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1. Introduction

For some time the general theory of elliptic boundary problems
for linear operators has been well-—established (see for example Chazarain
& Piriou /41 /, Grubb /3/). This note is an outline of work in progress
on the properties of elliptic problems near characteristic boundary
components. Typically, such problems arise from the analysis of a
standard elliptic problem, say for the Laplace operator, on a space
which is a Riemanmian manifold (possibly with boundary) except for
singular points of simple conic type. If one makes the analytically
very restrictive assumption that the Riemanm metric is of 'product-
conic! type near the singular points then the method of separation
of variables is available (see Cheeger /2/). In general the natural
class of operators in which to work seems to be the totally characteristic
operator ring, as defined in /5/; it is this approach to the analysis
of conic points which is discussed below.

The main type of result described below is the almost-hypoellipticity
for an elliptic boundary problem (as defined in Section 3) of this comic
type. That is, any solution with homogeneous data has only a classical
(graded conormal) singularity at the conic point. More specifically,

suppose that £1 R ———> R is.a ¢® function such that

J

£(0)=0, a£(0)=0, :)-;2(0) has signature 4y +yeey+y=
x

and df(x)£0 if f(x)=0, x#O.

The domain af = {f( O] is therefore a ¢ ° submanifold with boundary

of ]Rm'l except that it has a conic point at O, Consider the problem

Au = 0 in ‘Q'f’u,o)ﬂfao



where ug @'(L1,)s i.e. u is the restriction to 2. of a distribution
~omn Rn+1. It follows from the main result of this paper, see Section 5,
that u has an asymptotic expansion with ¢% coefficients:

.+k

m
3 ®, = _ N
N Z gj,k,p(r,w) r logPr, €5,%,p€ © (R xs")

where mj-—-> ® as j—» o, (rye0) are (any) polar coordinates in B
and the sum over p is finite for each j,k. The rnj are singular values of
a certain associated *indicial' problem.

Particular examples of this phenumenon have been observed by
many authors, especially in the product-conic case mentioned above,
It should be noted that the methods of this paper allow one to discuss
directly Fredholm properties and the finite order regularity of solutions
for such elliptic problems, in terms of suitable weighted Sobolev norms

near the conic points. These matters, together with generalizations

to tkinks' and corners of lower codimension, will appear elsewhere,



2. Polar coordinates

Let Y be a ¢ manifold and suppose Y\P carries a ¢® Riemannian
structure. . We wish to impose conditions on the metric so that p is,

metrically, a conic point in Y. This is most easily done by considering

3

-the standard cone in R”:

(1) P +y° =15, tdo.

The iniroduction of polar coordinates,

(2) = 2( +¥%) (£20), w=7 (x+iy)esh,
reduces this cone to the manifold with boundary

(3) x = F x st.

On X the metric from Y, induced by the Euclidean metric on 113, takes

the form
(4) g = dr’ + readf

vhere af is a metric on Sl.
Generalizing this we shall consider that a manifold with boundary, X,

has a metrically conic boundary, Jx, if X carries a ¢® 2-tensor
g€ (X, Symm,TX)

.Buch that

(5) g is positive definite (Riemannian) on X \dx.

(6) g has rank 1 at each point of oX.



If V€ ¢®(X,TX) is tangent to oX them g(V,V) vanishes to
(7) second order on a)x and to precisely second order at each

point pC oX where v(p)Fo.

Clearly g in (4) satisfies these conditions. In fact if r2 0, yl,...,yn

are coordinates in X near Sgo)x then g satisfying (5), (6), (7) takes

the forms
(8) g = ar® + 2r :"_.h drdyj+r2§:h dyt. ayd
~00 A 03 ° . ijv ™"
J=1 i=1
where the coefficients hab are ¢ ° functions of ryy. Moreover,
(9) h >0 .

The form (8) follows easily from (6), (7). For example the vector fields

D K are tangent to o)X, leading to the factor r2. Similarly setting

y

V=D _
g

vanishing at r=0.

