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THE EIGENVALUES OF HYPOELLIPTIC OPERATORS

A. MENIKOFF and J. SJOSTRAND
<

Let P = P(x,D) be a self-adjoint pseudo-differential operator of order m > 0,

with principal symbol p (x ,^ )>0 on a smooth n-dimensional compact riemannian

manifold M without boundary. If P is elliptic then P has a discrete set of eigen-

values bounded from below. Denoting by N(x) the number of eigenvalues < X

(counting multiplicities) the distribution of eigenvalues of P may be cfescribed by the

formula
^n/m

(1) N(X) - ——^ \ ^x A d? as \ —^ °o .
(27r) Pm^?^1

This result has a long history. It may be obtained by studying the singularities

of one of the functions

tr(P-Xl)"1, Me-^), MP^, tr^)

(see [1], [4] or [8]). Here we would like to consider the same problem for hypoellip-

tic operators.

A result in this direction has been obtained by Metivier [7] , who studied the

spectral function of hypoelliptic operators which are the sums of squares of real vector

fields. He described the spectral function for operators which have a uniform behavior
r\ /^ r\

in the base space, but, for example for the Grusm operator, D „ + |x" | |D , | , his

results do not give the asymptotic behavior of the eigenvalues. Other results which

overlap with ours have been presented at this meeting by Bolley, Camus and Pham [2] ,

We will discuss the eigenvalues of self-adjoint operators P which are hypoellip-

tic with the loss of one derivative. Let S = { p ( x , ^ ) = 0} be the characteristic variety

of p. We will suppose that Z is a smooth symplectic submanifold of T^M) and that

p vanishes to exactly second order on Eo Let 2n* = dim S, 2n" = codim E and

"t. HI_ , j = 1,..., n", with H . > 0 be the eigenvalues of the Hamilton matrix of p
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(cf. [9]) restricted to the orthogonal space of S , T h e n , P will be hypoelliptic with

the loss of one derivative if and only if
n"

(2) ^-l^4- ZÎ jM (1 +2c^o

for any set of non-negative integers a., at every point (x, ^) € E. Here p* is thej in— i
subprincipal symbol of P, (cf. [3] or [9]), In fact, P will have a parametrix

Q€L^,i ,e .

(3) QP = I + K

where K is a compact operator on L^M),

If m > 1 and P is hypoelliptic, then P will have only eigenvalues of finite

multiplicity whose only limit points can be ± oo .

We will further suppose that on E

(4) ^+ ^^>09

It will then follow from a theorem of Melin [5] that there is a constant C such that

(5) (Pu,u)> -C||u||2

and consequently that the spectrum of P is bounded below. Then e"^ is well defined

for t > 0 and our goal will be to show

THEOREM 1. Under the above assumptions

f C^t-"1/^ ^ n«>n"(m-l)

(6) t^e-^) - < C.t-^logt if n^n'^m-l)2

[ C^F"71" it n1 <n"(m-l)

as UO.

—tP ""A-t
Since tr(e~ ) = s e J where A. are the eigenvalues of P, we may applyj

Karamata*s Tauberian Theorem to conclude.

COROLLARY 2. Denoting the number of eigenvalues ^ \ by N(x) we have
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^ ^n/(m-l) ^ ^ >n"(m-D

a^ X^ log X ^f n' = n"(m-l)

a^X"^ y n"<n"(m-l)

(7) N(X) ^ a^ X"/"1 log X jt n' = n"(m-l)

a^X"^ ^ n"<n"(m-l)

as X -^ oo (a^, incidently is the same constant as in formula (1)),

1. THE ELLIPTIC CASE.

We will begin our discussion of Theorem 1 by rederiving formula (1) for the

elliptic case in a way amenable to generalization. To approximate exp(-tP) we will

seek a solution of

(1.1) D , w = i P ( x , D ) w or R'1'x Mi x
w(x,0) = u(x),

micro-locally of the form

(1.2) w(x,t) = A^u(x) = (277)-" ^ e^^ a(t,x,ry) 11(77) dry.

Applying D^-iP(x,D^) to (1.2) and grouping terms as if tp were homogenous

of degree 1 in 77 we will get an eikonal equation of the form

(1-3) <p! "^m^^x^0 ; ^^^^

and various transport equations. Making the change of variables t = [TyI111"^, (1.3) will

become

(1.4) <pg-ip'(x,<^)=0 where P ' = P^x^Vlryl"1"1

for which we will try to find a solution which is homogenous of degree 1 in 77. Expanding

<fi as a power series in s we can find

(1.5) <p(s,x,7?) = <x,7?> + iP j(x,77)s+ ^(x,?7)s2 +...

which satisfies (1.4) modulo an arbitrarily high power of s. From the first transport

equation we find that a = 1 + 0(s). Since ^ leaves the real axis rapidly we may modify

(p and a for large s so as to get a solution of (1.1) modulo an operator with C°°
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kernel in x and t.

As a result
tp n n i<x-y,7y>-tP (x,7?)+oo.

e'-^x^AftMx) = (2^)"" ^e m a(t,x,r7)u(y)dydry

and

tr(e-"') . (2.)-° ̂  e'"'1''*'''5*^...

-^"r-/"^,^^...
modulo a function less singular in t. Applying Karamata's Tauberian Theorem gives (1).

