JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

JAN PERSSON

The Cauchy problem and Hadamard's example

Journées Équations aux dérivées partielles (1976), p. 1-3 http://www.numdam.org/item?id=JEDP 1976 A12 0>

© Journées Équations aux dérivées partielles, 1976, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

The Cauchy problem and Hadamard's example.

Jan Persson (Tromsø)

Let 1>0 and m>0 be integers. Let P(D) be a linear operator in \mathbb{R}^n . Let P_m be its principal part. We say that the Cauchy problem

(1)
$$P(D)u = f, u - g = O(x_1^{-1})$$

is uniquely solvable in the class of analytic functions if to each f analytic in R^n and each g analytic in a neighbourhood of $x_1 = 0$ there is an unique function u analytic in R^n such that (1) is true. We show the following theorem [5].

Theorem 1. The problem (1) is uniquely solvable in the class of analytic functions if and only if m = 1 and P_m is hyperbolic in the $(1,0,\ldots,0)$ direction.

In the proof we use

Theorem 2. Let P(D) be a linear operator with constant coefficients such that P_m is not hyperbolic in the $(1,0,\ldots,0)$ direction. Then there is a v such that v is analytic in $x_1 > 0$, P(D)v = 0 in $x_1 > 0$ and v is not bounded near x = 0.

The proof of Theorem 2 makes use of

Theorem 3. Let P(D) be a linear operator in \mathbb{C}^n of the form

$$P(D) = D_1^1 D_2^{m-1} + \sum_{\substack{|\alpha| = m \\ \alpha_1 = 1}} a_{\alpha} D^{\alpha} + \sum_{\alpha |\alpha| < m} a_{\alpha} D^{\alpha}$$

with $0 \le 1 < m$.

Then there is a function v holomorphic when $z_1 \notin (-\infty, 0]$ such that

$$P(D)v = 0, v(z_1,0) = z_1^{-1}, z_1 \notin (-\infty,0].$$

Hadamard's example with $u = n^{-1}\sin nx_2 \sinh nx_1$ shows that the Cauchy problem for the Laplace equation is not uniquely solvable in C^{∞} . The function $u = (1 - x_1 + ix_2)^{-1}$ shows that this is

also the case in the smaller class of analytic functions.

Theorem 2 is a generalization of this example to general operators.

We like to remark that the "if" part of Theorem 1 is due to J.-M. Bony and P. Schapira [1].

As another application of Theorem 2 we prove

Theorem 4. Let P(D) be an operator with constant coefficients in \mathbb{R}^n . Let ω and Ω be open convex sets in \mathbb{R}^n such that $\omega \subset \Omega$. Then the following two conditions are equivalent.

- a) Let u be analytic in ω and assume that P(D)u can be continued analytically to Ω . Then u can be continued to a function analytic in Ω .
- b) Every hyperplane intersecting Ω but not ω has a normal hyperbolic with respect to P_m .

<u>Proof.</u> If follows from [1, Théoreme 4.2, p. 88-89] that b) implies a). Here we notice that the set of hyperbolic directions is open when the coefficients are constant. See [3, Lemma 5.5.1, p. 133].

Assume that there is a hyperplane H with non-hyperbolic normal with respect to P_m such that H Ω \neq Ø and H Ω ω = Ø . We rotate and translate the coordinate system such that H = {x; x_1 = 0} , ω c {x; x_1 > 0} , 0 \in Ω . Then we choose u from Theorem 2 and get a u analytic in ω and fulfilling P(D)u = 0 there. But u cannot be continued analytically to Ω . The theorem is proved.

A local version of Theorem 3 for operators with holomorphic coefficients in ${\bf C}^{\bf n}$ can be found in [4, Theorem 4.1]. We may also notice that a refinement of the technique in [4] has been used to

prove an existence theorem for the non-characteristic Cauchy problem when data are singular. See J. Persson [6]. A similar but much more complicated technique has been used on the same problem by Y. Hamada, J. Leray and C. Wagschal [2].

References.

- [1] J.-M. Bony et P. Schapira. Probleme de Cauchy, existence et prolongement pour les hyperfonctions solutions des équations hyperboliques non stricts. C. R. Acad. Sci. Paris, Ser. A, 274 (1972) 86 89
- [2] Y. Hamada, J. Leray et C. Wagschal. Systemes d'équations aux derivées partielles a caracteristiques multiples:

 Problème de Cauchy ramifié; hyperbolicité partielle. J. Math.

 Pur. Appl. To appear.
- [3] L. Hörmander. Linear partial differential operators, Springer, Berlin, 1963.
- [4] J. Persson. Local analytic continuation of holomorphic solutions of partial differential equations. Ann. Mat. Pura Appl. To appear.
- [5] J. Persson. The Cauchy problem and Hadamard's example.
 J. Math. Anal. Appl. To appear.
- [6] J. Persson. On the Cauchy problem in \mathbb{C}^n with singular data. Matematiche. To appear.