+ rl)r in (7) shows that the cross terms dr.dyj must have coefficients

Next recall (from /5 /) that on any manifold with boundary there

is a natural subring:
Diffb)QX) C Diff(X)

of the (filtered) ring of all differential operators with c® coefficients
on X. Namely, Diffb(x) is the sub-C ®-module locally generated by the

vector fields tangent to JX. In the local coordinates ry,y this means

Q
Diffbk(x) SP = L Py q(r,y) ranqny .
IKl+a< k ?
(10) Lemma The Laplace-Beltrami operator, A, of a metric satisfying (5),

(6)y (7) on X is such that



(11) rPAe Dire °(X).

Notice this means that, although its coefficients are not.:¢ ®,

A can be writtem as a ¢ ® combination of vector fields Dr’ r-ll) ‘o

yJ

_We shall outline a more general computation than is needed to prove
this Lemma,
~
In /5 / the notation TX (compressed tangent bundle) was used
for the c°° wvector bundle of vector fields tangent to o)x. Thus, ﬁx
is locally spanned by Dy D 3¢ In view of (8) the metric g defines
y
a2 uniformly degenerate meiric on 'I"Xz If r&cC oD(X) is a global defining

o
function for Jx, r >0 in X, then
V—r |y (

€

is a ¢ % metric on the fibres of TX. The dual metric r|. | on sections
€
of the dual bundle ¥ X (compressed cotangent bundle) is therefore also

¢:® and non-degenerste. In fact the symbol of any P€Diff, “(X) cen

@ ~ %
be regarded as a ¢ function on T X and then:

(12)  o(zfA) = . |§

shows that
(13) Corollary r2A € Diff.pz(x) is elliptic.

~
In general ., let- Ap = /\p?*x be the p-fold exterior powers of
~
the compressed cotangent bundle, A (:m section (P of Ap 'in loczl
coordinates is of the form:

o o
(1) W= L oa ey E %At
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> - 3 > - .J* *
using the csnonical identification T )('2 =T Xl .

2

In particular,
o, % ®,. Ap+l
a:¢ P(Xy AP?) —— ¢ ®(x, AP™)

is a well-defined C® differential operator., From (14) it follows

trivially that it is totally characteristic.
1 ~ ~
(15)  aedife, "(x,AP,AP*) ®p.

Now, the adjoint & of d is defined by

a6 [<ao9s, las - §<0,39, 1

where, to ensure convergence, it is certainly enouzh to require
N - o~
(.JG&:(X,AP), J ¢ Ccm(x,/\p+l), i.e. both vanish to all orders at

~
the boundary. The singular inner product on /\p is clearly of the form

~

S O S AT

in terms of a smooth and non-degenerate inner product < , e

Similarly, as is usual in polar coordinates,
~
(18)  |agl = 7" lag)

~N)
in terms of a smooth non-venishing density \dg( on X, Thus, (16)

can be written:
(19) S(dw,w)'f; |de| - J(w,&v'yg’(a“;g

~J
if V= 2?2 Qang 83" = £ 2P §3 . The important point is that (19)

~
shows & +to be the adjoint of 4 with respect to non-degenerate smooth

structures on fibre bundles znd base, so
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(20) 8¢ Diffbl(x; Xl”l, 7(") ¥ p.

~n+2p S rn---2 p-2

Since 5 = T the elementary vroperties of totally

characteristic overators show
~ ~
28 ¢ Diffbl(’x;Ap+1,Ap).
~N
Now, on the bundles /\p
so it follows easily that Lemma 10 holds, in the more general setting
2 2, 4P AP
(21) r"A € Dpiff, (xsAP,AP) ¥ p,

and Corollary 13 generalizes immediately too. Since A is the usud
Laplace~Beltrami operator with only minor changes on the cm structures
of the bundles these oﬁservations allow the results discussed below
to be applied to Hodge theory (cf. Cheeger /2 /).
Finally in this section we shall make another important generali,ation.

If in place of the cone (1) one considers the solid cone:

(22) ° + y2 < 42

t2 0

the introduction of polar coordinates as in (2), i.e. r2 . 12 + y2 + tz etc.,

again reduces the metric to (4) where now af is a Riemannian metric

on 82 and

(23) X = x S

R

where SCS° is a ™ submanifold with boundary.

