JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

GUY MÉTIVIER

Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques

Journées Équations aux dérivées partielles (1976), p. 1-54 http://www.numdam.org/item?id=JEDP_1976 A10_0>

© Journées Équations aux dérivées partielles, 1976, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

FONCTION SPECTRALE ET VALEURS PROPRES D'UNE CLASSE D'OPERATEURS NON ELLIPTIQUES

Guy WETIVIER

I.M.S.P.
Département de Mathématiques
Parc Valrose
06023 NICE CEDEX
France

I. INTRODUCTION

On s'intéresse à la fonction spectrale et aux valeurs propres d'opérateurs hypoelliptiques du type :

(1.1)
$$C = \sum_{i=1}^{p} X_{i}^{*} X_{i} + c.$$

les X_1, \ldots, X_p étant des champs de vecteurs réels C^{∞} ; ces opérateurs sont ceux qui sont formellement autoadjoints positifs dans la classe des opérateurs introduits par Hörmander ([7]):

$$(1.1') - \sum_{i=1}^{p} x_i^2 + x_0$$

 X_o étant un opérateur différentiel réel d'ordre ≤ 1 . Ces opérateurs ont été étudiés du point de vue de la sous-ellipticité et de l'hypo-ellipticité dans ([7]), [10], [13]) (voir aussi [9] pour les opéra-

teurs (1.1)). Rothschild et Stein ([14]) ont construit des parametrix pour ce type d'opérateurs et obtenu des inégalités fines de type L^p, Lipschitz, etc... (voir aussi les cas particuliers [4], [5]); dans ([3]). Folland a étudié le cas "modèle" d'opérateurs sur un groupe de Lie nilpotent. On renvoie à ([12]) pour une étude détaillée des opétareurs de type (1.1').

Nous nous plaçons dans la situation suivante : soit M une variété $\binom{1}{2}$ réelle, C^{∞} , de dimension n, munie d'une densité positive notée dx.; soit C une fonction réelle C^{∞} sur M.

Soient X_1,\ldots,X_p des champs de vecteurs réels, C^∞ sur M. Pour toute suite $I=(i_1,\ldots,i_k)\in\{1,\ldots,p\}^k$ on note |I|=k la longueur de I et X_T le champ :

$$X_{I} = [X_{i_1}[X_{i_2}...[X_{i_{k-1}}, X_{i_k}]...]$$

On convient de noter si I = (i) est de longueur 1 : $X_I = X_i$.

Four tout entier k et tout $x \in M$, $V_k(x)$ désigne le sous-espace de T_xM engendré par les vecteurs $X_I(x)$ pour $|I| \le k$.

Soit w un ouvert de M ; nos hypothèses fondamentales sont les suivantes :

(1.2) $\left\{ \begin{array}{l} \text{pour tout entier k la dimension de $V_k(x)$ est constante} \\ \text{pour $x \in \omega$; on la note y_k et on convient que $y_0 = 0$.} \end{array} \right.$

(1.3) $\begin{cases} \text{il existe un entier } k \text{ tel que } \gamma_k = n \text{; soit } r \text{ l'entier tel } \\ \text{que } \gamma_{r-1} < \gamma_r = n \text{.} \end{cases}$

Remarquons que la suite v_{c}, \dots, v_{r} est strictement croissante.

Les hypothèses (1.2) et (1.3) entraînent la sous-ellipticité et l'hypoellipticité de l'opérateur G sur $_{\varpi}$ ([7]) , [10] , [13]) : ces hypothèses sont même beaucoup plus fortes que la condition suffisante de Hörmander ([7]) qui est que pour tout \times (de ω) il existe un entier k tel que dim $V_k(x) = n$.

Soit Ω un ouvert de M et soit (A,D(A)) une réalisation minoréa autoadjointe dans $L^2(\Omega \; ; \; dx)$ de G . (Une telle réalisation existe toujours si c est minorée sur Ω).

Remarquons pour la suite que $\mathcal{B}(\Omega) \subset D(A^*) = D(A)$.

Notons $E(\lambda)$ la résolution de l'identité associée à A : on déduit de la sous ellipticité de G que les fonctions de $D(A^{\infty}) = \bigcap_{k>0} CA^k$) sont C^{∞} sur $_{\varpi}$ \cap Ω ; $E(\lambda)$ prenant ses valeurs dans $D(A^{\varpi})$, il en résulte que son noyau $e(\lambda : x,y)$ est C^{∞} sur $(w \cap \Omega) \times (w \cap \Omega)$. Nous avons alors:

Théorème 1.1. : Il existe une fonction y continue et strictement positive sur $\omega \cap \overline{\Omega}$ telle que si l'on pose $v = \sum_{k=1}^{\infty} k(v_k - v_{k-1}), \text{ on ait :}$ $\forall x \in \omega \cap \Omega : \lim_{\lambda \to +\infty} \lambda = e(\lambda ; x, x) = \gamma(x)$

$$\forall \times \in \omega \cap \Omega : \lim_{\lambda \to +\infty} \lambda^{-\nu/2} e(\lambda ; \times, \times) = \gamma(\times)$$

la convergence étant uniforme sur les parties compactes de

Ce théorème admet un corollaire immédiat : si M est une variété compacte et si w = M i.e. si les conditions (1.2) et (1.3) sont satisfaites sur M, il résulte toujours de la sous-ellipticité de G que pour un $\mathcal{E} > 0$ D(A) $\subset H^{\mathcal{E}}(M)$ ([7], [9], [10]). Par suite le spectre de A est constitué d'une suite de valeurs propres λ_j , réelles tendant vers $+ \infty$. (On répète chaque valeur propre conformément à sa multiplicité). Notant N(λ) = $\sum_{\lambda_j \leq \lambda} 1$ on a N(λ) = $\int_M e(\lambda; \times, \times) dx$ et il résulte du théorème 1.1 le

Corollaire 1.2. sous ces hypothèses on a :

$$\frac{-\nu/2}{\lambda \to +\infty} \quad N(\lambda) = \int_{M} \gamma(x) dx$$

Revenant à un problème sur $\Omega\subset M$, se pose la question d'écudier les valeurs propres d'un problème aux limites sur Ω . Nous supposons maintenant que $\overline{\Omega}$ est compact et que $\varpi\supset\overline{\Omega}$; nous supposons aussi que $\partial\Omega$ est de mesure nulle dans M. c étant bornée sur Ω , l'opérateur $(G,\mathcal{B}(\Omega))$ est semi-borné et symétrique; soit (A,D(A)) l'extension de Friedrichs de $(G,\mathcal{B}(\Omega))$. Alors $D(A^{\overline{Z}})$ est d'adhérence de $\mathcal{B}(\Omega)$ dans l'espace :

{
$$u \in L^{2}(\Omega) / \forall i = 1,...,p : X_{i}u \in L^{2}(\Omega)$$
 }.

Il résulte de ([7] , [9] , [10]) qu'il existe $\mathcal{E} > 0$ tel que $D(A^{\frac{1}{2}}) \subset H_0^{\mathcal{E}}(\Omega)$. Par suite le spectre de A est à nouveau constitué d'une suite de valeurs propres λ_j réelles tendant vers $+\infty$. Notant encore $N(\lambda) = \sum_{\lambda_j \leq \lambda} 1$ on a $N(\lambda) = \int_{\Omega} e(\lambda; x, x) \, dx$ et

Théorème 1.3. sous ces nouvelles hypothèses on a :
$$\lim_{\lambda \to +\infty} \frac{-\nu/2}{\lambda} N(\lambda) = \int_{\Omega} \gamma(x) dx .$$

Remarques 1. La fonction γ est continue sur $\overline{\Omega}$ d'après le théorème 1.1 et $\sigma < \int_{\Omega} \gamma(x) dx < +\infty$.

2. Le théorème 1.3 n'est pas un corollaire immédiat du théorème 1.1 :il faut établir en plus du théorème 1.1 des majorations d'intégrales du type : $\int_{\Omega \setminus K} e(\lambda \, ; \, \times, \times) \; dx \; \text{pour } K$ compact $\subset \Omega$.

La démonstration des théorèmes 1.1 et 1.3 se fait en plusieurs étapes; on commence par transporter les champs X, et l'opérateur G d'un voisinage de $x_o \in w \cap \Omega$ sur un voisinage de l'unité d'un groupe de Lie nilpotent stratifié ([3], [6], [14]), de sorte que les champs images des X_i soient convenablement approchés par des champs invariants à gauche $\widehat{X_i}$; nous nous distinguons de ([6], [14]) en considérant des groupes de même dimension que M et ceci grâce à nos hypothèses (1.2)(1.3). Les opérateurs $\hat{a} = -\sum_{i=1}^{n} \hat{x}_{i}^{2}$ sont homogènes (de degré 2) sous l'action d'une famille de dilatations h_{t} ([3],[14]) et plus généralement notant G_1 l'opérateur sur le groupe déduit de G , et G_{t} l'image de $t^{-2}G_1$ par h_t on a la convergence, dans un sens raisonnable, de G_t vers \widehat{G} lorsque $t\mapsto +\infty$; les h_t jouent ici le rôle des homotéties pour les opérateurs elliptiques. On exprime alors la fonction spectrale $e(\lambda)$ de G à l'aide de la fonction spectrale e_{+} de G_{+} évaluée au point $t^{-2}\lambda$. Prenant $t \sim \sqrt{\lambda}$ on transforme alors le problème du comportement asymptotique de $\mathrm{e}(\lambda)$ en un problème de perturbations: déduire de la convergence $G_+
ightarrow \widehat{G}$

la convergence à $\lambda_{\mathbf{o}}$ fixe de $\mathbf{e}_{\mathbf{t}}(\lambda_{\mathbf{o}})$.

2. ESTIMATIONS de NOYAUX

2.1 Régularité

Nous rappelons d'abord le résultat de sous-ellipticité concernant les opérateurs (1.1) ([2], [9], [10], [13]) mais en précisant l'uniformité des estimations pour une famille d'opérateurs. Nous utiliserons les notations suivantes: pour $s \in \mathbb{R}$, $H^S(\mathbb{R}^n)$ est l'espace de Sobolev usuel d'ordre s; on note $\|.\|_s$ sa norme et Λ^S désigne l'opérateur $(1+|D|^2)^{S/2}$ défini par transformation de Fourier.

Pour un ouvert Ω de \mathbb{R}^{Ω} , on note $T(\Omega)$ l'algèbre de Lie des champs de vecteurs réels C^{∞} sur Ω . Pour $X \in T(\Omega)$ ad X désigne l'opérateur dans $T(\Omega)$ défini par : $(\operatorname{ad} X)(Y) = [X,Y]$.

Pour $X_j \in T(\Omega)$ (j = 1,...,p), $\mathfrak{L}(X_1,...,X_p)$ désigne l'algèbre de Lie engendrée par $X_1,...,X_p$; si I est la suite $(i_1,...,i_k) \in \{1,...,p\}^k \text{ on note } |I| = k \text{ et}$

(2.1)
$$X_{\underline{I}} = (ad X_{\underline{i}} ... ad X_{\underline{i}k-1}) (X_{\underline{i}k}).$$

Soit ϖ un ouvert de ${\bf R}^\Pi$; soit % une partie compacte de $\{T(\varpi)\}^D \text{ telle que :}$

(2.2)
$$\forall (x_1,...,x_p) \in x$$
, $\forall x \in \omega : f_x(x_1,...,x_p) = \mathbb{R}^n$.

Soit d'autre part 8 un borné de C (ω) ; on considère alors la famille α des opérateurs

Nous avons alors ([7], [9], [10], [13]).

Théorème 2.1. soit $w_1 \subset C \otimes^c (^2)$; il existe E > 0 tel que pour tout $s \in \mathbb{R}$ et tout couple de fonctions φ et Ψ de $\mathcal{B}(w_1)$ vérifiant $\varphi \cdot \Psi = \varphi$, il existe une constante G telle que pour tout $G \in \mathfrak{a}$ et tout $u \in \mathcal{B}^1(w_1)$ pour lequel $\Psi u \in H^S(w_1)$ et $\Psi \cap G u \in H^S(w_1)$, on ait $\varphi u \in H^S(w_1)$ et : $\|\varphi u\|_{S+E} \leq C \{\|\Psi \cap G u\|_{S} + \|\Psi u\|_{S}\}$

(2.4)
$$\| \varphi u \|_{s+\varepsilon} \le C \{ \| \Psi G u \|_{s} + \| \Psi u \|_{s} \}$$

Remarques 1. Les normes dans (2.4) sont celles de $H^{t}(\mathbf{R}^{n})$ $(t = s ou t = s + \epsilon)$: on identifie en effet, en le prolongeant par o , un élément de $H^{\mathsf{t}}(w_1)$ à support compact dans w_1 , élément de $H^{t}(\mathbf{R}^{n})$.

