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Conférence n° 21

THE POISSON SUMMATION FORMULA FOR A DIRICHLET PROBLEM
WITH GLIDING AND GLANCING RAYS

by M. J. BENNETT and F. G. FRIEDLANDER

1. Introduction. Let M be a compact Riemannian manifold with smooth

boundary, and let /N be the Laplacian on M. This is an unbounded opera-
tor on LZ(M) which has a self adjoint extension with domain the Sobo-

lev space {u GHZ(M): ul M = 0} , whose spectrum subset of R~ , say
{0 >-My 2 N, 3 —oo} The corresponding eigenfunctions e; are a com-

plete orthonormal set in L2(M); in fact, they are ¢ ¥ and satisfy
(1) Aey + ey =0, ¢ |PM=0, 5=42

in the classical sense. So the }A,j and e:j are, respectively, the eigen-
values and the eigenfunctions of the Dirichlet problem for /A on M.
The eigenvalues }A.J. s Which we take to be positive, satisfy Weyl's

dim H)

estimate ﬁ-‘{y&gﬂa O( T as T—> x ., Hence the spectral measure

Q0
(2) sty = 20, (T-Ay)
324

is a tempered distribution.
Consider now the following initial value problem for the wave

equation on M x IR :

() {(bi-A)u-o, u[t=o=fec;’°(ﬁ) R 51;“’1; -0=9>

Uhux m =0

00,9
For any t, this defines a map C_ (M) > £ — u(.,t) € ¢ (M) whose

Schwartz kernel is a function Ks R — £ '(Mx M) which can be expanded as
N

X = 2—‘ e.\x) e oS . .
(4) K(x,y,t) ST 3(x) e4(3) cos oyt

One can also look upon this as a function Mx M — & '( R), and as such

it has a trace given by



00

(5) tr K = /K(x,x,t) dg, = ZJ cos ,A—jt R

j=1

where dg_ is the Riemann measure on M. By (2) one can write this
identity also as

(6) tr K = ge(t)

A
where 63 is the even part of the Fourier transform of & ,

(1) 6\’& ) = i(glt') + e(—t)) = L (s(T) +6'(-T>)A,

1
2

Andersson and Melrose (1:\ have shown that, if JM is everywhere
geodesically concave or convex, then (6) extends the Poisson formula for
compact boundaryless manifolds due to Chazarain {'_3]a.nd Duistermaat and
Guillemin [4] s to the Dirichlet problem for A . 1In particular, the
singular support of Ge is contained in the set

{ TE Rs |T| is the length of a closed broken geodesic on M or of a

closed boundary geodesic } .

Here, the broken geodesioc flow includes reflection, with the usual *equal
angles'! law, at the boundary, and the boundary is equipped with the induced
Riemann metric. Furthermore, if |®| is the length of a closed broken
geodesic which meets M transversally a finite number of times, and satis-
fies a certain non-degeneracy condition, then Guillemin and Melrose [5]
have established an extension to manifolds with boundary of the asymptotic
expansions of [3] and t41 for the restriction of /c\re(t) to a sufficiently
small neighbourhood of T.

This leaves two open questions. The first is that of the contribution
of closed broken geodesics which graze the boundary; this can happen if
dM has a geodesically concave connected oomponént. The second one, which
may be oalled the gliding ray problem, concerns the behaviour of @'e

in the rieighbourhood of T when T is the length of a boundary geodesic.



We shall discuss a simple two-dimensional example which throws some

light on these questions. The results are primarily due to the first author.

2. The eigenvalue problem. The manifold is a portion of a cylinder,

M = (0,d) X( B/2Y Z), where ¥ > O and d > O, equipped with the metric
(l+x)(dx2+ dyz). So the eigenvalue problem (1) for our example can be put

into the form
2,52 2
(9) { RQr+3) f+ p(14x) =0 o (0,d)x Ry
B|ro=8lreqa =0 > # has period 2Y ,

and we take p) 0.