To study these more general manifolds with conic soints, for



which the local cross-section has boundary, we consider the following
class of manifolds. Let X be a manifold with (interior) corner. Thus,
each point of X has a neighbourhood diffeomorphic to either Bn+1 or
ﬁ:_x B or 'f;x ﬁ:x B L. The subset of points in the last two cases
is JXC X the topological boundary (bouncary as a topological manifold),
this consists of a)lx v 02]( as locelly X is a half-space Or a guarter
spaces c)zx is the corner of X. We further reguire that the boundary

of X has a decompositiont
(24) dx = J'xVdx, hx= Jd%XNIx

where o' X, 0" X <X are ¢ submenifolds (of codimension 1) with
boundary, *&"x) = 0( o)“x) = sz.

With respect to this decomposition we can consider a metric tensor
& on X which is non-degenerate throughout X \o)"x and which satisfies
(5)s(6)y(7) if JX is replaced by "% Thus, the case considered
above corresponds to o)'x = ﬁ - the absence of 'real! boundary as opposed
to blown-up conic points, It is then a straightforward matter to see
that all the remarks above have immediate extensions to the new case
provided "\I‘IX,, Diffng), /"\’p etc. are constructed as though X is to be
extended actoss o X %o a menifold X with boundary o% extending o)“x.

In particular near o)"x local coordinates will be taken with
1 1l -, °)
(25) T20, ¥ yeeepy  and y 20 if the base point HE 0, X.

(26) Remark It is not true that r2A€Diffb(/\p) for all p (see

Cheeger /2, (2. S’)/)0



3. Totally characteristic problems

Following the analysis in the previous section it is natural, for

regularity questions, to drop the assumption on order and other geometric

properties of
(27) P=1°A

and treat a more general case, Let X be a manifold with corner and

with boundary split as in (24). We shall consider
(28) P é.Diffbm(X;E,F)

a totally characteristic operator with respect to Q”x, from sections
of a complex vector bundle E to sections of another bundle P, Naturally

we demand that P be elliptic:
"
(29) o (P)ec®(T K37 B,/ P) is invertible on T X\ 0.

Here,1(*E,7\*F are the vector bundles obtained by pulling back E,F from
X to ¥'x.

We recall from /g / that the space A(X,E)C Q'(X,E) of almost
regular or conormal sections of E can be characterized simply as the
space of Lagrangian sections of E associated to the conormal bundle
H*(JX). Moreover, A is the residual space for the calculus of totally
characteristic pseudodifferential operators on X and elliptic operators

are A-hypoelliptic. Thus, the results of /& / immediately give:
L}
(30) Proposition If o X= § and PEDiff. (X;5,F) is elliptic then

(31) PacA(X,F) => u € A(X,E).
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This result will be considerably strenghtened in the next two
sections, but first we shall discuss the analogue of (31) when 0 X Fo.
As noted in Section 2 the two parts, o X and o X, of the boundary
Should be regarded somewhat differently. 1In particular for an elliptic
bounda.ry problem we should expect to impose boundary conditions in the
usual sense only at o)'x to get smoothness of solutions there. The space
A(X) of conormal distiibutions is therefore defined by taking an
extension X of X across 0 X so X is a manifold with boundary 0% extending

"
o) X o then setting

(32)  A(%E) = MEE); € D (XE)

the space of distributional sections of E,

Now, the symbol of P, (29), restricts to a section over ;*ﬁlo)'x
of the homormorphism bundle from K*E to 1|'*F, and is polynomial of
degree m in the fibres of ¥ X|)';. In particular along the affine

fibrationm
(,*:"i:'-*xlg'x-—-s"i'o)'x , ¢d'xesyx

o(P) is a polynomial of degree m without singularities, i.e. invertible
* L} % \ ¢
except at the zero section. If a choice v :c) X—N o) X of non-~vanishing
]
section of the conormal bundle of 2 X is made this defines an isomorphism

* *
of T E to 71 Fy hence a normalized symbols
(33) &= rl*(cr(p)lv*)"l -6 (p) € c®@F x|yt s TETF),