2. Comme on l'a déjà signalé, seule l'uniformité pour G & a , des constantes C de (2.4) est à vérifier. C'est ce que nous faisons maintenant en reprenant les principales étapes de la démonstration donnée en ([10])

Lemme 2.2. pour tout $w_1 \subset \subset w$, il exists un borné \mathfrak{K}_e de $\mathbb{C}^{\infty}(\overline{w_1})$, et un entier r tels que pour tout $(X_1, \dots, X_p) \in X$, il existe des fonctions $a_{j,1}$ $(j=1,\dots,n$ et $|I| \leq r$) de \mathfrak{K}_e telles que sur $\overline{w_1}$ on ait : $(2.5) \qquad \forall \ j=1,\dots,n: \frac{\partial}{\partial \times_j} = \sum_{|I| \leq r} a_{j,I} \cdot X_I$

$$(2.5) \qquad \forall j = 1, ..., n : \frac{\partial}{\partial x_j} = \sum_{|I| \leq r} a_{j \cdot I} \cdot x_I$$

D'autre part pour $(x_1, \dots, x_p) \in X$ on a : $X_1 = \sum_{j=1}^{n} b_{1,j} \frac{\delta}{\delta x_j}$

où les $b_{I,j}$ pour $|I| \le r$ et $j=1,\ldots,n$ sont dans un borné de $C^{\infty}(w)$. L'inversion de la matrice $((b_{I_k,j}))_{j,k} = 1,\ldots,n$ nous donne (2.5) pour $x \in V$ et $(X_1,\ldots,X_p) \in X \cap Y$, les fonctions $a_{j,I}$ pour $j=1,\ldots,n$ et $|I| \le r$ étant dans un borné de $C^{\infty}(V)$.

On obtient alors le lemme par compacité de $\overline{\omega}_1 \times K$ et par partition de l'unité.

Lemme 2.3. pour tout $w_1 \subset \subset w$, il existe $\varepsilon > a$ et C tels que $\forall \ (x_1, \dots, x_p) \in x \ , \ \forall \ f \in \mathcal{B}(w_1) \colon \|f\|_{\varepsilon}^2 \leq C\{\sum_{i=1}^p \|x_i f\|_o^2 + \|f\|_o^2\} \ .$

D'après le lemme 2.2, il nous suffit d'établir qu'il existe $\epsilon > 0$ et C tels que pour $|I| \le r$, et $(X_1, \ldots, X_n) \in K$ on eit :

$$\forall \ f \in \mathcal{E}(\omega_1) : \|x_1 f\|_{\varepsilon-1}^2 \le c \ \{ \sum_{j=1}^{p} \|x_j f\|_{\varepsilon}^2 + \|f\|_{\varepsilon}^2 \}.$$

On établit ces majorations pour $\epsilon \leq 2^{-r}$, par récurrence sur I à partir du

Lemme 2.4. soit \mathbb{B}_{1} un borné de T(w) et soit $w_{1} \subset \subset w$. Four $\varepsilon \leq \frac{1}{2}$ il existe C telle que pour $(X,Y) \in \mathbb{B}_{1} \times \mathbb{B}_{1}$ et pour $f \in \mathcal{B}(w_{1})$ on ait : $\|[X,Y]\|_{\varepsilon-1}^{2} \leq C \{\|Xf\|_{0}^{2} + \|Yf\|_{2\varepsilon-1}^{2} + \|f\|_{0}^{2}\}.$

$$\|[x,y]\|_{\varepsilon-1}^2 \le c \{\|xf\|_{0}^2 + \|yf\|_{2\varepsilon-1}^2 + \|f\|_{0}^2\}$$

<u>Démonstration</u>: là encore seule l'uniformité pour $(X,Y) \in B_1 \times B_1$ de C est à vérifier. Soit $\xi\in \mathscr{L}(\varpi)$ valent 1 sur $\overline{\varpi}_1$. Posons $Z = [X,Y]\xi$, $S_1 = Z* \Lambda^{2\varepsilon-2}$, $S_2 = [S_1,X\xi]$, et $S_3 = [S_1,Y\xi]$.

Suivant ([9], [10]) on a pour $f \in \mathcal{B}(w_i)$: $||Zf||_{\varepsilon-1}^2 = (s_1Yf,X*f) + (s_2Yf,f) - (s_1Xf,Y*f) - (s_3Xf,f)$.

On obtient alors le lemme en remarquant que pour T $\in \mathbb{S}_4$, $T^* = -T + a$, a restant dans un borné de $C^{\infty}(w)$, et que les opérateurs S_{i} (i = 1,2,3) sont bornés et de norme majorée incépendenment de $(X,Y) \in \mathbb{R}_1 \times \mathbb{R}_1$, de $H^s(\mathbb{R}^n)$ dans $H^{s-2 \, \epsilon+1}(\mathbb{R}^n)$.

On se fixe w_4 $\subset\subset w$; ϵ est donné par le lemme 2.3 et 1'on a :

il existe C telle que si $G \in \mathfrak{a}$ et si $u \in L^{2}(\omega_{1}) \cap_{p} \mathcal{E}'(\omega_{1}) \text{ est tel que l'on puisse écrire sur}$ $\omega_{1} \quad \text{fiu} = \sum_{i=1}^{p} X_{i} f_{i} + f_{o} \text{ avec } f_{i} \in L^{2}(\omega_{1}) \text{ (i = 0,...,p),}$ $\text{alors } u \in H^{2}(\omega_{1}) \text{ et :}$ $(2.6) \qquad \|u\|_{2}^{2} \leq C \{\|u\|_{0}^{2} + \sum_{i=0}^{p} \|f_{i}\|_{0}^{2} \}$ <u>Démonstration</u> : ce lemme reprend la proposition 3.1 de ($[\underline{7}]$) . Soit V_o l'adhérence de $\mathcal{B}(w_4)$ dans l'espace

{
$$u \in L^{2}(\omega) / \forall i = 1,...,p : X_{i} u \in L^{2}(\omega_{i}) }$$

Notons V' le dual de V_a ($V' \subseteq \mathcal{B}^i(w_1)$). On déduit du lemme 2.2 l'injection : $V_a \subseteq H^{\mathcal{E}}(w_1)$. De plus, C et C' notant des constantes indépendantes de $G \in \mathfrak{a}$ on a pour $u \in V_a$:

$$\|u\|_{\varepsilon}^{2} \le c\|u\|_{V}^{2} \le c'\{\|u\|_{V'}^{2} + \|u\|_{\bullet}^{2}\}.$$

D'autre part pour $f_i \in L^2(w_i)$ (i = 0,...,p) on a $f_o + \sum_{i=1}^p x_i f_i \in V'$ avec $\|f_o + \sum_{i=1}^p x_i f_i\|_{\infty} \le \sum_{i=1}^p \|f_i\|_{\infty}$

Il suffit donc de vérifier que tout $u\in L^2(w_1)$ \cap $\mathcal{E}'(w_1)$ tel que $\Omega u\in V'$, est dans V_o . Pour un tel u , on pose, suivant ([7])

$$u_{5} = \xi(1 - \delta^{2} \Delta)^{-1} \widetilde{u}$$

où $\xi \in \mathcal{B}(\omega_1)$ vaut 1 sur supp u, où \widetilde{u} est le prolongement de u par o , et où $(1-\delta^2\Delta)^{-1}$ est défini par transformation de Fourier. $u_{\delta} \in H^2_o(\omega_1) \subset V_o$, u_{δ} converge vers u dans $L^2(\omega_1)$ lorsque $\delta \to o$ et on vérifie que Gu_{δ} est borné dans V'(cf[7]); par suite u_{δ} est borné dans V_o et $u \in V_o$.

Démonstration du Théorème 2.1

Soient φ et Ψ dans $\mathcal{B}(w_1)$ telles que φ $\Psi = \varphi$; s'étant donné posons $R = \Psi \wedge^S \varphi$. Ecrivant $\alpha = -\sum_{i=1}^p x_i^2 + x_e$, x_e étant un opérateur d'ordre 1 on a :

(2.7)
$$[C, R] = \sum_{i=1}^{p} X_{i} F_{i} + F_{o}$$

$$\text{avec } F_{i} = 2[R, X_{i}] \text{ et } F_{o} = [X_{o}, R] + \sum_{i=1}^{p} [X_{i}, [X_{i}, R]].$$

Le point essentiel est de vérifier que les opérateurs F_1 sont d'ordre \leq s , qu'ils ont leur noyau porté par supp ψ x supp ϕ et que pour une constante C indépendante de $G \in \mathfrak{a}$:

(2.8)
$$\forall u \in H_{loc}^{s}(\omega_{1}) \|F_{1}u\|_{o} \leq C \|\Psi u\|_{s}$$

Maintenant si $u \in \mathcal{B}^*(\omega_1)$ vérifie $\Psi u \in H^S(\omega_1)$ et $\Psi G u \in H^S(\omega_1)$ on pose v = Ru. On a Gv = RGu + [G,R]u; on déduit de (2.7) et du lemme 2.5 que $v \in H^E(\omega_1)$. Enfin on a $\phi u = \Lambda^{-S}v - [\Lambda^{-S},\Psi]\Lambda^S \phi u$ et pour $E \leq 1$

$$\|\varphi u\|_{S+E} \le \|v\|_E + Cte. \|\varphi u\|_{S}$$

On obtient (2.4) en reportant dans cette majoration les estimations (2.6) et (2.8)

2.2 Estimations "à l'intérieur"

Nous allons déduire de la sous ellipticité des estimations concernant les noyaux de certains opérateurs liés aux opérateurs G (on peut penser en particulier aux projecteurs spectraux).

Nous commençons par préciser un point concernant les noyaux d'opérateurs: soit P l'ensemble des opérateurs bornés dans $L^2(\mathbb{R}^n)$, de norme ≤ 1 ; on munit P de la topologie de la convergence forte qui est aussi la topologie de la convergence uniforme sur les

parties compactes de $L^2(\mathbb{R}^n)$. Si $E \in \mathbb{P}$, considérant E comme opérant de $\mathcal{B}(\mathbb{R}^n)$ dans $\mathcal{B}'(\mathbb{R}^n)$, on définit une distribution $\mathcal{E} \in \mathcal{B}'(\mathbb{R}^n; \mathcal{B}'(\mathbb{R}^n))$ et l'application $E \to \mathcal{E}$ est clairement continue. Suivant le théorème des noyaux de Schwartz ([15] proposition 25) on associe à \mathcal{E} la distribution $e \in \mathcal{B}'(\mathbb{R}^n \times \mathbb{R}^n)$ telle que :

$$\forall \ (\phi\,,\,\Psi) \in \mathcal{B}(\mathbf{R}^n) \times \mathcal{B}(\mathbf{R}^n) \ : \ < \epsilon\,,\, \phi \otimes \Psi > \ = \ (E\,\Psi\,,\, \bar{\phi}) \\ \mathsf{L}^2(\mathbf{R}^n) \ .$$
 De plus

Lemme 2.6. l'application qui à E associe son noyau e est continue de P dans $\mathcal{B}^*(\mathbf{R}^n \times \mathbf{R}^n)$.

Nous nous donnons maintenant une famille d'opérateurs (1.1) : T étant un espace métrique compact et w un ouvert de \mathbf{R}^n , on se donne pour tout $t \in T$ des champs $X_{i,t} \in T(w)$ pour $i=1,\ldots,p$ et une fonction $c_t \in C^\infty(w)$. On suppose que :

(2.9) Les applications $t \to C_t$ et $t \to X_{i,t}$ sont continues de T dans $C^{\infty}(w)$ et de T dans T(w)

(2.10)
$$\forall t \in T, \forall x \in \omega : \mathcal{L}_{x}(X_{1,t}, \dots, X_{p,t}) = \mathbb{R}^{n}$$
.

Soit $T_o \subset T$; pour tout $t \in T_o$ on considère un opérateur E_t automorphism dans $L^2(w)$. On suppose que pour tout $t \in T_o$ tout $u \in L^2(\mathbf{R}^n)$ et tout entier k $G_t^k E_t u \in L^2(w)$ et que :

(2.11)
$$\forall k \in \mathbb{N} : \sup_{t \in T_o} \sup_{\|u\|_{L^2(w)}} \le 1 \quad \|G_t^k E_t u\|_{L^2(w)} < + \infty$$

Nous avons alors:

<u>Proposition 2.7.</u> sous les hypothèses (2.9), (2.10) et (2.11), le noyau e_t de E_t est C^{∞} sur $_{\varpi} \times_{\varpi}$ et la famille $(e_t)_{t \in T_{\sigma}}$ est bornée dans C^{∞}($_{\varpi} \times_{\varpi}$).

<u>Démonstration</u>: la compacité de T et les hypothèses (2.9) et (2.10) nous permettent d'appliquer le théorème 2.1 à la famille des opérateurs $G_{\downarrow}(t \in T)$.

Soit $w_1\subset\subset w$ et soit $\varphi\in \pounds(w_1)$; on déduit alors de (2.11) et du théorème (2.1) que pour tout entier k, il existe une constante C_k telle que pour tout $t\in T_e$, et tout $u\in L^2(w)$:

$$\|\varphi E_{t} u\|_{k \cdot \varepsilon} \leq C_{k} \|u\|_{L^{2}(\omega)}$$

οù ε > o est donné par le théorème 2.1.