(10) Proposition. With x ¢ R, p ¢ B’ , and NER, write

(1) =5 () = kP2 - opd)

and let Ai(z), Bi(z) be the standard solutions of Airy's equation
F" (z) = s F(s). (See[9], for example.) For each m = 0, 1,..., let

P’m;j y Wwhere j =1, 2, «sey be the roots of

(12) Ai(z';) Bi(z:) - Ai(z’:) Bi(z:) - 0,

arranged in ascending orderj here z: = x(}L, mY/f' ). Then the 2 nj
are the eigenvalues of (9); they are simple if m = 0, and of multi-
plicity 2 if m > O.

The proof is straightforward, and omitted. It is convenient to

let m range over Z and put

(13) Mom,j = Fmj * m<O0, j=1y 2, cou 3}

this takes care of the multiplicities.The spectral measure (2) is then

0 20
(14) s(1) = ZJ Z/ S(T'}‘Mi).
wms-00 4p=A4



and the even part of its Fourier transform, (7), becomes

©0 o0
(15) 5. = 2. D' gt

me—o0 J =1

3. The broken geodesic flow. For our example, the wave equation is

2 2 2
Pu = (1+x)btu- du - byu .

The geodesic flow on T*M is just the bicharacteristic flow of P. Leaving
aside the zero seotion ('geodesiocs of zero length'), one ocan restrict this
to S*¥M = {(x,y,g,rL) € T*M3 ;2 + rf -1 4+ x}’and t then gives the
(signed) length of the geodesios, which are the bicharaoteristic curves.
On the covering manifold’\l{ = (O,d) X R , one can visualize these as the
trajectories of a billiard ball on an infinitely long inolined billiard
table whose (parallel) edges are horizontal, and perfectly reflecting.
From now on, we shall refer to the broken geodesios, both on ?&J and
on M, as geodesios., A closed geodesic on M, of length T [ O, is the image
underr;j—yl of a geodesic on M such that x(T) = x(0), y(T) = y(0)+ 2nY ,
where n € Z , comsisting of parabolioc arcs reflected or graszing at the
boundary. Here n is the winding number; one must also assoociate an integer
k £ 0 with the geodesic, where | k| is the number of refleotions at x = d,
with k> O if T > Oy and k < 0 if T< 0. We denote such a geodesioc by Y ..
It will be said to be of type I if it does not meet x = 0, of type II if
it is reflected alternately at x = 4 and at x = 0, and grazing if it
is tangent to x = 0. Geodesics of type II are of no interest for the
problem in hand, and will be ignored. Elementary computations give the

followings



(16) Proposition. Let 7 ©be a real number, and put

(17) T, = 2 \(1+4d-22)F | T, = % (14a- 2% (14042 22) |

let n and k be nonzero rational integers. There is & closed geodesic Xnk
of type I, with length 21@? s if there is a \ such that 1<‘)‘2 < 144
and

(18) k¥p = nY .

Thia has no (real) solutions if In/k| > (1+d4)/Y. If |n/ki < (1+44)/Y ,
then (18) has one solution {Ank such that Aik > %(144); if also

\n/kl > Zd%/Y, then the second solution ’Ar‘xk of (18), for which

(xnlzc < #{1+d), is also admissible. If d%/Y is a rational number, and
\n/kl = Zd%/Y, then (18) holds for A= 1 or for A = -1, and the corres-
ponding Xnk is grazing.

Remark. Let Ft: S*M — S*M be the map obtained by letting every
point of S*M move for a time t along the lifted (broken) geodesic issuing
from it, with a suitable convention for po:’;nts lying above oM. If
Y C Mis a closed geodesic of (signed) length T, then it is clear that
the points of X sy lifted to S¥M, and their y-translates, are the fixed
point set of FT . So this set has dimension 2. One can show that it is
clean, in the sense of [4] and of (_5] y unless ¥ is: of type I and

2] = (%(l+d))% . Such a geodesic will be called degenerate; it occurs

when the roots of (18) coincide, and one then also has

(19) Bya [3% =0.

4. The trace formula. In our example, the first member of (5) can

be obtained without explicitly determining K by solving the initial

value problem (3). One needs a technical lemma.