~®\1
which is invertible except at O. Thus, for each "lé.‘l‘ o) X\O, 6) is a

polynomial along (-*-1(1() without real singular points. The splitting
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of the zeros of det 6) s according to the sisns of the imaginary parts,

provides a natural splitting
; *o(m) » g(m) o p(m)
(34) ﬂbn: = B eE_/

’ ™ ¢ %* )0 g
where W:E(-) is the 1ift to T 0 X of the vector bundle E(™ gver 0'X, defined

in turn by its local ¢® sections
¢ ®(x,E) / 2% ®(x,E)

where x is a defining function for J'x in X. Thus, E(m) is the bundle
of Cauchy data at J'x for P In fact, Es_m) then corresponds to Cauchy
data of exponentially decreasing solutions of Pu-=0, E_(_m) to éxponeﬂially
increasing solutions,

By a boundary problem for P we mean a totally characteristic pseudo-

differential operator
(35) B c—?:(o)'x ;E(“),c)

(or more generally of some filtered order in the sense of Friedrichs-Lax
with respect to a filtration of G) such that B has miocroloecally constant
~¥ !
rank, i.e. near each 'ilé'r J X there exist elliplic pseudodifferential
< ' v
operators AG%(J X ;G‘N,E(n)), vc—‘}lb(o) X3 c,c"), where N,M are the
ranks of E,G, with
(36) A'.B.A = (Id 0 ) ~ modulo _—Pb_m near % .
0 0
(37) Definition (P,B) is said to be an” elliptic boundary problem if B has
microlocally constant rank equal everywhere to the rank of Es_m), with

o~ (B) E_s_m) injective. (This is the Lopatinskii-Schapiro condition,)
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(38) Proposition If (P,B) is an elliptic boundary problem and u€2’(X,E)

]
then Puc A(X,F), BucA(0 X ,G) implies u € A(X,E).
To prove this we use the methed of multi-layered potentials as
formalized By Calderdn. One should first note that the following slight

generalijsation of Peetre's Theorem on partial hypoellipticity holds:

Pu€ A(X,F) implies that u is ¢% up to 0'X with boundary

(39)

' [
data extendible across 2XC0) Xe

Then if one takes an extension X for X, as above, and an elliptic extension
P of P, still totally characterisitc with respect to 0% (which extends

0" x )y the calculus of /§/ provides a parametrix
(40) o & P ""(F5P,E)

such that Id - P.Qy, Id - Q.P Q.—SI?;“, so map all distributions into A,

Then any u € #*(X,E) can be written
(1) a = QPu + Ru RueA(%,B).

Morover, Q has rational symbol as a totally characteristic operator,

Now, P defines a map
(2)  #ic ("5, ™)) —— ¢®(d"x,p )

Here F( m) is the vector bundle over J'x defined by its global distributimal

sectionss
(43)  R'x,Fyy) = {red (0 1wy -0 ]

where ﬁ(x,o)'x,l?) is the space of distributional sections supported by

?'x.



-13 -

The rationality of the symbol of { means that the map C+ in

. ' P ' e 1
cc°°(o) X, E("‘)) —— 0P X, F(m)) —>Z (X,F)

(44) \ A
c c @'z, 8™y ¢ (x,E)

+

vwhere the last horizontal map is the evaluation of Cauchy datsa, using

(39), is well-defined.

- ]
(45) Lemma c, € \[J,‘;(J X ,E(“'),E(“)) has mocrolocally constant rank
and symbol the projection of N*E ont» E+ along E_. MNoreover, c# is
independent of the choice of Q, as a parametrix for an extension ofP,

up to terms in ?;co.
The standard method of elliptic regularity now applies. From
(46) Pu = £ € A(X,F)
it follows that
(47) c;u("') & 2(d'x, s(®)),

where u(m) is the Cauchy data of u. The ellipticity condition in
®\r
Definition: 37 shows that near any point ’*le,?l" 0 X one can use (36)

to find B' e.?.g(c)'x, g(™) ¥ 115045 at " » such that
(48) sra(® ¢ a(0'x, ™).