Il en résulte que $\varphi E_t u \in C^\infty(w)$ et que pour tout $\alpha \in \mathbb{N}^n$ il existe C_α telle que pour tout $t \in T_o$, tout $u \in L^2(w)$:

$$\sup_{\mathsf{x}} \left| \left(\mathsf{D}^{\alpha}_{\phi} \mathsf{E}_{\mathsf{t}} \mathsf{u} \right) (\mathsf{x}) \right| \leq \mathsf{C}_{\alpha} \| \mathsf{u} \|_{\mathsf{L}^{2}(m)}.$$

Par suite les opérateurs $D^\alpha_{\phi}E_{t\,\phi}$ sont de Hilbert-Schmidt et ont leur noyau e^α_t dans $L^2(_{\varpi}\times_{\varpi})$; de plus :

$$(2.12) \qquad \forall \ \alpha \in \mathbb{N}^{n}: \sup_{t \in T_{n}} \|e_{t}^{\alpha}\| < + \infty.$$

Au sens de $\mathcal{B}^t(w \times w)$ on a $e_t^{\alpha}(x,y) = D_x^{\alpha} e_t^{\alpha}(x,y)$. De plus E_t étant autoadjoint on a :

$$\varphi(x) e_t(x,y) \varphi(y) = e_t^o(x,y) = \overline{e_t^o(y,x)}$$
.

On en déduit que pour tout $\alpha \in \mathbb{N}^n$ $D_{\times}^{\alpha} e_t^{\alpha}$ et $D_y^{\alpha} e_t^{\alpha}$ sont dans $L^2(w \times w)$; par suite $e_t^{\alpha} \in \mathcal{E}(w \times w)$ et utilisant l'équiva-

lence de normes sur $H_o^{\ell}(\omega \times \omega)$:

$$\|e(.,.)\|_{H^{L}(\omega \times \omega)} \leq Cte. \sum_{|\alpha| \leq L} \|D_{x}^{\alpha}e\|_{L^{2}(\omega \times \omega)} + \|D_{y}^{\alpha}e\|_{L^{2}(\omega \times \omega)}$$

on déduit de (2.12) que les e $_{t}^{o}$ sont bornés dans $H_{o}^{L}(w \times w)$ pour tout entier L , et la proposition suit .

2.3. Estimations "sur le bord"

Nous voulons maintenant étudier le cas où les opérateurs E_{t} ne sont plus définis sur tout $_{0}$; nous nous plaçons toujours sous les hypothèses (2.9) et (2.10) et nous supposons de plus que

(2.13)
$$\forall t \in T : c_t \in L^{\infty}(w) \text{ et } \sup_{t \in T} \|c_t\|_{L^{\infty}(w)} < + \infty$$

Pour tout t \in T on se donne un ouvert $\Omega_{\rm t} \subset \varpi$; on définit alors l'espace $V_{\rm t}$ comme étant l'adhérence de $\mathcal{P}(\Omega_{\rm t})$ dans l'espace

$$\{u \in L^{2}(\Omega_{t}) / \forall i = 1,...,p : X_{i,t}u \in L^{2}(\Omega_{t})\}.$$

Soit a_t la forme hermitienne continue et coercive sur V_t :

$$a_{t}(u,v) = \int_{\Omega_{t}} \left\{ \sum_{i=1}^{p} X_{i,t} u \cdot X_{i,t} \overline{v} + c_{t} u \cdot \overline{v} \right\} dx.$$

Il résulte de (2.13) qu'il existe une constante C telle que pour tout $t \in T$ et tout $u \in V_t$ on ait :

(2.14)
$$\|u\|_{V_{t}}^{2} \leq a_{t}(u,u) + C\|u\|_{L^{2}(\Omega_{L})}^{2}$$

On note $(A_t,D(A_t))$ l'opérateur défini par le problème variationnel $(V_t,L^2(\Omega_t)$, $a_t)$: c'est l'extension de Friedrichs de

$$(a_{+}, \mathcal{B}(\Omega_{+})).$$

On considère alors pour t \in T $_{o}$ \subset T des opérateurs bornés E_{t} , positifs autoadjoints dans $L^{2}(\Omega_{t}).$ Nous supposons que :

(2.15)
$$\forall k \in \mathbb{N}$$
, $\forall u \in L^{2}(\Omega_{t}) : \alpha_{t}^{k} E_{t} u \in L^{2}(\Omega_{t})$

$$(2.16) \quad \forall \ k \in \mathbb{N} : \sup_{t \in T_{\bullet}} \sup_{\|u\|_{L^{2}(\Omega_{t}^{+})}} \leq 1 \quad \|G_{t}^{k} E_{t} u\|_{L^{2}(\Omega_{t}^{+})} < + \infty.$$

Nous supposons de plus que pour tout $t \in T_o$ et tout $u \in L^2(\Omega_t)$:

(2.17)
$$\forall k \in \mathbb{N}$$
, $\forall \varphi \in \mathcal{B}(w)$ $\varphi C_{t}^{k} E_{t}^{u} \in V_{t}$.

Remarque: le paragraphe précédent correspond au cas où $\omega = \Omega_{\rm t}$ pour tout t; alors (2.11) implique (2.17). Mais notre conclusion est ici plus faible et de nature différente :

Proposition 2.8. sous les hypothèses précédentes le noyau e_t de E_t est C^∞ sur $(w \cap \Omega_t) \times (w \cap \Omega_t)$. La fonction $e_t(x,x)$ est positive sur $w \cap \Omega_t$ et pour tout $w \in \mathcal{B}(w)$ on a : $(2.18) \sup_{t \in T_0} \int_{w \cap \Omega_t} |\varphi(x)|^2 e_t(x,x) dx < + \infty.$

Le fait que e_t soit C^∞ sur $(_{\varpi} \cap \Omega_t) \times (_{\varpi} \cap \Omega_t)$ résulte immédiatement de la proposition 2.7 appliquée à un seul opérateur sur l'ouvert $_{\varpi} \cap \Omega_t$: d'autre part E_t étant positif autoadjoint par hypothèse, on a $e_t(x,x) \geq c$. Pour démontrer l'estimation (2.18) on utilise le fait que l'intégrale de (2.18) est la trace de l'opérateur $_{\varpi} E_{t^{\varpi}}$ et on estime cette trace à l'aide de majora-

tion de n-ièmes diamètres. ([1]) .

Nous notons W_t l'espace des $u\in L^2(\Omega_t)$ tels que $G_tu\in L^2(\Omega_t)$ et tels que pour tout $\phi\in \mathcal{B}(w)$ ϕ $u\in V_+$.

Prouvons d'abord le

Lemme 2.9. soit $w_1 \subset \subset w$; il exists $\mathcal{E} > 0$ et pour tout couple $(\varphi, \Psi) \in \mathcal{B}(w_1) \times \mathcal{B}(w_1)$ tel que $\varphi \Psi = \varphi$, une constante C, telle que : pour tout $t \in T$ l'application $u \to \varphi u$ prolongement de φu par o sur $\mathbb{R}^n \setminus \Omega_t$ est continue de W_t dans $H^{\mathcal{E}}(\mathbb{R}^n)$ et : $\forall \ u \in W_t \ \|\varphi u\|_{\mathcal{E}}^2 \leq C \{\|\varphi C_t u\|_{L^2(\Omega_t)}^2 + \|\Psi u\|_{L^2(\Omega_t)}^2 \} .$

 $\begin{array}{ll} \underline{\text{Démonstration}}: & \text{appliquant le Lemme 2.3 aux fonctions de} \\ \underline{\mathcal{P}}(w_1 \cap \Omega_{\textbf{t}}) \text{, on obtient qu'il existe } \epsilon > \text{o et C tels que : si} \\ \phi \, u \in V_{\textbf{t}} \text{ alors } \widetilde{\phi \, u} \in H^{\epsilon}(\mathbb{R}^n) \text{ et} \end{array}$

$$\|\widetilde{\varphi u}\|_{\varepsilon} \leq C\|\varphi u\|_{V_{+}}.$$

Donnons nous $u \in W_t$; remarquons d'abord que pour tout $\zeta \in \mathcal{B}(w)$ et tout $i = 1, \ldots, p$ $\zeta \times_i u = \times_i \zeta u - \times_i (\zeta) \cdot u$ est dans $L^2(\Omega_t) \cdot Q_t$. Pour $v \in \mathcal{B}(\Omega_t)$ on a :

(2.20)
$$a_{t}(\phi u, v) - a_{t}(u, \phi v) = \sum_{i=1}^{p} \int_{\Omega_{t}} X_{i, t}(\phi) [u \cdot X_{i, t} \overline{v} - X_{i, t} u \cdot \overline{v}] dx$$

l'intégrale définissant $a_t(u, \varphi v)$ ayant un sens d'après la remarque précédente; mais pour $v \in \mathcal{B}(\Omega_t)$, $\varphi v \in \mathcal{B}(\Omega_t)$ et :

$$(2.21) \quad a_{t}(u, \varphi v) = \langle G_{t}u, \varphi v \rangle_{\mathcal{B}^{1}(\Omega_{t}) \times \mathcal{B}(\Omega_{t})} = \int_{\Omega_{t}} \varphi G_{t}u \cdot \overline{v} dx.$$

On reporte (2.21)dans (2.20); puis par densité on peut prendre $v \in V_+$ et choisissant $v = \varphi u$ on obtient que :

(2.22)
$$a_{t}(\varphi u, \varphi u) = Re \int_{\Omega_{t}} \varphi G_{t} u \cdot \varphi \overline{u} dx + \int_{\Omega_{t}} (\sum_{i=1}^{p} |X_{i}, t(\varphi)|^{2}) |u|^{2} dx$$

D'après (2.9) les $X_{i,t}$ sont bornés sur w_1 et le lemme résulte alors des estimations (2.19),(2.14) et (2.22)

Remarque: on déduit aussi de (2.22) et (2.14) que

$$\|\varphi u\|_{V_{t}}^{2} \le C \left\{ \|G_{t} u\|_{L^{2}(\Omega_{t})}^{2} + \|u\|_{L^{2}(\Omega_{t})}^{2} \right\}$$

ce qui prouve que W_t est un sous espace fermé de $\left\{u\in L^2(\Omega_t) \ / \ G_t u \in L^2(\Omega_t)\right\} . \ W_t \text{ est donc un espace de Hilbert si on le munit de la norme :}$

$$\|u\|_{W_{\pm}} = \left\{ \|\alpha_{\pm}u\|_{L^{2}(\Omega_{\pm})}^{2} + \|u\|_{L^{2}(\Omega_{\pm})}^{2} \right\}^{\frac{1}{2}}.$$

Par récurrence sur $L \ge 1$ on définit les espaces

$$W_{t}^{\ell} = \left\{ u \in W_{t}^{\ell-1} / t^{u} \in W_{t}^{\ell-1} \right\}$$

munis des normes :

$$\|u\|_{W_{t}^{\ell}} = \left\{ \|G_{t}u\|_{W_{t}^{\ell-1}}^{2} + \|u\|_{W_{t}^{\ell-1}}^{2} \right\}^{\frac{1}{2}}$$

On convient que $W_{+}^{\circ} = L^{2}(\Omega_{+}^{\circ})$. On a aussi

$$W_{t}^{\ell} = \left\{ u \in L^{2}(\Omega_{t}) / \forall k = 1, \dots, \ell : G_{t}^{k} u \in L^{2}(\Omega_{t}) \text{ et} \right.$$

$$\forall k = 0, \dots, \ell - 1 \quad G_{t}^{k} u \in W_{t}^{\ell} \right\}.$$

On note Σ_t^ℓ la boule unité de W_t^ℓ et pour $\varphi \in \mathcal{B}(\omega)$ $d_j(\varphi \Sigma_t^\ell$, $L^2(\Omega_t))$ $(j=o,1,\dots)$ le j-ième diamètre de l'ensemble $\varphi \Sigma_t^\ell$ dans $L^2(\Omega_t)$ ([11]).

Nous avons alors :

2.10. soit $w_1 \subset \subset w$ et soit $\varepsilon > 0$ donné par le lemme 2.9. Pour $\varphi \in \mathcal{B}(w)$ et pour $l \ge 1$ il existe une constante $C = C(l, \varphi)$ telle que : $\forall \ t \in T \ , \ \forall \ j = 0, 1 ... \ : \ d_j(\varphi \Sigma_t^l, \ L^2(\Omega_t)) \le C(1+j)^{-\epsilon l/n}$

$$\forall t \in T$$
, $\forall j = 0,1...$: $d_j(\varphi \Sigma_t^{\ell}, L^2(\Omega_t)) \leq C(1+j)^{-\epsilon \ell/r}$

Démonstration : donnons-nous ϕ_0 ,..., $\phi_{\boldsymbol\ell}$ $\in \mathcal{D}(w)$ telles que pour $i = 1, \dots, \ell : \varphi_{i-1} \cdot \varphi_i = \varphi_{i-1} \cdot$

Soit B une boule contenant $\overline{\mathbf{w}_4}$. Il existe une constante $\mathbf{C}_\mathbf{o}$ telle que si Σ' désigne la boule unité de $H^{\mathcal{E}}(B)$ on a ($\boxed{\mathbb{Z}}$) :

$$\forall j \ge 0$$
 $d_j(\Sigma', L^2(B)) \le C_o(1+j)^{-\varepsilon/n}$

De plus pour tout $\mu > \sigma$, il existe un sous espace Φ_{μ} de codimension finie et majorée par $(C_{\alpha\mu}^2)^{n/2\epsilon}$, dans $H^{\epsilon}(B)$, tel que

(2.24)
$$\forall u \in \Phi_{\mu} : \mu \|u\|^2 \leq \|u\|^2$$

 $L^2(B) \quad H^{\mathcal{E}}(B)$

 $\mu > 0$ et Φ étant fixés soit Ψ_t le sous espace des $u \in W_t^k$ tels que $\varphi_i a_t^k u|_{R} \in \Phi_\mu$ pour tous les indices i et k tels que o \leq k \leq i \leq £ -1 . (Ψ_{t} est bien défini grâce à (2.23) et au Lemme 2.9).