2. THE HYPOELLIPTIC CASE.

We win now attempt to find a solution of (1.1) micro-locally of the form (1.2)

when P satisfies the assumption of Theorem 1. The eikonal equation will be of the form

(2.1) <(>t=i^x'<}

again. We make the same change of variables as before to make (2.1) homogenous. But

this time it will be necessary to solve (2.1) as s —> °° o This is because the solutions

of (2.1) will not leave the real axis everywhere o In fact, bicharacteristics starting in

S stay in I; giving a point where Im <p stays 0,

We'll solve (2.1) using Hamilton-Jacobi Theory o We'll make a series of canoni-

cal transformations to simplify our problem. To begin with let us choose new canoni-

cal coordinates so that Z = {x" = ?" = 0} where (x,?) = (x' ,x",^',?"), x' € R"',

x'^R"" etc. Setting t = s | T y ' I"1"1, (2.1)

becomes

(2.2) <pg = iPj;x,<p?/|T7' I"1-1 = i p'(x,^).

Expanding p' as a Taylor's series in (x ,^ ) we find

(2.3) p ' (x,?)= 2 a. (x• ,S ' )x"a?'^+0( |S|m ( |x" |4- |S" | |?|))3).
|o^8|=2 ap

The quadratic terms in (2.3) may be expressed as
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or((x",5"),H(x",^))

where H, the (transversal) Hamilton matrix of p is skew-symetric with respect
2n11

to the standard symplectic form a in R ,

Recalling the results of [9] , H has eigenvalues of the form ± ijLi.(x1, ?') with
j

.̂ > 0 for j = 1,,., ,n", and if V^ (vj denotes the span of the positive (negative)

eigenvectors of H in € n , then V (V_) is a positive (negative) definite Lagrangean
2n"plane in (D , and

n" n"c e c = v^ e v_,

Since V^ depend smoothly on (x', ̂ !) we may make a complex canonical change of

variables so that V_ = {x" = 0} and V^ = {?' = 0} , In terms of these new coordinates

, /A 0\
(2.4) H=4 \\° -A)
where A is a matrix with only positive eigenvalues o

Since we have made a complex change of variable the following considerations will

be only formal and will required justification.

Equation (2.2) now takes the form

(2.5) ^=- <A(x.,^,)x", ̂ >^^ ̂ "^x8 •

It is possible to find one more canonical transformation so as to make the higher

order term in (2.5) takes the form 0(|x" ||<p',, | (|x" | + |y" [)), Solving (2.5) by using

formal power series in (x",^") we will get a solution

y= < x I , T y l >4-<e"'SAx^,77^ >+ cubic term in (x",^"),

The phase function of A, is
_cA

0 = < e ^x" -y", r 7 " > + < x ' - y I , T 7 ' >+ .,.

where the other higher order terms converge to 0 exponentially fast.

Denoting by C ={(x,(p*, - tp_ , n)\ the canonical relation generated by ^ we may

note the C^ is the graph of the identity and C^= {(x* ,x",S1,0),(x' ,0,^' ,^')} .

The fist transport equation is
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(2.7) H + (g tr A + p^a = 0(|x" | + |?" |)

whose solution is
-s(^ tr A 4- p", „)

a(s,x,?)=e 2 m-1 +0(|x"|+ |?"|).

The leading term of the solution A.u is

, ,_np ^e'^'-y'^S'^+^'-y'^^-sdr'^H+p', ,)
(2ir) ^e "'-I u(y) dy d? .

The leading term of tr(e~ ) is then

^A-HY",?"^ -sdr"1" H+pj,_,)
(2.8) (2.)-" ̂ e^fe-^''^'^ e tr "'^-^dxdS.

When n* >n"(m-l) we wm compute the singular part of (2,8).

Evaluate the integral with respect to (x",?") in (2.8) by the "method of stationary

phases" (thinking of s~1 = I?)"1"1/! as the large parameter). This gives that the lea-

ding term of tr(exp(-tP)) is

-sO^H +P^)
(2.9) (270-"^ ^———————-—— dx'Ad?*.

J detd-e-^)

It is easily seen that
eA 1 -2S^_ -1

det(l - e-^)-1 = n( l -e 3)

^ ^ ^2(a.jLi)s
o^aez"

where 2 JLI^ .. ,2 JLI^,, are the eigenvalues of A. When n1 > (m-l)n" the integral

(2.9) is convergent and equals

m-1

^ hH-'^'^S dxIA^'
£n{F(x',? I)>1}

t n1 ^n*
(27r)1'

where

(2.11) P(x* ,S* )= s (p^ (x* ,?*)+ (1+2a,)^(x*,?')^nI/m-1

O^aCZ" m ' J J

(P is hypoeUiptic if and only if F ^ oo for all (x», ?*) € s).

Applying a Tauberian theorem will yield
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.n'/(m-l)
(2.12) N(X)- ^———— \ dx'AdS1 .

/Owr1 ^(27^ {F>i}n 2

This completes a sketch of the proof of Theorem 1. A justification of our formal

changes and variable and complete details of the proof will appear in a future publica-

tion.

After this conference we learned that Treves has also constructed exponential
-tPe for the same class of operators considered here. Treves1 construction is dif-

ferent from ours. As an application he proves the local analytic hypoellipticity of the

^ - Neuman-problem.
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