(20) Lemma.Let z € R, and put

©  dt
21 (z) = L :
(21 g ~ fz AL (k) + B

Then 'xg coo( R) is positive and strictly decreasing, and one has

(22) tan % 7((z) = Ai(z)/Bi(z) if Bi(z) £ O .

Furthermore, - X '(z) is also strioctly decreasing. For z large and posi-

tive, one has X (z) = 0(exp(—4z3/2/3) and

(23)  TWo(-z) =27 + 2824 o(a?) .
This follows from standard properties of the solutions of Airy's
equation ( 91 . One can now reformulate Proposition (10). With z defined

by (11)9 put
(24) = Yozg(To1) = Y5 (T,0), (T,7) ER'xE.

Then g) 0y, and T — 3 is strictly increasing. One oan therefore invert
(24) to obtain®
- ulzn) € CY(R*:«R)
(25) T = M3m /
and infer from (12) that the eigenvalues of the Dirichlet problem (9)

are given by A, = (i, m™/Y). So one oan write (15) as

&0

=
(26) S, )= 2. 0(3) con (k(5,aVDH) ,

myj = —n

where ?(i ) € wa( R) is such that

(27) p =0 if 3¢9, o1 if §>,8') 0¢d<¥ci.

The: second member of (26) converges in J '( R). So, if g e J( R)

is real valued, one has
® A

(.60 = Re 2N pia) dop(Bmuly),

4= -0



A

It is not hard to show that P(Z)ﬂo p(3,n)e 4¢( ]Rz). One can therefore
appeal to the classical Poisson summation formula, and after some mani-
pulations, one obtainss

(28) Proposition. Let § € 3 (R) be real valued. Then
Lo}

A m A \ A
(29) <6 ,8% = R Y / Sl THTT =R )| (S s
N, ks~ X n,R=~0
where
(30) S (T) = /Ank('T,A)exp(isnk(W,i\)d% ,
(31) snk=2ﬁkg(¢,ﬁ)+2nY’Afr ,
(32) 3 (6N = x (T332 L)) - x (TP3(A% )

(33) (3%7/21()3nlc =
0o (TN ((2841) o/ (B/3(3%1) - (282 4100) %' (P/3(aRoa1))).

Also, A

I "
e = © for Tgd s where S)o depends on the choice of p e

A
5. The singularities of Ge . These can now be examined by analysing

the behaviour of zs;lk(fr) as (-»00. Roughly speaking, the terms

with kX = 0 are related to the singularity at t+ = 0. As this is now well
understood in the general case((:lo-l , (8], [6]) y it will not be.dis-
cussed here.

For k ;‘ 0, it is found that the asymptotic behaviour of Gnk yields
information on the singularity of /G\e near ¢ = Tnk s the length of the
geodesic b/nk of Proposition (16). We now go on to state the principal
results obtainedj the proofs will be published elsewhere [2] o As Se is

even, we take t ) 0. We write

(34) 2 = %’l‘ € Rs there is a closed geodesic on M of length |T) S .



We shall use the notation, for any real number s,

(35) B = {fifcH (R)fortcs}.

We begin with the 'regular' case.
(36) Theorem. Let 3'nk be a non degenerate closed geodesic of

type I, with n and k as in Proposition (16), k > 0. Let T . be the length

nk
of ¥ i » and JCIR an open interval such that JnJ) = {Tnks. Then there
are ocomplex numbers aiz) gy m =0, 1, ... such that, for any N) 0,
SR 3
~ m m= 3 -
(37) <Se(t)(J = Re;EEJO 8 (t—Tnk-iO) 2+ 1y, THE Hgoo .
Also,
(38) al(lfc) = 1k+5mnk/2frk3/2]n;/azfg ,

where ‘A is the appropriate solution of (18), and & = 1 if
'32 < ¥(14d), €= 0 if 22 > %(1+4).

The proof is in effeoct an application of the method of stationary
phase to (30). The result is essentially that of [5] s allowing for the
observation made in the remark following Proposition (16). The factor

k+ € incorporates the Maslov index and the changes of sign due to reflec-

i
tion at the boundary. The other factor in (38) is proportional to the
so-oal;ed invariant volume of the relevant fixed point set of the
geodesic flow on S*M.