On déduit du Lemme (2.9) et de (2.24) qu'il existe C (dépendant de $\phi_{\alpha}, \ldots, \phi_{p}$, mais indépendant de μ telle que tout $t \in T$, tout $u \in W_+^L$:

$$\mu \|_{\phi_{\underline{i}}} \; \alpha_{\underline{t}}^{k} u \|_{L^{2}(\Omega_{\underline{t}})}^{2} \leq c \; \left\{ \|_{\phi_{\underline{i}+1}} \; \alpha_{\underline{t}}^{k+1} u \|_{L^{2}(\Omega_{\underline{t}})}^{2} \; + \; \|_{\phi_{\underline{i}+1}} \; \alpha_{\underline{t}}^{k} \; u \|_{L^{2}(\Omega_{\underline{t}})}^{2} \right\} \; .$$

Par récurrence sur i on en tire que pour k≤ 1-i on a :

$$\mu^{\mathbf{i}} \| \phi_{\mathbf{\ell} - \mathbf{i}} \; G_{\mathbf{t}}^{k} u \|_{2}^{2} \leq C^{\mathbf{i}} \| \; G_{\mathbf{t}}^{k} u \|_{\mathbf{t}}^{2}$$

et pour i = l on obtient que :

(2.25)
$$\mu^{\ell} \|_{\varphi_{0}} u \|_{L^{2}(\Omega_{t}^{1})}^{2} \leq C^{\ell} \|u\|_{W_{t}^{\ell}}^{2}$$

Soit $(1-\pi_t)$ le projecteur orthogonal dans W_t^L sur ψ_t . π_t est de rang fini $\leq \frac{\ell(\ell+1)}{2}$. $(C_{\alpha\mu})^{n/2\epsilon}$, et on déduit de (2.25) que pour tout $t \in T$ et tout $u \in W_t^L$:

L'entier j étant donné on choisit $\mu = C_o^{-2} \cdot (\frac{2j}{\ell(\ell+1)})^{2\epsilon}/n$ de sorte que $\omega_o \pi_t$ est de rang $\leq j$; on tire alors de (2.26) que

$$d_{j}(\varphi_{o}\Sigma_{t}^{\ell}, L^{2}(\Omega_{t})) \leq c^{\ell/2}. c_{o}^{\ell}. \left(\frac{2j}{\ell(\ell+1)}\right)^{-\epsilon\ell/n}$$
.

On achève la démonstration en remarquant que $\Sigma_t^{\ell} \subset \Sigma_t^{\ell}$ et que par suite :

$$d_o(\varphi_o\Sigma_t^{\ell}, L^2(\Omega_t)) \leq 1$$
.

Démonstration de la Proposition 2.8 : soit $\varphi \in \mathcal{B}(\varpi)$; soit $\varpi_1 \subset \subset \varpi$ tel que $\varpi_1 \supset \text{supp } \varphi$; soit alors $E > \sigma$ donné par le Lemme 2.9 .

Il résulte des hypothèses (2.16) et (2.17) que pour tout $\ell \geq 1$ il existe C telle que :

$$\forall t \in T_o \quad E_{t} \oplus \Sigma_{t}^{o} \subset C \cdot \Sigma_{t}^{\ell}$$

On déduit du Lemme 2.10 qu'il existe C' telle que :

$$(2.27) \quad \forall \ t \in T_o \ , \ \forall \ j = o, 1...: \ d_j \left(\phi \, E_t \, \phi \, \Sigma_t^o \, , L^2 (\Omega_t) \right) \leq C \, (1+j)^{- \, \mathcal{E} L} / n.$$

Choisissant $2>n/\epsilon$ on en déduit que l'opérateur $\phi E_{t} \phi$, positif autoadjoint est dans la classe C_1 de $\left(\begin{array}{c} \underline{1} \end{array} \right)$ et sa trace

est:
$$\operatorname{tr}(\varphi E_{t} \varphi) = \int_{\varpi \cap \Omega} |\varphi(x)|^{2} e_{t}(x,x) dx = \sum_{j=0}^{\varpi} d_{j}(\varphi E_{t} \varphi \Sigma_{t}^{\sigma}, L^{2}(\Omega_{t})) .$$
 et on conclut en utilisant la majoration (2.27) .

3. HOMOGENEITE

3.1. Notations

Le but de ce paragraphe est de définir pour les champs X_i de l'introduction une "partie principale homogène". Mais auparavant nous précisons quelques notations empruntées à ([3],[6],[14]).

On dira qu'une fonction f est homogène de degré ρ si pour tout t>0 f \circ $h_t=t^\rho.f$; de même un opérateur différentiel T (à coefficients $C^{\mathfrak S}$) sera dit homogène de degré ρ si pour tout t>0 h_t $T=t^\rho T$ (h_t T est l'opérateur image de T par h_t défini pour $u \in \mathcal{B}(\mathbf{R}^n)$ par $(h_t$ $T)(u) = \{T(u \circ h_t)\} \circ h_t^{-1}$.

Suivant ([6]), nous définissons l'ordre d'un opérateur en o

de la manière suivante : on munit d'abord \mathbf{R}^n de la "norme homogène" $|\xi| = \{\sum_{j=1}^n |\xi_j|^2 \}^2$ qui est une fonction \mathbf{C}^∞ sur $\mathbf{R}^n \setminus \mathbf{o}$, homogène de degré 1, ne s'annulant qu'en \mathbf{o} .

Pour un voisinage U de o , on définit $C^\infty_m(U)$ l'espace des fonctions "nulles à l'ordre m" en o $(m\in Z)$ en posant :

 $C_m^{\infty}(U) = \{u \in C^{\infty}(U) / |u(\xi)| = 0 (|\xi|^m \text{ quand } \xi \to 0\} .$ On dit alors qu'un opérateur T de $C^{\infty}(U)$ dans $C^{\infty}(U)$ est d'ordre $\leq p$ en o $(p \in Z)$ si

$$\forall m \quad T C_m^{\infty}(U) \subset C_{m-p}^{\infty}(U)$$
.

Avec ces définitions un opérateur $T = \sum_{\substack{|\alpha| \leq k \\ \alpha}} a_{\alpha} \delta_{\xi}^{\alpha}$ est d'ordre \leq p en o si et seulement si pour tout α a $\in C^{\infty}_{[\alpha]-p}(U)$, ce qui équivaut à dire que pour tout α et tout β tel que $[\beta] < [\alpha]-p$ on a : $(\delta_{\xi}^{\beta} a_{\alpha})(0) = 0$.

A un tel opérateur d'ordre \leq p en o , on associe sa partie homogène de degré p , \widehat{T} , définie par :

$$(3.1) \quad \widehat{T} = \sum_{|\alpha| \le k} \sum_{[\beta] = [\alpha] - p} (\partial_{\xi}^{\beta_{\alpha}})(0)\xi^{\beta}/\beta! \cdot \partial_{\xi}^{\alpha}$$

Il est clair que $T-\widehat{T}$ est d'ordre $\leq p-1$ en o . Notons aussi que pour tout borné ß de $\mathcal{B}(\mathbb{R}^n)$:

$$(3.2) t^{-p}(h_{t_*}T)f \xrightarrow{t \to \infty} \widehat{T}f$$

la convergence ayant lieu dans $\mathcal{D}(\mathbf{R}^n)$ et étant uniforme en $\mathbf{f} \in \mathbf{R}$. (Noter qu'il existe un-compact K tel que supp $\mathbf{f} \in \mathbf{K}$ pour tout \mathbf{f} de \mathbf{B} et que $\mathbf{h}_{\mathbf{t}_{\mathbf{k}}}$ T est défini sur K pour \mathbf{t} assez grand).

Notons enfin que si T et S sont des opérateurs d'ordre $\leq p$ et d'ordre $\leq q$ en o , T.S et [T,S] sont d'ordre $\leq p+q$ en o , et pour ce qui concerne les parties homogènes $\widehat{T.S} = \widehat{T.S}$ et $[T.S] = \widehat{(T,S]}$.

3.2. Le Théorème 3.1

Nous reprenons les notations du paragraphe 1 : M est une variété réelle , C^∞ de dimension n ; X_1,\dots,X_p sont des champs de vecteurs réels , C^∞ sur M . Nous notons $V_k(x;X_1,\dots,X_p)$ le sous espace de T_X M engendré par les vecteurs $X_1(x)$ pour $|I| \leq k$. (Notations de (2.1)). ω étant un ouvert inclus dans Ω nous supposons que :

(3.3) $\forall x \in \omega$; $\forall k = 1,...,r : \dim V_k(x; X_1,...,X_p) = v_k$

Nous avons alors le résultat fondamental suivant :

Théorème 3.1.: soit $x_o \in w$ il existe deux voisinages $w_1 \subset \subset w_o \subset \subset w$ de x_o , un voisinage U_o de o dans \mathbf{R}^n , et une application θ C^∞ de $w_1 \times w_o$ dans \mathbf{R}^n tels que :

- i) pour tout $x \in \overline{w}_1$ l'application $\theta_x : y \to \theta(x,y)$ est un C^∞ difféomorphisme de w_0 sur $\theta_x(w_0)$, tel que $\theta_x(x) = 0$ et $\theta_x(w_0) \supset U_0$.
- ii) pour tout $x \in \overline{w}_1$ les champs $X_{i,x}$ images de X_i par θ_x (i = 1,...,p) sont d'ordre ≤ 1 en o.
- iii) si l'on désigne par $\widehat{X}_{i,x}$ la partie homogène de degré 1 de $X_{i,x}$, les champs $\widehat{X}_{i,x}$ engendrent une algèbre de Lie nilpotente

de dimension n et :
$$\forall \ \xi \in \mathbb{R}^n \ , \ \forall \ k = 1, \dots, r \quad \text{dim } V_k(\xi; \widehat{X}_{1,x}, \dots, \widehat{X}_{p,x}) = V_k \ .$$
 iv) Les champs $X_{1,x}$ et $\widehat{X}_{1,x}$ dépendent différentiablement de $x \in \mathfrak{W}_1$.

Ce théorème s'inspire de ([6]), bien que pour des raisons techniques le schéma de la démonstration soit différent. L'origiginalité par rapport à ([6], [14]) est que sous l'hypothèse (3.3) on "approche" l'algèbre de Lie engendrée par les X_i , par une algèbre de Lie nilpotente de même dimension que M .

3.3. <u>Démonstration du Théorème</u> 3.1.

Soit $\times_{\alpha} \in \omega$; nous choisissons des champs Y_1, \dots, Y_n de la

(3.4)
$$Y_{j} = \sum_{|I| \leq \lceil j \rceil} a_{j,I} X_{I} (a_{j,I} \in C^{\infty}(M))$$

de sorte que les $(Y_1(x_0),...,Y_k(x_0))$ forment une base de $V_k(x_0; X_1, ..., X_p)$, pour tout k = 1, ..., r. Il résulte de l'hypothèse (3.3) que pour \times voisin de \times_0 les $(Y_1(x), \dots, Y_{N_2}(x))$ forment encore une base de $V_k(x;X_1,\ldots,X_p)$ et par suite au voisi-

(3.5)
$$X_{I} = \sum_{[j] \leq |I|} b_{I,j} Y_{j} \quad (b_{I,j} \in \mathbb{C}^{m})$$

Regroupant (3.4) et (35), on obtient que pour toute suite $\mathbf{J} = (\mathbf{j}_1, \dots, \mathbf{j}_L) \in \{1, \dots, n\}^L \text{ on a, en notant } [\mathbf{J}] = [\mathbf{j}_1] + \dots + [\mathbf{j}_L]$ et $Y_{J} = (\text{ad } Y_{j_{1}} \dots \text{ad } Y_{j_{L-1}})(Y_{j_{1}L})$: $(3.6) \qquad Y_{J} = \sum_{\lceil j \rceil \leq \lceil J \rceil} \gamma_{J}^{j} Y_{J} \qquad (\gamma_{J}^{j} \in \mathbb{C}^{\infty}).$

Pour $\xi \in \mathbb{R}^n$ on considère le champ $Y_{\xi} = \sum_{i=1}^n \xi_i \cdot Y_i$. Notons $\Phi(t; x, \xi)$ le groupe local a un paramètre associé à Y_{ξ} :

$$\begin{cases}
\frac{d\bar{\Phi}}{dt} = Y_{\bar{E}}(\bar{\Phi}) \\
\bar{\Phi}(\sigma; \times, \bar{E}) = \times.
\end{cases}$$

 Φ est défini et C^{∞} sur un voisinage de (o , \times_{α} , o) dans R x M x R et vérifie

(3.8)
$$\forall \tau |\tau| \leq 1 : \Phi(\tau t; x, \xi) = \Phi(t; x, \tau \xi)$$

Il en résulte que 4 est définie sur un ouvert du type :]-2,2[\times w_o \times U $_o$ où w_o et U $_o$ sont des voisinages de \times_o et o respectivement; on pose alors $\varphi(x,\xi)=\Phi(1;x,\xi)$ et φ_{x} est l'application : $\xi \to \varphi(x, \xi)$. On a : $d_{\varphi_{X}}(a) \cdot \Pi = \sum_{i=1}^{n} \Pi_{i} Y_{i}(x)$

Quitte à restreindre ϖ_{α} et U_{α} on peut donc supposer que les $_{\mathfrak{O}_{_{\mathbf{X}}}}$ $(\mathbf{x}\in _{\mathfrak{O}_{\mathbf{0}}})$ sont des $\mathbf{C}^{\mathbf{\infty}}$ difféomorphismes sur leur image ; on supposera ausi que U est symétrique et que pour un voisinege $w_1 \subset \subset w_0$ de \times_0 on a $\phi(w_1 \times U_0) \subset w_0$.