Thus, WF u(m) = @, i.e, u(m)éA. Then it follows readily from (46)
’ b 533

that u €A(X,E) as claimed.
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4. Mellin transform

Let u € £1( i:) be a distribution on the open half line (0, ®)
Which is zero near infinity and extendible across O. Then, there exists

deg( r;) extending u, i.e. u € £' (R) with
(49) A =uin m+,ﬁ=01n R_.

Of course, this choice of zero extension u is unique only up to an

arbitrary element of &'( R,10Y), the space of Dirac distributions

supported at O3
' R
(50) 0 —=&1(R,{0}) —s E( i‘;)——-‘—i- $(E,)— o0

is exact.
Now, such a distribution u is, for some k, in the space c;k (i:)
of finite sums of at most k-fold derivatives of continuous functions,

80
(51) (n,?\ is defined for all ?E’,ék( T_;),

the space of k times continuously differentiable functions on R

supported in f_:. The Mellin transform:
I - _ig-1
(52)  wy(s) = f 19 §(x) ax - (G2
+
is therefore well-defined and holomorphic for Im(s)) k+l: Notice that.
Kvo x2 . 0 irve @ (m,i0])  m(s) >» o,

so that 1:|.M only deoends on u itself,
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(53) Lemma (Paley, Wiener, Schwartz) For u &&*( 'i!:), w,=0 iff u=0.
If v:iIm(s)) k‘Sﬂ’c is holomorphic then v = uwy for some ué& A (']i!:)

iff v is of exponential type
(54) [v(s)| < ¢ exp(alm(s)|) (1+/8|)®

in Im(s) Pk* for scme C,A,m,k'.

Proof  Reduce to the Fourier transform by setting t = -log(x).

We are particularly interested in the Mellin transforms of

conormal distributions, uea(i:).

(55) Proposition If v is holomorphic in a half-space Im(s)f'k then

v = u, for some néAc(-It:) iff it is of exponential type and is rapidly

decreasing as lm(s)l — ®s
(56) [v(s)] £ ¢, exp( A|ta(s)|) (1+|8)™ 1Im(s) >k
for all m,

In terms of the Mellin transform we next introduce a large space

of 'classical! conormal distributions.

(57) Definition Agr( i:) C A(ﬁ:) » the subspace of graded conazmal
distributions, consists of those u CA(H) for which (ru) = u' has,

for each fec:’('n), Mellin transform u.;‘extending meromorphically with
(58) Finitely many poles in any half-plane Im(s)> #
(59) Estimates (56) in Im(s)> %, |Re(s)| 2 d(r) for all m,r.

These graded conormal dist-ibutions are precisely those with
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complete asymptotic expansions:
60) wo~ Oo x¥ (log(x))P
koD kyp™+

where m, —» @ with k, the sum over p is finite for each k and (60) has
the usual meaning that the difference between u end a suitable truncziion
of the sum is in any preassigned space &j( ']ﬁ:). 0f course, the elements
of Agr are just the usual 'classical' or 'polyhomogeneous' conormal
distributions except that there are no integrality conditions on the
mk and arbitrary finite powers of log are permitted. We further remark
that Agr is coordinate free. II't can be extended to higher dimensions
in at least two diztinct ways.

By the Mellin transform of u¢ A(Z), where Z = ﬁ:x R, we just mean

the partial Mellin transform:

@) ey = §T T aGy) e,

Then. Proposition 55 extends easily, with c°° dependence on y. We shall

define

as consisting of those u¢ A(Z) for which gpu)n(s,y) extends meromorphically,
as a function of s, with values in ¢ ° (R®), and with the obvious estimates

in any K« R;:
(62)  |p uy(s3)| € ¢, emm(almm(s)]) (+ls)® ¥ m,

in Im(s)> r, lne(s)‘Zd(r). In particular this means that the position

of the poles in s is independent of y. For boundary oroblems with 'kinks?
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or corners of lesc than maximum codimension it iz necesszary ito u=e =2

more general notion of classicality, such ag C & (m;;Am.( R)).

(63) Proposition Agr(Z)CA(Z) is coordinate free, so A_ (X} <A(X) is
defined for any ¢ ® manifold with boundary, ancé similarly for sections

of any vector bundle.