It is clear from (19) and (38) that (37) cannot hold when the
closed geodesic I{nk is degenerate. In fact, the phase function which
comes from (31) and (32) is then degenerate. However, this ocase is easy
to handle. We only remark that, whereas in the non-degenerate case
S;k is a classical symbol of order %, it is the sum of two such in the

degenerate case, of orders & and % respectively, and omit the detailed

formulae.



(39) Theorem. Suppose that d%/Y is a rational number, and that
in/k\ = Zd%/Y, k > 0. Then there is a closed grazing geodesic¢5£k of
length T , = 2n(2+d)/3Y. Let J ¢ R be an open interval such that
In 9= {Tnk§.Then /G\e\J is the sum of two terms, one of which has the

expansion (37), while the other one can be expanded as

N
. - 2N- -
(40) Rezd, gm('t-Tnk—lo)(m 4)/3 rys Ty € g(M-3)/6- 'y _ o, 1,...
M=
The g involve the (oscillatory) integrals
1 m Af-l(w)
c = —— w —— dw
y~
km 2471 Ak+1(w)
+
2wi/3 -217i/3

where A+(w) = Ai(e w) and A (w) = Ai(e w) 3 in particular,

go is a multiple of Crot ank‘

In this case, the significant contribution to (30) comes from a neigh-
bourhood of A= 1 or D= -1, and the term ;K(WZ/B(A2—1)) in 8 , cannot
be handled by means of (23). However, it also follows from Lemma (20)

that, if k€ Z , then

exp ik(z(z)- %ﬁ = Alf(z)/Al_:(z) .

This gives an alternative form of ank which, with appropriate asymptotic

analysis, gives (40). The 'strange constants! ¢, resemble those which

km

appear in the problem of forward scattering [7] and, like them, are no

doubt related to the fact that Airy operators are needed for the construc-

tion of microlocal parametrices near diffractive points of the boundary.
Finally, we consider the gliding ray problem, perhaps the most interes-

ting feature. Write BOM = {d-fx( R/2Y Z) for the geodesically convex con-

nected component of JM. Its (Riemannian) length is L = 2Y(1+d)% . It is

not a geodesic, but a limit of (broken) geodesics. Indeed, the following

is easily deduced from Proposition (16):
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(41) Proposition. The set of accumulgtion points of S is {EL} .
For any n ) 0, there is a ko > 0 and a sequence b/nk s k = ko’ k°+1,...
of non-degenerate closed type I geodesics such that P‘nk A (1+d)% ’
T’nk A nL, and these Xnk converge to %M described n times with positive
orieﬁtation. Similar statements are true for n< 0.

Theorem (36) holds for each Y ? Put one cannot simply add the
asymptotic expansions (3T) in order to obtain the behaviour of ge(t) in
the neighbourhood of t = nL. However, one easily sees from (38) and (17)

(o)

a' k= O(k—z), so that the sum of the top order terms converges. Put

o0 |
Kn(t) = Re 2.1 af;;)(t-q'nk_io)"3/2
k=k

Then one has
(42) Theorem. Let n be a positive integer, and let J be an open
. Q
interval such thaf J n 2, B{Tnk' k> k°§ y with ko and Tnk as in Propo-

sition (41). Then

PaN
~3/4-
(43) s (1)]g =k (t) + (/%) .
Observe that this is a genuine error estimate, as K € H'l'i; $ we

do not know if it is the best possible.
As in the case of Theorem (39), the difficulty is that one has to
work in a range of A (a neighbourhood of (l+d)% or of —(1+d)%) where the

application of (23) to the phase function S_. of Proposition (28) is

nk
problematical. There is a constant ¢ such that, for any T) 0, the § nk

with k » 01'1/3 are smdoth;' but one cannot control the error terms for

1/3

the sum over k £ ¢7T’/~. However, it turns out that one can do so for the

sum of the G'nk over k 0'1‘1/4

o4 o < oit/3 .

, and obtain another estimate for the range
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