Prouvons d'abord le

Lemme 3.2. : soit $f \in C^{\infty}(w_n)$; la fonction :

$$h(x, \xi) = \left(\frac{\partial}{\partial \xi_{j}} (f_{0}, \phi) (y, \xi)\right)_{y = \phi(x, -\xi)}$$
est C^{∞} sur $\phi_{1} \times U_{0}$ et sa série de Taylor en $\xi = 0$ est :
$$h(x, \xi) \sim \sum_{k \geq 0} \left(\frac{\left(-\operatorname{ad} Y_{\xi}\right)^{k}}{(k+1)!} (Y_{j}) f\right) (x) .$$

$$h(x, \xi) \sim \sum_{k \geq 0} \left(\frac{\left(-ad Y_{\mathcal{E}}\right)^k}{(k+1)!} (Y_{\mathbf{j}}) f \right) (x)$$

 $\frac{\underline{\text{Démonstration}}}{h(x, \xi) = (e^{-\frac{\xi}{5}} \cdot \frac{\partial}{\partial \xi_{1}} e^{\frac{\xi}{5}} f) (x)}.$

Pour $(x,\xi) \in \omega_1 \times U_0$ on a $\phi(x,-\xi) \in \omega_0$ et il est alors clair que h est C^∞ sur $\omega_1 \times U_0$.

Il résulte de (3.7) et (3.8) que la série de Taylor en $\xi=0$ de f \circ ϕ est

(3.9)
$$(f \circ \varphi)(x, \xi) \sim \sum_{k \geq 0} \frac{1}{k!} (Y_{\xi}^k f)(x)$$

et la série de Taylor en $\xi = 0$ de $g(x, \xi) = \frac{\partial}{\partial \xi_j} (f_{\phi \phi})(x, \xi)$ est alors :

$$g(x, \xi) \sim \sum_{k \geq 0} \frac{1}{k!} (\sigma(Y_{\xi}^k Y_j) f)(x)$$

où pour deux champs X et Y on note :

$$\sigma(X^{k}Y) = \frac{1}{k+1}(X^{k}Y + X^{k-1}YX + \dots + YX^{k}).$$

Ré-appliquant (3.9) on obtient la série de Taylor de

$$h(x, g): h(x, g) \sim \sum_{k \geq 0} \left(\sum_{p=0}^{k} \frac{(-Y_g)^{k-p}}{(k-p)!} \cdot \frac{\sigma(Y_g^p Y_j)}{p!} f \right) (x)$$

Le lemme résulte alors de l'identité suivante (cf. [6]) : pour deux champs X et Y on a :

$$\sum_{p=0}^{\infty} \frac{(-x)^{k-p}}{(k-p)!} \cdot \frac{\sigma(x^p, Y)}{p!} = \frac{(-ad x)^k}{(k+1)!} (Y)$$

On utilise alors (3.6) pour développer le terme

$$(ad Y_{\xi})^{k} (Y_{j}) :$$

$$(3.10) \quad (ad Y_{\xi})^{k} (Y_{j}) = \sum_{|J| = k} \sum_{[L] \leq [J] + [j]} \xi^{J} \cdot Y_{J \cup j}^{L} \cdot Y_{L}^{L}$$

où $J = (j_1, \dots, j_k) \in \{1, \dots, n\}^k, \xi^J = \xi_{j_1}, \dots, \xi_{j_k} \text{ et où JUj est}$ la suite $(j_1, \dots, j_k, j) \in \{1, \dots, n\}^{k+1}$.

On déduit de (3.10) le

<u>Lemme 3.3.</u>: soit $f \in C^{\infty}(w_o)$ et soit h comme au Lemme 3.2.

Alors
$$h(x, \xi) = (Y_{j}f)(x) + \sum_{1 \leq \lfloor J \rfloor \leq r-1} \frac{(-\xi)^{J}}{(|J|+1)!} \cdot \gamma_{J \cup j}^{\ell}(x) \cdot (Y_{\ell}f)(x) + [\ell] \leq [J] + [j]$$

$$+ O(|\xi|^{r}) \cdot$$

Nous avons alors la

Proposition 3.4. : avec les notations précédentes, pour $\times \in _{\varpi_1} \text{ , les champs } (\phi_X^{-1})_* \text{ Y}_j \text{ sont d'ordre} \leq \text{[j] en o .}$

 $\underline{\text{D\'emonstration}}: \text{ soit } T_{j,\times} \text{ l'image de } \frac{\partial}{\partial \xi_j} \text{ par } \phi_{\times} \text{ . Pour } f \in C^{\infty}(w_o),$ on a, en notant h la fonction introduite au Lemme 3.2.

$$(T_{j,x}f)(\varphi_x(\xi)) = \frac{\partial}{\partial \xi_j}(f \circ \varphi_x)(\xi) = h(\varphi_x(\xi), \xi).$$

Soit $g \in \mathcal{B}(U_o)$; alors $f = g \circ \phi_v^{-1} \in \mathcal{B}(w_o)$ et

$$(1^{j'} \times_{\underline{k}} (d^{\times}(\underline{\xi})) = \frac{9\underline{\xi}^{i}}{9} a (\underline{\xi}).$$

Notant $Z_{j,x}$ l'image de Y_j par φ_x^{-1} on a aussi :

$$(Y_{j}f)(\varphi_{x}(\xi)) = (Z_{j,x}g)(\xi).$$

On déduit alors du Lemme 3.3 que :

$$\left(\frac{\partial}{\partial \xi_{j}}g\right)(\xi) = \left(Z_{j,\times}g\right)(\xi) + \sum_{\ell=1}^{n} Z_{j,\ell}(x,\xi)(Z_{\ell,\times}g)(\xi) + o(|\xi|^{r})$$

$$(\frac{\partial}{\partial \xi_{j}}g)(\xi) = (Z_{j,\times}g)(\xi) + \sum_{\ell=1}^{n} Z_{j,\ell}(x,\xi)(Z_{\ell,\times}g)(\xi) + o(|\xi|^{r})$$
avec:
$$(3.11) \quad Z_{j,\ell}(x,\xi) = \sum_{\ell=1}^{n} (Z_{j,\ell}(x,\xi)(Z_{\ell,\times}g)(\xi) + o(|\xi|^{r})$$

$$(J_{j,\ell}(x,\xi)) = (Z_{j,\ell}g)(\xi) + o(|\xi|^{r})$$

Notons A la matrice $((z_{j,\ell}))$; soit B = $((\widetilde{z}_{j,\ell}))$ la matrice : B = $-A + A^2 + \dots + (-1)^{r-1} A^{r-1}$. Puisque A = $0(|\xi|)$ on a

 $(Id+B)(Id+A) = Id+O(|\xi|^{r})$ et on tire de (3.11) :

$$(3.12) \quad (Z_{j,x}g)(\xi) = \frac{\partial g}{\partial \xi_{j}}(\xi) + \sum_{\ell=1}^{n} \widetilde{Z}_{j,\ell}(x,\xi) \frac{\partial g}{\partial \xi_{\ell}}(\xi) + O(|\xi|^{r}).$$

Ecrivant que: $Z_{j,x} = \frac{\partial}{\partial \xi_{j}} + \sum_{\ell=1}^{n} \tilde{z}_{j,\ell}(x, \xi) \frac{\partial}{\partial \xi_{\ell}}$

on tire de (3.12) que $\tilde{z}_{j,\ell} = \tilde{z}_{j,\ell} + 0(|\xi|^r)$.

Enfin $\tilde{z}_{j,L}$ est somme de termes de la forme :

$$z_{j,\ell_1}$$
. z_{ℓ_1,ℓ_2} ... $z_{\ell_q,\ell}$ avec $q \le r-2$.

Tenant compte de (3.11) on en déduit que

$$\tilde{z}_{j,\ell}(x,.) \in C^{\infty}_{[\ell]-[j]}(U_{\alpha})$$
 et finalement que

 $\widetilde{z}_{j,\ell}(x,.) \in C^{\infty}$ $[\ell] - [j]$ (Uo) , ce qui achève la démonstration de la proposition.

Fin de la démonstration du Théorème 3.1.

On définit θ par : $\theta(x,y) = \theta_X(y) = \phi_X^{-1}(y)$. θ est défini d'un voisinage de (x_0, x_0) sur U_0 ; l'application $(x,y) \to (x, \theta(x,y))$ est l'application réciproque de $(x,\xi) \to (x,\phi(x,\xi))$ et θ est C^{∞} ; de plus $\theta(x,x) = 0$.

Pour satisfaire le i) du théorème il suffit d'ajuster les voisinages w_1 , w_0 et U_0 , en les restreignant si nécessaire; nous supposons dorénavant que ceci est fait.

Soit $X_{I,x} = (\theta_x)_* X_{I}$; $X_{I,x}$ est aussi défini par la formule (2.1) à partir des $X_{i,x}$, et est d'ordre $\leq |I|$ en o.

Prenant les parties homogènes après avoir appliqué $(\theta_x)_*$ à (3.4) (3.5) et (3.6) on obtient :

(3.13)
$$\begin{cases} \widehat{Z}_{j,x} = \sum_{|I| = [j]} a_{j,I}(x) \cdot \widehat{X}_{I,x} \\ \widehat{X}_{I,x} = \sum_{|j| = |I|} b_{I,j}(x) \cdot \widehat{Z}_{j,x} \end{cases}$$

$$(3.14) \left[\widehat{Z}_{j_{1},\times}, \widehat{Z}_{j_{2},\times} \right] = \sum_{\left[j\right] = \left[j_{1}\right] + \left[j_{2}\right]} \gamma_{\left(j_{1},j_{2}\right)}^{j}(\times) \cdot \widehat{Z}_{j,\times}.$$

Il est sous-entendu, dans (3.14) que si $[j_1]+[j_2]>r$, la somme du terme de droite, portant sur un ensemble d'indices j vide, est nulle. Il résulte aussitôt de (3.14) que les $Z_{j,\times}$ engendrent une algèbre de Lie nilpotente de dimension n dont les $\gamma_{(j_1,j_2)}^j(x)$ sont les constantes de structure. On tire de (3.13) que les $\widehat{X}_{j,\times}$ ($i=1,\ldots,p$) engendrent la même algèbre de Lie et que pour tout k, $V_k(\xi;\widehat{X}_{1,\times},\ldots,\widehat{X}_{p,\times})$ est l'espace engendré par les $\widehat{Z}_{j,\times}(\xi)$ pour $[j] \leq k$.

Il résulte de (3.12) que l'on a :

$$(3.15) \quad \widehat{Z}_{j,x} = \frac{\partial}{\partial \xi_{j}} + \sum_{[\ell] > [j]} \sum_{[\alpha] = [\ell] - [j]} \zeta_{j,\ell}^{\alpha}(x) \cdot \xi^{\alpha} \frac{\partial}{\partial \xi_{\ell}}.$$

pour certaines fonctions $\zeta_{\mathbf{j},\boldsymbol{\ell}}^{\alpha}(\mathbf{x})\in\mathbb{C}^{\alpha}(\omega_{1})$. Par conséquent les $\widehat{Z}_{\mathbf{j},\mathbf{x}}(\xi)$ sont pour tout $\xi\in\mathbf{R}^{n}$ indépendants et par suite pour tout $\xi\in\mathbf{R}^{n}$; $\dim V_{\mathbf{k}}(\xi;\widehat{X}_{1,\mathbf{x}},\ldots,\widehat{X}_{p,\mathbf{x}})=\gamma_{\mathbf{k}}$.

On achève la démonstration du théorème en remarquant que

 $X_{i,x}$ dépend differentiablement de $x \in w_i$ puisque θ est C^{∞} des deux variables (x,y), et qu'il en est de même de $\widehat{X}_{i,x}$ qui est un "développement limité". $\left(\text{cf.}(3.1)\right)$ en $\xi=0$ de $X_{i,x}$.

3.4. Etude des opérateurs homogènes

Nous étudions maintenant les opérateurs associés aux $\hat{X}_{i,x}$; on renvoie à ([3]) pour une étude plus complète de certains aspects du problème.