In order to prove, inductively, that a distiribution ue A(X) lies
in Agr(x) we introduce rclative spaces. FPFirst consider scme order filtratien

such ass

- c

(64) A(k)(x) = {uea(X)s P(xku)<£ Lioc(X) ¥ PC Diffbcxi} .
So,

I 2

Then define

66) 2y <« a®(x)

as consisting of those u such that, after localization and in any
coordinate system, uy, is meromorphic in Im(s) > r and satisfies (58) and

(59) for that value of r. Clearly,
61 2 = 2,
68) 4500 = a®X) a0 = 2.

(69) provosition Aél;)()() is a Diff, (X)-module (Puc A,(.k)(X) if P Diff (X),
we A (x)) and w€ A ) i 200, 220 02 I wealIx).
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5e Grading

To prove that any solution to the differential problems considered
in Section 3swe first recall some invariance properties of conormal
is graded
distributions. Any local coordinates (25) in X based at p €0X induce
an isomerphism between a neighbourhood of p in X and a neighbourhood

of O E'Npo)x (Npc)"x when X has a real boundary) in No)x = To)x X/'l‘o)x ’

the normal bundle of 0X. Of course then,

(70) A£P)(X) z Aﬁp)(lf'_JX) ¥ p,r  (in coordinates)
and there is a certain degree of invariance, since

1) AP/l = P dx )l dx)

is coordinate free; this is just a reinterpretation of the symbol
of a Lagrangian (conormal) distribution.
1f PéDiffg(X) is totally characteristic with respect to ox

then there is a well-defined operator

(72) PoéDiffl;(N+9x) totally characteristic with respect to Oxox

with constant coeficients in this sense, i.e, Py is invariant under

the Ii*-action on the fibres N+o)x « In coordinates,
o

(13) By = X p, . (0,5) (x0)D

0 i<j+k <m otk oy

if P is given by
X

(14) P = L e (ny) ()7 .

W(+k <m ’
Now, for any uéAl(.k)(X) 82 u' is the coordinate image of u in A(N+o)x)

then the coordinate image of Pu is
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(15)  Pou' +xP'ur = Paut + xal)(dx)
where, P'eDiffb(X).

(76) Theorem Suppose X is a ¢ ® manifold with compact boundary and

P & Diff) (X3E,F) is elliptic then for any u ¢ 3'(X,E),
7 Pu€A_(X,F) = u ¢ A__(X,E).
( 7) gr( ’ ) u < gr( ’ )

The proof of this rects on (75). From Proposition 30 we already
know that uéA(k)(X,E) for some k. Procesding by induction we can

suppose that
(78) u eaﬁk)(x,E).

Then, by (75), in local coordinates,

(k)
(79) Pu' = Pqu' + xP'u' = Pyu' modulo Ar~1(X,F).

Thus, it sufiices to prove the inductive result for PO instead of =,
; . -~ 2k k k
(80) Proposition If uc¢ A£ )(N_._o)m) and Pyu ';Az(,_]).(N+o)}(,F) then u¢ Ag_%(N*_o)X,E).

This in turn is a variant of well-known properties of elliptic

operators depending (elliptically) on a2 complex parameter.

(81) Proposition If P

o is of the form (73) and elliptic then

(82) Po(s) = la p, 1 (05¥) &% { Diff(JX yE,F)
ki+ksm y

is elliptic for each s€ C and defines an isomorphism on Sobolev spaces:

(83) Po(s)sH (X, E) <> (X, F)



for all except a discrete set spec(Po)c ¢ lying inside a set
(84) spec(Py) ¢ (s€C€; |Re(s)|> a|m(s)| + v}

for some constants a,b. Moreover, Po(s)_l only has finite poles at

spec(Po) and in any set lIm(s)’?_T, | Be(s)l’)'r, for each k in (83),
(85) " Po(s)-]'” < ch(lﬂsl)h for some h,

The exponents occurring in the asymptotic expansion of u come
from amongst the set lpec(Po) + N. PFinally we remark that the proof
of the corresponding result for elliptic boundary problems is similar,
with Proposition 81 for example, suitably extended to elliptic boundary

problems depending on a parameter.
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