JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

MONIQUE TOUGERON

Problème d'évolution parabolique pour une classe d'opérateurs elliptiques dégénérés

Journées Équations aux dérivées partielles (1978), p. 1-2

http://www.numdam.org/item?id=JEDP_1978____A13_0

© Journées Équations aux dérivées partielles, 1978, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

PROBLEME D'EVOLUTION PARABOLIQUE POUR UNE CLASSE D'OPERATEURS ELLIPTIQUES DEGENERES

par M. TOUGERON

On adapte la méthode d'Agranovitch-Visik pour les opérateurs elliptiques réguliers à la classe d'opérateurs dégénérés décrite par Bolley-Camus-Helffer, classe qui contient les opérateurs de Baouendi, Visik-Grusin, Baouendi-Goulaouic, Shimakura.

L'étape essentielle est l'étude d'un opérateur différentiel singulier L(w) dépendant d'un paramètre $w \in \mathbf{C}^n$, opérant sur l'espace $W_{\omega}(\mathbf{R}_+)$ des $u \in L^2(\mathbf{R}_+)$ tels que chacun des termes de L(w)u appartienne à $L^2(\mathbf{R}_+)$:

$$L(\omega) = \sum_{\substack{|\mathbf{k}|+\mathbf{j} \leq \mathbf{m} \\ \sigma+\langle \delta, \mathbf{k} \rangle + \mathbf{j} \in \mathbb{N}}} a_{\mathbf{k}\mathbf{j}}(\omega) \mathbf{t}^{\sigma+\langle \delta, \mathbf{k} \rangle + \mathbf{j}} D_{\mathbf{t}}^{\mathbf{j}},$$

où
$$m \in \mathbb{N} - \{0\}$$
, $\delta_1 \ge \delta_2 \ge \ldots \ge \delta_n = \frac{-\sigma}{m} > 0$, $\sigma + \delta_i m \in \mathbb{N}$ pour $i = 1, \ldots, n$, $k \in \mathbb{N}^n$, $j \in \mathbb{N}$, $\langle \delta, k \rangle = \sum_{i=1}^{n} \delta_i k_i$, $a_{kj}(\omega) \in \mathfrak{C}$.

Sous une hypothèse d'ellipticité et une de convexité, par changement de variable et de fonction, $L_{(w)}$ opérant sur $W_w(T,\infty)$, T>0, défini de façon analogue à $W_w(R_+)$, est transformé en un opérateur elliptique à coefficients peu variables, opérant sur $H^m(T,\infty)$, dont l'étude est faite par Visik-Grusin. Une hypothèse sur l'équation déterminante permet d'appliquer à L(w) opérant sur $W_w(0,T)$ les résultats de Bolley-Camus-Helffer.

On rend ces hypothèses uniformes en ω dans un compact K de ${\bf C}^n$ et on impose à $L(\omega)$ une hypothèse de recouvrement à l'aide de χ opérateurs différentiels $B_j(\omega)$, $\chi \geq 0$. On obtient alors un théorème d'isomorphisme de $W_{\omega}({\bf R}_+)$ sur $L^2({\bf R}_+) \times {\bf C}^{\chi}$ pour l'opérateur $\{L(\omega), B_j(\omega)\}$, la norme de l'inverse étant bornée sur K. Le cas d'application auquel on s'intéresse est tel que l'espace $W_{\omega}({\bf R}_+)$ lui-même, et non seulement sa norme, change de type lorsque ω parcourt K .

Dans un ouvert borné Ω de \mathbf{R}^n , pour un opérateur L elliptique à l'intérieur et du type Bolley-Camus-Helffer au voisinage du bord, et pour des opérateurs frontière \mathbf{B}_j de même quasi-homogénéité, les méthodes usuelles ramènent l'étude du résolvant dans $\mathbf{L}^2(\Omega)$ de l'opérateur L, ayant pour domaine les $\mathbf{u} \in \mathbf{L}^2(\Omega)$ tels que chaque terme de Lu appartienne à $\mathbf{L}^2(\Omega)$ et $\mathbf{B}_j\mathbf{u}=\mathbf{0}$ sur le bord de Ω , à celle d'un problème à une variable dépendant d'un paramètre. λ décrivant un secteur fermé S du plan complexe, sous des hypothèses d'ellipticité générale pour $\mathbf{L} - \lambda$, une hypothèse sur l'équation déterminante au bord, et une hypothèse de recouvrement pour $\{\mathbf{L} - \lambda, \mathbf{B}_j\}$ on obtient ainsi l'existence de la résolvante dans S avec une propriété de décroissance minimale.

On utilise ces résultats pour résoudre le problème d'évolution non homogène dans L^2 pour $L+\frac{\partial}{\partial t}$. Pour cela on donne d'abord un théorème de relèvement dans le cylindre $\Omega\times \cline{10}$, T[: des conditions nécessaires (relations de compatibilités), sont fournies par Grisvard; on montre qu'elles sont suffisantes pour relever dans les espaces à poids auxquels on s'intéresse. On est ainsi ramené à un problème homogène dont la résolution se déduit, à l'aide de la transformation de Laplace, de l'étude de la résolvante.