On rappelle que les champs $\hat{x}_{i,x}$ (i=1,...,p) sont homogènes de degré 1, dépend nt différentiablement de x et vérifient :

(3.16)
$$\forall \xi \in \mathbb{R}^n, \forall k = 1, ..., r : \dim V_k(\xi; \widehat{X}_{1,x}, ..., \widehat{X}_{p,x}) = v_k$$

On déduit de (3.1) que, comme tous les champs homogènes de degré \geq 1, les $\widehat{X}_{i,\times}$ sont formellement antiedjoints. On pose :

(3.17)
$$\forall x \in \omega_1 \quad \widehat{\mathbf{G}}_{x} = -\sum_{i=1}^{p} (\widehat{\mathbf{X}}_{i,x})^2$$

Il est clair que les $\widehat{a}_{\mathbf{x}}$ sont homogènes de degré 2 et formellement autoadjoints positifs. Nous avons :

Proposition 3.5. i) Pour tout compact $\overline{w}_2 \subset w_1$, tout compact K de $L^2(\mathbf{R}^n)$, tout compact Γ de $\mathbb{C} \setminus [0,\infty[$, et tout E > 0, il exists un-borné G de $L(\mathbf{R}^n)$ -tel que :- $\forall (x,f,\mu) \in \overline{w}_2 \times K \times \Gamma$, $\exists u \in \mathbb{R}$: $||(\widehat{\alpha}_x - \mu)u - f||_0 \le E$ ii) Pour tout $x \in w_1$, $L^2(\mathbf{R}^n)$ est dense dans $D(\widehat{A}_x) = \{u \in L^2(\mathbf{R}^n) / \widehat{\alpha}_x u \in L^2(\mathbf{R}^n)\}$, et l'opérateur $(\widehat{\alpha}_x, D(\widehat{A}_x))$ est positif autoadjoint dans $L^2(\mathbf{R}^n)$.

Remarque : le ii) est prouvé en ([3]); nous le déduirons aisément de i).

<u>Démonstration</u>: soit V l'espace de Hilbert:

$$V_x = \{u \in L^2(\mathbb{R}^n) / \forall i = 1,...,p : \widehat{X}_{i,x} u \in L^2(\mathbb{R}^n) \}$$

et soit a la forme hermitienne continue et coercive sur V_{χ} :

$$a_{x}(u,v) = \sum_{i=1}^{p} \int_{\mathbb{R}^{n}} (\widehat{x}_{i,x}u)(\widehat{x}_{i,x}\overline{v}) d\xi$$
.

On définit donc par la méthode variationnelle un opérateur \widehat{A}_{x} , $\widehat{D(A_{x})}$ positif autoadjoint dans $L^{2}(\mathbf{R}^{n})$ (Il n'est pas clair que le $\widehat{D(A_{x})}$ ainsi défini coîncide avec celui défini en ii); nous le prouverons par la suite).

Fixons nous ϖ_2 , K, Γ et ϵ ; il existe un borné α_1 de $\mathcal{D}(\mathbf{R}^n)$ tel que :

(3.18)
$$\forall f \in K, \exists g \in B_1 : ||f - g||_0 \le \varepsilon/2$$
.

Pour $\mu \in \Gamma$ et $x \in \overline{w}_2$, l'opérateur $(A_x - \mu)^{-1}$ est défini, et borné de $L^2(\mathbb{R}^n)$ dans V_x , de norme majorée indépendemment de $\mu \in \Gamma$ et $x \in \overline{w}_2$:

Soit $\zeta \in \mathcal{B}(\mathbb{R}^n)$, ξ valent 1 au voisinage de o; pour $\Rightarrow > o$ et pour $u = (\widehat{A}_x - \mu)_g^{-1}$, on a, compte tenu de l'homogéneîté des $\widehat{X}_{i,x}$ et de \widehat{A}_x : $(\widehat{C}_x - \mu)(\zeta \circ h_s \cdot u) = (\zeta \circ h_s)g - 2s \sum_{i=1}^p (\widehat{X}_{i,x}\zeta) \circ h_s \cdot \widehat{X}_{i,x}u + s^2(\widehat{C}_x(\zeta) \circ h_s)u$.

On déduit alors de (3.19), que C étant une constante indé-

pendante de $\mu \in \Gamma$, $x \in \overline{\omega}_2$ et $g \in L^2(\mathbb{R}^n)$ on a :

$$\|(\widehat{\mathbf{G}}_{\mathbf{x}}^{-\mu})\zeta_{\circ}\mathbf{h}_{\mathbf{s}}(\widehat{\mathbf{A}}_{\mathbf{x}}^{-\mu})^{-1}\mathbf{g}-(\zeta_{\circ}\mathbf{h}_{\mathbf{s}})\mathbf{g}\|_{\circ}\leq C(\mathbf{s}+\mathbf{s}^{2})\|\mathbf{g}\|_{\circ}.$$

Or $(\zeta \circ h_s)g \to g$ dans $L^2(\mathbb{R}^n)$ lorsque $s \to o$, uniformément pour $g \in \mathbf{B}_1$; on en déduit qu'il existe s_o assez petit, pour que :

$$(3.20) \ \forall \ g \in \mathbf{R}_{1} \ , \ \forall \ \mu \in \overline{\omega}_{2} : \| \widehat{\mathbf{Q}}_{\mathbf{x}}^{-} \mu) (\zeta_{0} h_{\mathbf{S}_{0}}) (\widehat{A}_{\mathbf{x}}^{-} \mu)^{-1} g - g \| \leq \epsilon/2 \ .$$

De plus (3.16) et la différentiabilité en x des champs $\widehat{X}_{i,x}$ nous permettent d'appliquer le théorème 2.1 sur tout compact de \mathbf{R}^n ; on en déduit que $\mathbf{R}_2 = \bigcup_{\mu \in \Gamma} \bigcup_{\mathbf{X} \in \overline{w}_2} (\widehat{\mathbf{A}}_{\mathbf{X}} - \mu)^{-1} \mathbf{R}_1$ est borné dans $\mathbf{C}^{\infty}(\mathbf{R}^2)$. Par suite (ζ o \mathbf{h}_s) \mathbf{R}_2 est un borné de $\mathcal{B}(\mathbf{R}^n)$ et le i) de la proposition résulte des estimations (3.18) et (3.20).

Il résulte de i) que pour tout $x \in w_1$, $\mathcal{B}(\mathbf{R}^n)$ est dense dans $D(\widehat{A_{\mathbf{x}}})$; par suite $A_{\mathbf{x}}$ est la plus petite extension fermée de $(\widehat{\mathbf{G}_{\mathbf{x}}}, \mathcal{B}(\mathbf{R}^n))$ et par passage à l'adjoint $\widehat{A_{\mathbf{x}}}$ est aussi l'extension maximale , i.e. : $D(A_{\mathbf{x}}) = \{u \in L^2(\mathbf{R}^n) / G_{\mathbf{x}}u \in L^2(\mathbf{R}^n)\}$.

leii) de la proposition est alors clair.

Nous voulons donner maintenant quelques propriétés spectrales des opérateurs \widehat{G}_{χ} ; nous utiliserons le Théorème suivant (cf Kato [8]) :

soient $(A_n,D(A_n))_{n\in\mathbb{N}}$ et (A.D(A)) des opérateurs auto-adjoints positifs dans un espace de Hilbert H ; on note $E_n(\lambda)$ et $E(\lambda)$ les résolutions de l'identité associées à ces opérateurs. On suppose que A_n converge vers A au sens suivant :

Il existe un sous espace D dense dans D(A), tel que pour tout \mathbf{u} de $\mathbf{\mathcal{D}}$, \mathbf{u} est dans $\mathbf{D}(\mathbf{A}_{\mathbf{n}})$ pour \mathbf{n} assez grand et lim ||Anu-Au||_H = o.

Théorème 3.6. : i) pour tout $\mu \in \mathbb{C} \setminus [0, \infty[$ et pour tout $f \in \mathbb{H}$: $\lim_{n \to \infty} \| (A_n - \mu)^{-1} f - (A - \mu)^{-1} f \|_{H} = 0.$

ii) pour tout λ non valeur propre de A, et pour tout $f \in H$: $\lim_{n \to \infty} \|E_n(\lambda)f - E(\lambda)f\|_{H} = 0.$

$$\lim_{n \to \infty} \| E_n(\lambda) f - E(\lambda) f \|_{H} = 0$$

Nous notons $\widehat{A_{\mathbf{x}}}$ la réalisation de $\widehat{\mathbf{G}_{\mathbf{x}}}$ de domaine $\mathrm{D}(A_{\mathbf{x}})$ et $\widehat{\mathsf{E}}_{\mathsf{x}}(\lambda)$ la résolution de l'identité associée à $\widehat{\mathsf{A}}_{\mathsf{x}}$.

Lemme 3.7. : soit $f \in L^2(\mathbb{R}^n)$:

- i) l'application $(x, \mu) \rightarrow (\widehat{A}_{x} \mu)^{-1}$ f est continue de $\omega_{1} \times \mathbb{C} \setminus [0, \infty[$ dans $L^{2}(\mathbb{R}^{n})$ ii) l'application $(x, \lambda) \rightarrow \widehat{\mathbb{E}}_{x}(\lambda)$ f est continue de $\omega_{1} \times [0, \infty[$ dans $L^{2}(\mathbb{R}^{n})$ et \widehat{A}_{x} n'a pas de valeurs propres.

 $\underline{\text{D\'emonstration}}$: soit $H_t(t>0)$ l'isométrie dans $L^2(\mathbf{R}^n)$ définie par :

(3.21)
$$(H_t f) (\xi) = t^{1/2} (f \circ h_t) (\xi)$$

(3.21) $(H_{t}f)(\xi) = t^{1/2}(f_{0}h_{t})(\xi)$ où $v = \sum_{k=1}^{r} k(v_{k} - v_{k-1})$ est la dimension homogène de $\mathbb{R}^{n}([3])$.

Il résulte de l'homogénéité de \widehat{G}_{\times} que $H_{\mathbf{t}}(D(\widehat{A}_{\times})) = D(\widehat{A}_{\times})$ et que :

$$H_t^{-1} \widehat{A}_x H_t = t^2 \widehat{A}_x$$

Par suite on a:

(3.22)
$$H_{t}^{-1} \widehat{E}_{x}(\lambda) H_{t} = \widehat{E}_{x}(t^{-2}\lambda)$$

On en déduit que :

$$\begin{split} \|\widehat{E}_{x}(\lambda)f - \widehat{E}_{x}(t^{-2}\lambda)f\|_{o}^{2} &= |\widehat{E}_{x}(\lambda)f, f| - |\widehat{E}_{x}(\lambda)H_{t}f, H_{t}f| \quad \text{et} \\ \|\widehat{E}_{x}(\lambda) - \widehat{E}_{x}(t^{-2}\lambda)f\|_{o}^{2} &\leq 2\|f\|_{o} \|H_{t}f - f\|_{o}. \end{split}$$

Lorsque $t\mapsto 1$ $\|H_tf-f\|_{\mathfrak{o}}\mapsto 0$ et on a pour $\lambda_{\mathfrak{o}}>0$:

(3.23)
$$\lim_{\lambda \to \lambda_{o}} \left\{ \sup_{x \in w_{d}} \| \widehat{E}_{x}(\lambda) f - \widehat{E}_{x}(\lambda_{o}) f \|_{o} \right\} = 0.$$

On en déduit que tout $\lambda_o > o$ n'est pas valeur propre de $\widehat{A}_{\mathbf{x}}$.

Il résulte directement de l'équation résolvante :

$$(\widehat{A}_{\times} - \mu)^{-1} - (\widehat{A}_{\times} - \mu_{\sigma})^{-1} = (\mu - \mu_{\sigma})(\widehat{A}_{\times} - \mu)^{-1}(\widehat{A}_{\times} - \mu_{\sigma})^{-1}$$

et de (3.19) que pour tout $\mu_{o} \in \mathbb{C} \setminus [o, \infty]$ on a :

(3.24)
$$\lim_{\mu \to \mu_{o}} \left\{ \sup_{x \in \omega_{d}} \left\| (\widehat{A}_{x} - \mu)^{-1} f - (\widehat{A}_{x} - \mu_{o})^{-1} f \right\|_{o} \right\} = 0.$$

Fixons $x_1 \in w_1$; on a vu que $\mathcal{B}(\mathbb{R}^n)$ est dense dans $D(\widehat{A}_{x_1})$ et il est clair, d'après la différentiabilité en x des champs $\widehat{X}_{1,x}$, que pour tout $\varphi \in \mathcal{B}(\mathbb{R}^n) \subset D(\widehat{A}_x)$:

$$\lim_{x \to x_1} \|A_{x\varphi} - A_{x_1\varphi}\|_{\alpha} = 0.$$

On déduit alors du Théorème 3.6. que :

(3.25)
$$\lim_{x \to x_1} \| (\widehat{A}_x - \mu_0)^{-1} f - (\widehat{A}_{x_1} - \mu_0)^{-1} f \|_0 = 0$$

(3.26)
$$\lim_{x \to \infty} \|\widehat{E}_{x}(\lambda_{o})f - \widehat{E}_{x}(\lambda_{o})f\|_{o} = 0$$

(3.24) et (3.25) donnent le i); (3.23) et (3.26) donnent le ii).

