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Conference n° 5

COMPOSITIONS OF PSEUDO-DIFFERENTIAL OPERATORS

by

E. M. STEIN

The purpose of this report is to describe a certain class of operators
arising typically in boundary value problems and in particular in the 3-Neumann
problem for strongly pseudo-convex domains which represents work done in
collaboration with D. H. Phong [ 5 ] and [ 6 ] . Besides the fact that these operators
lead to a better understanding of the "sharp" estimates that can be made for
these boundary problems, the operators may also have an interest of their own.

For the clarity of exposition we shall consider four classes of operators,
the first three we review briefly and the fourth is the real object of our attention.

First class
The simplest example arises here when we consider a distribution K on 3R ,

which is homogeneous of degree -n, smooth away from the origin, and has vanishing
mean value on the unit sphere. Then the principal value convolution operator
f - > T f = f * K i s a basic MihIin-Calderon-Zygmund operator. It can also be
realized in the pseudo-differential form

(Tf) ( x ) == ] a^i^ae^'^ ,

where a is homogeneous of degree 0 and,smooth away from the origin. ^ ,. .
8̂  1 ^- 1(A basic example of this is K ( x ) = c ^—.— (————^) , n > 3 , and then a ( ^ ) = ———^—dx , dx . i i n—z i ?-1 —i 3 1x1 1^1

which is the operator arising when one makes the estimates of maximal gain for the
Laplacian). There are many generalizations of those operators in the same spirit.
In effect : a ( ^ ) may be replaced by a ( x , ^ ) with smooth dependence on x, and the
functions ^ -> a ( x , ^ ) having asymptotic expansions into functions which of
infinity behave like homogeneous functions. As is well known operators of this
kind satisfy a host of basic estimates : L estimates, of which L , and "weak type
1 , 1 " are the most fundamental, and also Holder estimates, e t c . . .

Second class
This class arises when we replace the homogeneity (x , . . . , x ) ^(6x . . . . . f i x )

6 > 0, ..which dominates the first class, by more general homogeneities, but the
operators are still convolution operators with respect to the usual group of ]R .
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^ n ^2
We shall briefly mention the example of the heat equation ^— = Z —^— . Using

2 j=l 8X:
the fundamental solution h(x, t )= ct n/2 e x , t > 0, = 0, t < 0, the basic

^ ^kernels become K(x , t ) = ^—^——h(x , t ) , or K(x , t )= ^ — h ( x , t ) . The operator is then
dx . dx . dt

Tf = f * K with the convolution in the full space 3R x ]R of the x and t variables.
The theory for this class of operators (starting with the book of F. Kohn Jr.) can be

carried out in wide ranging analogy with that of the previous class.

We now come to the 8-Neumann problem. This problem (arising from the

'5-complex) and its 1), analogue was studied by Kohn (see e.g. [o]), where a variety

of existence and regularity results were obtained, the natural question is what

kind of operators -analogous to the first class or second class described above -

can be used to represent solutions, make estimates, etc. Two ideas are needed :

first : it is best to attack the 3 problem first before 9 , because it is "pure".

second : we look for exact solutions in the case of the Heisenberg group, because

of its many symmetries and the fact that it is equivalent with the boundary of the

complex ball :

Third class

Here we consider the Heisenberg group H = { ( z , t ) | z € (f , t £ HR }. The
<\ f\ ^ <\

basic vector fields are Z . = ^ — + i ? . T — , Z . , l < j < n , and T = ^— .
3 dz . 3 dt 3 dt

The fundamental operator is o q = - - Z ( Z . Z . + Z . Z . ) + i aT with a = n - 2q,

which is the Kohn-Laplacian on q-forms. Now in [2] a fundamental solution
C , .

F = F(z , t ) = ———————————a—————————— was found for n q (of course, 0 < q < n) ,
' n-g n+g b

nzJ2-!!) 2 (Izl^it) 2

and the fundamental operators become Tf = f * K , with K = Z . Z . ( F ) , or T ( F ) , and the

convolution being with respect the Heisenberg group multiplication. Notice the
2

same kind of homogeneity (,z,t) -> (9z^3 t) as the heat equation, but a different

convolution. These operators can also be written with pseudo-differential form.

More precisely

(Tf) (x) = fatx.^^e1^^ ,

A t-1 -1with a (x ,^ ) = K(L^ (£ ; ) ) , since y .x = L (x-y) .

See [3] where explicit formulas for the symbols are discussed. Notice that
A
K is homogeneous of degree 0.



The theory of L estimates, H61der space estimates e t c . . . for these operators can
be carried out either in the singular integral form as in [3 ] , or in the pseudo-
differential form as in [ 4 ] , and these apply to the general class of strictly
pseudo-convex boundaries.

Fourth class
The fourth class arises by composition of operators belonging to the

first and third class. We describe this more precisely, we let a,T be the
dual variable to z and t and write ^ = ( a , T ) . We consider operators U of the
form U.U where U, is a classical operator (of the first class) of order 0 and
U is of the third class of order 0) i . e . the symbol of LL is a ( x , £ ; ) = a (L ~ ( ^ ) )^ 2. z z x
with a homogeneous in the Heisenberg sense of degree 0 for large ̂  and everywhere
smooth. It is fundamental that we make the assumption that a (a , 0 ) = 0 (£; = ( a , T ) ) .

