be published elsewhere [23 . As o ise
even, we take t > 0. We write

(34) ^ = ^ T £ K( there is a closed geodesic on M of length [T\ ^ .
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We shall use the notation, for any real number 89

(35) ^o " ^ f t f fe ̂  E) for t < 8 } .

We begin with the regular' case,

(36) Theorem, Let ^ , be a non degenerate closed geodesic of

type I, with n and k as in Proposition (l6), k > 0. Let T , be the lengthnjc

of ^ ,, and J C ffi an open interval such that JA^ » {7 ,^. Then there

are complex numbers a m 3 m » 0$ l^ • • • such that, for any N ̂  0 ,

N ^
(37) ^(t)(J » Be Z a^(t̂ i0r ? -. r^, r^ £ ̂  .

m as 0

Also,

(38) a^) - î ÎT^n- l̂iT,/̂  ,

where ̂  is the appropriate solution of ( l 8 ) , and £ as 1 if
^2 < ^(1+d), t« 0 if ?^2 > t(l+d).

The proof is in effect an application of the method of stationary
phase to (30). The result is essentially that of €53 » allowing for the
observation made in the remark following Proposition ( l 6 ) » The factor
k-i- £.i incorporates the Maslov index and the changes of sign due to reflec-
tion at the boundary. The other factor in (38) is proportional to the
so-called invariant volume of the relevant fixed point set of the
geodesic flow on S*M.

It is clear from (l9) and (38) that (37) oannot hold when the
closed geodesic ̂  , is degenerate. In fact, the phase function whichnjc
comes from (31) and (32) is then degenerate. However, this case is easy
to handle. We only remark that, whereas in the non-degenerate case
(ST. is a classical symbol of order -j^, it is the sum of two such in the
degenerate case, of orders % and -̂  respectively, and omit the detailed
formulae,



(39) Theorem, Suppose that d^/Y is a rational number, and that

in/kl ss 2d^/Y, k > 0, Then there is a closed grazing geodesic / of

length T^ s= 2n(2+d)/3Y. Let J c 3R be an open interval such that

J^ ̂  as ^ T,l. Then C"^|j is the sum of two terms, one of which has the

expansion (37)^ while the other one can be expanded as

(40) BeZ g,,(t-T -̂iO)<-̂  . ,„, r,, £ nt2--3)/6- , ,, . o, l,...

The g involve the (oscillatory) integrals

/ .k-l.r Ni " - ( w )
"km s ^FT w ,k+l, x dw

A^ (w)

where A^(w) = Ai(e2ffi/3w) and A_(w) = AiCe"2^1^) $ in particular,

g is a multiple of o. /4^' ,•

In this case, the significant contribution to (30) comes from a neigh-

bourhood of ^= 1 or ^= -1, and the term 9((T (^2-!)) i11 s i, cannot

be handled by means of (23). However, it also follows from Lemma (20)

that, if k g- 2Z , then

exp ilc(^(2)-^) » A^zVA^z) .

This gives an alternative form of ^S" , which, with appropriate asymptoticme

analysis, gives (40)• The 'strange constants1 c, resemble those which

appear in the problem of forward scattering [7] and, like them, are no

doubt related to the fact that Airy operators are needed for the construc-

tion of microlocal parametrices near diftractive points of the boundary^

Finally,.we consider the gliding ray problem, perhaps the most interes-

ting feature. Write ^°M = ^d?X( 1R/2YS) for the geodesioally convex con-

nected component of ^M. Its (Riemannian) length is L « 2Y(l4•d)r . It is

not a geodesic, but a limit of (broken) geodesies. Indeed, the following

is easily deduced from Proposition (l6):
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(41) Proposition. The set of accumulation points of 2> is ^ ZSL} •

For any n ^ 0, there is a k > 0 and a sequence ^ . , k » k , k +1,...

of non-degenerate closed type I geodesies such that ^ , ^ (l+d)^ ,

T , ^ nL, and these V , converge to ^ M described n times with positive

orientation. Similar statements are true for n< 0.

Theorem (36) holds for each y ,, but one cannot simply add the

asymptotic expansions (3T) i11 order to obtain the behaviour of ^ (t) ine

the neighbourhood of t » nL. However, one easily sees from (38) and (17)

a" « 0(k" ), so that the sum of the top order terms converges. Put

€^

K (t) « Re 2. a^d-T ^iO)^2
n^ / , , nk v nk /

^o

Then one has

(42) Theorem^ Let n be a positive integer^ and let J be an open

interval such tha^fc J r \ 2 , » L T , t k ^ k ^ , with Ic and T , as in Propo-njic o o me

sition (41). Then

(43) S^^ " Kn(t) ^ 0(HÎ ) •

Observe that this is a genuine error estimate, as K 6 IL "" x wen loo

do not know if it is the best possible.

As in the case of Theorem (39)» the difficulty is that one has to

work in a range of ^ (a neighbourhood of (l+d)^ or of -(l+d)^) where the

application of (23) to the phase function S . of Proposition (28) is

problematical. There is a constant o such that, for any T> 0, the <T ^

with k > c<r are smooth; but one cannot control the error terms for

the sum over k^ OT • However, it turns out that one can do so for the

sum of the (5 , over k <?' c'T ' , and obtain another estimate for the range

o"r1/4 . k .< cT1/3 .
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