Pour être tout à fait complet il ne nous reste qu'à vérifier que o n'est pas valeur propre de \widehat{A}_{χ} ; supposons que $u \in L^2(\mathbb{R}^n)$ vérifie $\widehat{G}_{\chi}u = 0$. On déduit de la densité de $\mathscr{B}(\mathbb{R}^n)$ dans $D(\widehat{A}_{\chi})$, ou du fait que \widehat{A}_{χ} est aussi l'opérateur variationnel défini plus haut, que :

$$o = (\widehat{a}_{x}u, u) = a_{x}(u, u)$$
.

Par suite $\hat{X}_{1,\times}u=0$ et pour tout I , $\hat{X}_{1,\times}u=0$; il résulte alors de (3.16) que u est une constante et donc u est nulle.

Proposition 3.8. : le noyeu $\hat{\mathbf{e}}_{\mathbf{x}}(\lambda)$ de $\widehat{\mathbf{E}}_{\mathbf{x}}(\lambda)$ est \mathbf{C}^{∞} sur $\mathbf{R}^{n} \times \mathbf{R}^{n}$, et l'application $(\mathbf{x}, \lambda) + \hat{\mathbf{e}}_{\mathbf{x}}(\lambda)$ est continue de $\mathbf{e}_{\mathbf{q}} \times \mathbf{j}_{\mathbf{0}}$, $\mathbf{e}_{\mathbf{0}}$ dans $\mathbf{C}^{\infty}(\mathbf{R}^{n} \times \mathbf{R}^{n})$. De plus pour tout $\mathbf{x} \in \mathbf{e}_{\mathbf{q}}$, la fonction $\lambda \to \hat{\mathbf{e}}_{\mathbf{x}}(\lambda; \mathbf{o}, \mathbf{o})$ est strictement positive et homogène de degré $\mathbf{v}/2$ où $\mathbf{v} = \sum_{k=1}^{n} \mathbf{k} \left(\mathbf{v}_{k} - \mathbf{v}_{k-1} \right)$.

Remarque : pour tout $x \in \omega_1$ on peut munir \mathbb{R}^n d'une structure de groupe de Lie nilpotent telle que l'algèbre de Lie engendrée par les $\widehat{X}_{i,x}$ soit précisément l'algèbre de Lie des champs de vecteurs invariants à gauche. On en déduit que $\widehat{e}_{x}(\lambda)$ est un noyau de convolution sur ce groupe et en particulier on a :

(3.27)
$$\forall \xi \in \mathbb{R}^{n} : \hat{e}_{x}(\lambda; \xi, \xi) = \hat{e}_{x}(\lambda; o, o)$$

<u>Démonstration</u>: soit \overline{w}_2 un compact inclus dans w_1 et soit [a,b] un compact de]a, $\infty[$; nous appliquons la proposition (2.7) en prenant comme espace de paramètre $T = \overline{w}_2 \times [a,b]$, comme champs de vecteurs $X_{i,t} = \widehat{X}_{i,x}$ si $t = (x,\lambda)$, comme ouvert w

comme opérateurs $E_t = \widehat{E}_{\chi}(\lambda)$. Les hypothèses (2.9) et (2.10) sont satisfaites grâce à (3.16); $\widehat{E}_{\chi}(\lambda)$ étant de norme majorée par $(1+\lambda)^k$ en tant qu'opérateur de $L^2(\mathbb{R}^n)$ dans $D(\widehat{A}_{\chi}^k)$ l'hypothèse (2.11) est aussi satisfaite. On en déduit que les noyaux $\widehat{e}_{\chi}(\lambda)$ sont pour $x \in \overline{e}_2$ et $\lambda \in [a,b]$ dans un borné \mathbf{S} de $C^\infty(\mathbb{R}^n \times \mathbb{R}^n)$.

Or il résulte du Lemme 2.6 et du Lemme 3.7 que l'application $(\times,\lambda) \to \hat{\mathbf{e}}_{\times}(\lambda)$ est continue de $w_1 \times J_0$, ∞ [dans $\mathcal{B}'(\mathbb{R}^{n} \times \mathbb{R}^{n})$; par suite elle est continue de $w_2 \times [a,b]$ dans $C^{\infty}(\mathbb{R}^{n} \times \mathbb{R}^{n})$ puisque sur le borné \mathbf{s} les topologies C^{∞} et \mathcal{B}' coîncident.

On déduit de (3.22) que l'on a, pour tout
$$t > 0$$
:
$$\hat{a}_{x}(t^{2}\lambda; \xi, \eta) = t^{v} \hat{a}_{x}(\lambda; h_{t}\xi, h_{t}\eta).$$

En particulier on a

$$(3.28) \qquad \hat{e}_{\chi}(t^2\lambda; \sigma, \sigma) = t^{\gamma} \hat{e}_{\chi}(\lambda; \sigma, \sigma).$$

Il nous faut encore vérifier que $\hat{e}_{\times}(\lambda; o, o) > o$; cela résulterait directement de (3.27) mais on peut le voir de la manière suivante :

 $\mathbf{E}_{\mathbf{x}}(\lambda)$ étant un projecteur orthogonal, on a :

$$(3.29) \qquad \hat{e}_{\chi}(\lambda;\sigma,\sigma) = \int_{\mathbb{R}^n} |\hat{e}_{\chi}(\lambda;\sigma,\xi)|^2 d\xi \ge \sigma.$$

Supposans que $\hat{\epsilon}_{\chi}(\lambda_0; o, o) = o$, par (3.28) $\hat{\epsilon}_{\chi}(\lambda; o, o) = o$ pour tout $\lambda > o$, et par (3.29) on a $(\hat{\epsilon}_{\chi}(\lambda)f)(o) = o$ pour tout $f \in L^2(\mathbf{R}^n)$; or pour $f \in D(A_{\chi}^k)$ $E_{\chi}(\lambda) \mapsto f$ dans $D(A_{\chi}^k)$ lorsque $\lambda \mapsto +\infty$, et par suite $\hat{E}_{\chi}(\lambda)$ $f \mapsto f$ dans $C^{\infty}(\mathbf{R}^n)$ lorsque $\lambda \to +\infty$ si $f \in \mathcal{B}(\mathbf{R}^n)$. On en déduit donc que $f(o) = \lim_{\lambda \to \infty} (\hat{\epsilon}_{\chi}(\lambda)f)(o) = o$ pour

tout $f \in \mathcal{B}(\mathbf{R}^n)$ ce qui est évidemment faux, et cette contradiction achève la démonstration de la proposition 3.8 .

4. DEMONSTRATION DES THEOREMES 1.1. ET 1.3.

4.1. Localisation

Nous reprenons les notations du paragraphe 1 : M est une variété C^∞ munie d'une densité positive dy $\binom{2}{}$; $_{\varpi}$ et Ω ouverts de M; les champs X_1,\ldots,X_p vérifient (1.2.) et (1.3.). (A,D(A)) est une réalisation minorée autoadjointe dans $L^2(\Omega)$ de l'opérateur (1.1.) G; sans nuire à la généralité, nous supposons que A est positif.

un note $E(\lambda)$ la résolution de l'identité associée à A; il résulte de la sous-ellipticité de G (voir Théorème 2.1.) que les fonctions de $D(A^{\infty}) = \bigcap_{k \geq 0} D(A^k)$ sont C^{∞} sur $_{\omega} \cap \Omega$; par suite le noyau de $E(\lambda)$ est C^{∞} sur $(_{\omega} \cap \Omega) \times (_{\omega} \cap \Omega)$ (voir proposition 2.7.). On note $e(\lambda; x, y)$ ce noyau.

Le point $x_o \in w \cap \overline{\Omega}$ est fixé: on note w_1 , w_o , U_o et θ les voisinages et l'application construits au théorème 3.1.; on supposera que U_o est une boule de centre o.

Pour tout $x \in w_1$ la densité dy peut s'écrire dans la carte locale θ_x sous la forme : $\delta^2(x,\xi)d\xi$, la fonction δ étant strictement positive et C^∞ sur un voisinage de $(x_0,0)$ qui contient $w_1 \times U_0$; on note δ_x l'application $\xi \mapsto \delta(x,\xi)$.

Pour $x \in w_1$ on définit les opérateurs Θ_x de L²(\mathbb{R}^n) dans L²(w_0) et Φ_x de L²(M) dans L²(U_0) par :

On a les relations :

$$\begin{cases} \| e_{\mathbf{x}}^{\mathbf{u}} \|_{L^{2}(\omega_{o})}^{2} &= \| \mathbf{u} \|_{L^{2}(\theta_{\mathbf{x}}(\omega_{o}))}^{2} &\leq \| \mathbf{u} \|_{L^{2}(\mathbf{R}^{n})}^{2} \\ \| e_{\mathbf{x}}^{\mathbf{u}} \|_{L^{2}(U_{o})}^{2} &= \| \mathbf{v} \|_{L^{2}(\theta_{\mathbf{x}}^{-1}(U_{o}))}^{2} &\leq \| \mathbf{v} \|_{L^{2}(\mathbf{M})}^{2} \end{aligned}$$

De plus Φ_{\times} et Θ_{\times} sont adjoints l'un de l'autre au sens suivant : pour tout u de $L^2(\mathbf{R}^n)$ à support dans U_o et pour tout $v \in L^2(M)$, on a :

(4.3)
$$\int_{\omega_0} (\Theta_{\times} u) \cdot v \, dy = \int_{U_0} u \cdot (\Phi_{\times} v) \, d\xi$$

On remarque encore que Θ_{\times} opère de $\mathcal{B}(U_o)$ dans $\mathcal{B}(w_o)$ et se prolonge de $\mathcal{B}'(\mathbb{R}^n)$ dans $\mathcal{B}'(w_o)$ et que Φ_{\times} opère de $C^\infty(M)$ dans $C^\infty(U_o)$ et se prolonge de $\mathcal{B}'(M)$ dans $\mathcal{B}'(U_o)$.

Conformément au théorème 3.1 on note $X_{i,x}=(\theta_x)_*X_i$ l'image de X_i par θ_x ; pour $u\in C^\infty(M)$ on a donc :

$$(x_{i}u) \circ \theta_{x}^{-1} = x_{i,x}(u \circ \theta_{x}^{-1})$$

 $(x_{i}^{*}u) \circ \theta_{x}^{-1} = \delta_{x}^{-2} x_{i,x}^{*}(\delta_{x}^{2}u \circ \theta_{x}^{-1})$.

Utilisant en outre le fait que :

$$X_{i,x}^*(u.v) = (X_{i,x}^*u).v-u.(X_{i,x}^*v)$$

on obtient que :

(4.4)
$$\forall u \in C^{\infty}(M)$$
 $\Phi_{\mathbf{X}} C u = C_{\mathbf{X}} \Phi_{\mathbf{X}} u$

où C est l'opérateur

(4.5)
$$Q_{x} = \sum_{i=1}^{D} X_{i,x}^{*} \cdot X_{i,x} + c_{x}$$

avec

(4.6)
$$c_{\times} = c_{\circ} \theta_{\times}^{-1} + \left\{ \sum_{i=1}^{p} (x_{i,\times}^{*} x_{i,\times})(\delta_{\times}) \right\} / \delta_{\times}$$

Notons que $(x, \xi) \to c_{\times}(\xi)$ est C^{∞} sur $w_{i} \times U_{s}^{\delta_{\times}}$

Utilisant (4.3.) pour $v \in \mathcal{B}(w_{o})$ on obtient aussi que (4.7) $\forall u \in \mathcal{B}(U_{o})$ $C \in \mathcal{B}(u)$

Nous transformons les $a_{\mathbf{x}}$ par $h_{\mathbf{t}}$ et nous définissons pour $t \ge 1$ sur $h_t(U_o) \supset U_o$ les opérateurs $C_{t,x}$ et $X_{i,t,x}$ par :

avec

$$c_{t.x} = t^{-2} \cdot c_x \cdot h_t^{-1}$$

Suivant le théorème 3.1 on introduit encore les champs $\hat{X}_{i,x}$ partie homogène de degré 1 de $X_{i,x}$ et les opérateurs de (3.17) partie homogène de degré 2 de C. . Il sera agréable de convenir que pour $t = + = X_{i,t,x} = \hat{X}_{i,x}$, $c_{t,x} = 0$ et $a_{t,x} = \hat{a}_{x}$.

Lemme 4.1. soit w_2 un compact de w_1 ; les opérateurs $C_{t,\times}$ et les champs $X_{i,t,\times}$, pour $(t,\times)\in [1,\infty]\times w_2$ vérifient les hypothèses (2.9) et (2.10) sur l'ouvert U_a .

<u>Démonstration</u> : $(\theta_X)_*$ étant un homomorphisme d'algèbre de Lie on a :

 \forall $\times \in \omega_1$, \forall $\xi \in U_n$, \forall $k = 1, ..., r : dim <math>V_k(\xi; X_1, x, ..., X_p, x) = \omega_k$ on en déduit que pour $t \in [1, \infty[$

$$(4.9) \ \forall \times \in \omega_1, \ \forall \ \xi \in U_o \subset h_t(U_o) \ \forall \ k = 1, \dots, r : \dim V_k(\xi; X_{1,t,\times}, \dots, X_{p,t\times})$$

$$= V_k$$

Le point iii) du théorème 3.1 affirme que (4.9) a encore lieu pour $t=+\infty$; l'hypothèse (2.10) est donc satisfaite.