Theorem 1
(a) U is bounded on L , 1 < p < °°
( b ) U is of weak-type ( 1 , 1 )
( c ) U preserves A (the usual H61der spaces)
(d) U preserves r (the non-isotropic Holder spaces appropriate for the

Heisenberg group).

Remarks : (a) is of course true without the assumption on a (0,0) .but not the conclusionsTTT̂( c ) and ( d ) for that assumption is essentially necessary.
The proof of this theorem can be found in [ 5 ] .

19-Neumann problem
We now discuss the relevance of Theorem 1 to the 3-Neumann problem. The

solution of this problem can be reduced to the problem of inversion of a certain
first-order pseudo-differential operator on the boundary. This operator, n , is
studied in [ 3 ] ; on the Heisenberg group it can be exactly defined as follows :

o-^ ( 2 a ( l ) - T 2 ) l / 2 + i T•b

Notice D - is non negative Hermitian and commutes with T. Considerb
l\\ 21/2D-= (2 n , 7 - T ) / - iT . Thenb

^ n~ = 2n , so (c^)"" 1 = ^n~( o ^ ) " 1 .b 2 • b

Using the fundamental solution operator F for o , described above, and theb



fact that I- n = U^T + Z u"^ + Z U * (k) ^ , we can see that :

( D ) = U U + smoothing operatory

where U^ = operator of class 1 of order 0, and U = TF, and so has symbol vanishing
for T = 0. So the composition LL U is the heart of the '3-Neumann problem.

Fourth class : second version

It is interesting to find the kernel of this operator, i.e. (D+)^ .
Again it is a convolution operator with kernel K (on the Heisenberg group). K may
be taken to vanish for large x = (z,t), but its main term for small x (in the

2 2 3case o f H = d; x 3R c: (t ) is given by

K ( x ) = Iz l 2 1

(2|z|2+t2)2 ( | z | 2 - it)2

Thus we are lead to consider kernels of the form :

K ( x ) = E ( z , t ) H ^ ( z , t )

where E^ is homogeneous in the usual sense (in the variables z and t) of degree -k,
and H^ is homogeneous in the Heisenberg group sense of degree -&.

There are two critical ranges of ( k , A ) . The first range is when
k + H = 2n+2, but k < 2n . In that case :

Theorem 2 : Suppose K is as above one E ( z , 0 ) H n ( z , t ) has mean value zero on the
unit sphere. Then the operator f -» f* K, defined as a principal value convolution
satisfies the conclusions of Theorem 1 .

For a proof see [ . 5 ] .

Remarks : ( 1 ) The second critical range is k + H/2 = 2n+l , A < 2. Then if
E , ( z , t ) H . ( 0 , t ) has mean value zero the same conclusions holds.

( 2 ) In the "super critical" case, i . e . K = 2n, A = 2, it would seem
necessary that E ^ ( z , 0 ) , and Hj^(0,t) separately have vanishing mean values. Whether
this is sufficient for e . g . I? boundedness is not known.



The Neumann operator
There are operators akin to those that appear in Theorem 2, but in the

setting of H x 3R . These operators arise when one takes the asymptotic series
for the Neumann operator (the operator which solves the '8-Neumann problem) and
subjects it to appropriate differentiation.

One is thus lead to operators of the form

r r^n Jo( T f ) ( x , p ) = ! K ( y ^x, p + u ) f ( y , p ) d y dp
'H ' 0

where K is a function on B x 3R of compact support which near the origin is of
the form

K ( x , p ) = E ^ ( x , p ) H . ( x , p ) .

with E ( x , p ) = E ( z , t , p ) homogeneous (with respect to ( z , t , p ) -» ( 6 z , 6 t , 6 p ) )
of degree -k, while H . ( x , p ) = H p ( z , t , p ) is homogeneous (with respect to

2 2( z . t . p ) -» ( 6 z , 6 t , 6 p ) ) of degree -Jl . Both are assumed to be smooth away from the
origin.

There are two critical ranges, the first is k + I = 2n+4, k < 2n 7
the second is k + H/2 = 2n+2, H < 4. The "super critical" point is k = 2n, H = 4 .

Theorem 3 : ( a ) In the two critical ranges, the operator T is bounded on
L̂ H11 x 3R ) , even it K is replaced by | K | , ( 1 < p < o o ) .

( b ) In the case k = 2n, H = 4, the operator is bounded on L̂  if
E ( z , 0 , 0 ) has vanishing mean value on the sphere.

The proof will appear in [ 6 ] . It is based in turn on the following result
obtained by D. Geller and the author [ l ] .

Consider the following singular homogeneous distribution on B1'1 . K ( z )o
is a homogeneous distribution on (t" of degree ~2n, which is smooth away from the
origin. 6 ( t ) is the delta dunction (at the origin) in the t-variable K ( z , t ) = K ( z ) 6 ( t ) .o

Theorem 4 : The operator f -» f * K is bounded on L^K11) to itself , 1 < p < oo.
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