Ecrivons le champ $X_{i,x}$ sous la forme $\sum_{j=1}^{n} a_{j}(x,\xi) \frac{\partial}{\partial \xi_{j}}$. Les fonctions a_{j} sont C^{∞} sur $w_{i} \times U_{o}$ et puisque $X_{i,x}$ est d'ordre ≤ 1 en o, pour tout $x \in w_{i}$ $a_{j}(x,\cdot) \in C^{\infty}_{[j]-1}(U_{o})$; on peut donc écrire :

$$x_{i,x} = \sum_{j=1}^{n} \sum_{[\alpha] = [j] - 1} a_{j}^{\alpha(x, \xi) \cdot \xi^{\alpha}} \frac{\partial}{\partial \xi_{j}}$$

les fonctions $a_j^{\alpha}(x, \xi)$ étant C^{∞} sur $\omega_1 \times U_0$.

On a:

$$X_{i,t,x} = \sum_{j=1}^{n} \sum_{\alpha = [j]-1} a_{j}^{\alpha}(x, h_{t}^{-1}, \xi) \cdot \xi^{\alpha} \frac{\partial}{\partial \xi_{j}}$$
et
$$\hat{X}_{i,x} = \sum_{j=1}^{n} \sum_{\alpha = [j]-1} a_{j}^{\alpha}(x, \alpha) \cdot \xi^{\alpha} \frac{\partial}{\partial \xi_{j}} \cdot$$

Le lemme 4.1 résulte donc du lemme suivant :

Lemme 4.2. : soit c une fonction C^{∞} sur $\omega_{4} \times U_{6}$; pour $t \in [1, \infty[$ on pose $c_{k}(x, \xi) = c(x, h_{t}^{-1}\xi)$ et $C_{\infty}(x, \xi) = c(x, 0)$. Alors l'application $t \to c_{t}$ est continue de $[1, \infty]$ dans $C^{\infty}(\omega_{4} \times U_{6})$, et l'application $(t, x) \to c_{t}(x, .)$ est continue de $[1, \infty] \times \omega_{4}$ dans $C^{\infty}(U_{6})$.

Nous avons aussi :

Lemme 4.3. : soit \overline{w}_2 un compact de w_1 ; soit 8 un borné de $\mathscr{B}(\mathbf{R}^n)$. Alors $G_{t,\times}$ u converge dans $\mathscr{B}(\mathbf{R}^n)$ vers \widehat{G}_{\times} u lorsque $t \to +\infty$ uniformément par rapport à $(\times, u) \in \overline{w}_2 \times 8$.

<u>Démonstration</u>: il existe un compact K tel que supp $u \subset K$ pour tout u de B; pour $t \ge t_1 \ge 1$ on a $K \subset h_t(U_s)$ et $G_{t,x} B \subset \mathcal{B}(\mathbb{R}^n)$.

On vérifie comme ci—dessus que les coefficients de $\widehat{G}_{t,\times}$ sont des fonctions continues de $(t,\times)\in [t_1,\infty]\times w_1$ à valeurs dans $C^\infty(K)$; par suite les coefficients de $G_{t,\times}$ convergent lorsque $t\to +\infty$, dans $C^\infty(K)$, vers les coefficients de G_{\times} , uniformément en $\times\in\overline{w}_2$, et le lemme en découle aussitôt.

Pour $u \in L^2(U_0)$ [resp. $L^2(w_0)$] on convient de noter \widetilde{u} le prolongement de u par o sur $\mathbb{R}^n \setminus U_0$ [resp $M \setminus w_0$]; en particulier on note $\widetilde{\Theta}_{\chi}$ et $\widetilde{\Phi}_{\chi}$ les opérateurs $\widetilde{\Theta}_{\chi} u = \widetilde{\Phi_{\chi}} \widetilde{u}$ et $\widetilde{\Phi}_{\chi} v = \widetilde{\Phi_{\chi}} v$.

De même on prolonge $E(\lambda)$ en un projecteur orthogonal dans $L^2(M)$, $\widetilde{E}(\lambda)$, en définissant $\widetilde{E}(\lambda)v$ comme étant le prolongement par o sur $M\setminus \Omega$ de $E(\lambda)(v_{\lambda})$.

Pour $\mathbf{t} \in [1,\infty[$, $\times \in \omega_1$ et $\lambda > 0$ on introduit l'opérateur

$$(4.10) E_{t,\times}(\lambda) = H_t^{-1} \widetilde{\Phi}_{\times} \widetilde{E}(t^2 \lambda) \widetilde{\Theta}_{\times} H_t$$

où H_t est l'isométrie de $L^2(\mathbf{R}^n)$ définie en (3.21)

 $E_{t,x}(\lambda)$ est un opérateur borné dans $L^2(\mathbf{R}^n)$, de norme ≤ 1 .

Notant $\Omega_{\times} = U_{o} \cap \theta_{\times}(w_{o} \cap \Omega)$ et $\Omega_{t,\times} = h_{t}(\Omega_{\times})$, on déduit de la définition (4.10) que le noyau de $E_{t,\times}(\lambda)$ est

 C^{∞} sur $\Omega_{t,\times} \times \Omega_{t,\times}$ et est donné pour $(\xi,\eta) \in \Omega_{t,\times} \times \Omega_{t,\times}$ par :

$$(4.11) \ e_{t,x}(\lambda;\xi,\eta) = t^{-\nu} \ \delta_{x}(h_{t}^{-1}\xi) \cdot \delta_{x}(h_{t}^{-1}\eta) \cdot e(t^{2}\lambda;\theta_{x}^{-1}h_{t}^{-1}\xi;\theta_{x}^{-1}h_{t}^{-1}\eta)$$

En particulier pour tout $x \in \omega_1 \cap \Omega$, $\alpha \in \Omega_{t,x}$ et

(4.12)
$$\forall x \in \omega_1 \cap \Omega : e(t^2 \lambda ; x, x) = t^{\nu} (\delta_x(\alpha))^{-2} \cdot e_{t,x}(\lambda ; \alpha, \alpha)$$

On introduit encore les opérateurs $F_{t,x}(\lambda)$, bornés dans $L^2(U_o)$ et de normes \leq 1 définis par :

(4.13)
$$\forall u \in L^{2}(U_{o}) : F_{t,x}(\lambda)u = \left(E_{t,x}(\lambda)\widetilde{u}\right)_{U_{o}}$$

Ls noyau de $F_{t,\times}(\lambda)$ est C^{∞} sur $(U_{o} \cap \Omega_{t,\times}) \times (U_{o} \cap \Omega_{t,\times})$ et y est égal à $e_{t,\times}(\lambda; \xi, \eta)$.

Pour u et v dans $L^2(U_0)$ on a :

$$\int_{U_n} F_{t,x}(\lambda) u \cdot v \, d\xi = \int_{\mathbb{R}^n} \left(\widetilde{\Phi}_{x} \, \widetilde{E}(t^2 \lambda) \, \widetilde{\Theta}_{x} H_{t} \widetilde{u} \right) \, H_{t} \widetilde{v} \, d\xi \, .$$

Or $H_{t}\widetilde{v}$ est à support dans $h_{t}^{-1}v_{o}\subset U_{o}$; par (4.3) on a alors : $\int_{U_{t}} \left(F_{t,x}(\lambda)u\right)v \ d\xi = \int_{U_{t}} \left(\widetilde{E}(t^{2}\lambda)\widetilde{\Theta}_{x}H_{t}\widetilde{u}\right)\cdot\left(\widetilde{\Theta}_{x}H_{t}\widetilde{v}\right) \ dy$

et il est alors clair que $F_{t,\times}(\lambda)$ est positif autoadjoint dans $L^2(U_n)$.

4.2 Etude à l'intérieur

Nous passons à la démonstration du Théorème 1.1 : fixons nous un compact $\overline{w}_2 \subset w_1 \cap \Omega$; il existe $t_1 \geq 1$ tel que pour tout $t \geq t_1$ et tout $x \in \overline{w}_2$, $\Omega_{t,x}$ contienne U_0 ; le schéma de la démonstration est le suivant : utilisant la proposition 2.7 , on prouve le

Lemme 4.4. l'ensemble des fonctions $e_{t,x}(\lambda; ., .)$ pour $t \ge t_1$, $x \in \overline{w}_2$ et $\lambda \le 1$ est un borné $\mathfrak B$ de $C^{\infty}(U_0 \times U_0)$. Ensuite on déduit de la convergence $G_{t,x} \longrightarrow \hat{G}_{x}$ par une adaptation du théorème 3.6 le

Lemme 4.5. pour tout
$$\lambda$$
 et tout $f \in L^2(\mathbb{R}^n)$, on a :

$$\lim_{t \to +\infty} \{ \sup_{x \in \overline{w}_2} \| E_{t,x}(\lambda) f - \widehat{E}_x(\lambda) f \|_{L^2(\mathbb{R}^n)} \} = 0$$

On en déduit alors, avec le lemme 2.6 , la convergence dans $\mathfrak{B}^{\bullet}(\mathbb{R}^{n}\times\mathbb{R}^{n}) \text{ du noyau } e_{\mathsf{t},\mathsf{x}}(\lambda) \text{ de } \mathsf{E}_{\mathsf{t},\mathsf{x}}(\lambda) \text{ vers } \hat{\mathsf{e}}_{\mathsf{x}}(\lambda) \text{ , uniformément par rapport à } \mathsf{x} \in \underline{\mathsf{w}}_{2} \text{ ; mais sur le borné } \mathsf{B} \text{ la topologie } \mathsf{de } \mathcal{B}^{\bullet}(\mathsf{U}_{0}\times\mathsf{U}_{0}) \text{ et la topologie de } \mathsf{C}^{\infty}(\mathsf{U}_{0}\times\mathsf{U}_{0}) \text{ coincident ; par suite } \mathsf{e}_{\mathsf{t},\mathsf{x}}(\lambda;\,\cdot,\,\cdot) \text{ converge vers } \hat{\mathsf{e}}_{\mathsf{x}}(\lambda\;,\,\cdot,\,\cdot) \text{ dans } \mathsf{C}^{\infty}(\mathsf{U}_{0}\times\mathsf{U}_{0}) \text{ uniformément par rapport à } \mathsf{x} \in \underline{\mathsf{w}}_{2} \text{ . En particulier : }$

(4.14)
$$\lim_{t \to +\infty} \{ \sup_{x \in \overline{\omega}_2} | e_{t,x}(\lambda; 0, 0) - \hat{e}_{x}(\lambda, 0, 0) | \} = 0$$

démontré la :

Proposition 4.6. sous les hypothèses du théorème 1.1, pour tout $x_0 \in \omega \cap \overline{\Omega}$, il existe un voisinage ω_1 de x_0 , une fonction γ continue et strictement positive sur ω_1 telle que pour tout compact $K \subset \omega_1 \cap \Omega$, on ait : $\lim_{\lambda \to +\infty} \left\{ \sup_{x \in K} |\lambda^{-\sqrt{2}} e(\lambda; x, x) - \gamma(x)| \right\} = 0$

Il en résulte que la fonction

$$\gamma(x) = \lim_{\lambda \to +\infty} \lambda^{-\sqrt{2}} e(\lambda; x, x)$$

est définie sur $\ \omega$ $\ \Omega$, et se prolonge (de manière unique !) en fonction continue strictement positive sur $\ \omega$ $\ \Omega$.

Il nous suffit donc de prouver les lemmes 4.4 et 4.5 pour achever la démonstration du théorème 1.1.

Démonstration du Lemme 4.4.

Nous avons déjà vérifié que les opérateurs $G_{t,x}$ satisfont aux hypothèses (2.9) et (2.10) (Lemme 4.1) (ici $t \in [1, \infty]$, avec la convention $G_{\infty,x} = \hat{G}_{x}$). Nous allons prouver que les opérateurs $F_{t,x}(\lambda)$, autoadjoints dans $L^2(U_0)$, vérifient (2.11), la proposition 2.7 donnant directement le lemme 4.4.

Utilisant (4.4) on obtient que :

$$\Phi_{\mathbf{x}} \mathbf{G}^{\mathbf{k}} \mathbf{w} = \mathbf{G}^{\mathbf{k}} \Phi_{\mathbf{x}} \mathbf{w}$$
 dans $\Omega_{\mathbf{x}}$

et:

$$\forall k \in \mathbb{N} \quad G_{\times}^{k} \, \Phi_{\times} \, w \in L^{2}(\Omega_{\times}) \quad \text{et} \\ \left\| G_{\times}^{k} \, \Phi_{\times} \, w \right\|_{L^{2}(\Omega_{\times})} \leq \lambda^{k} \cdot t^{2k} \, \left\| u \right\|_{L^{2}(U_{\Omega})}$$

Par (4.8) on a aussi :

$$G_{t,x}^{k} H_{t}^{-1} \widetilde{\Phi}_{x}^{k} w = t^{-2k} H_{t}^{-1} G_{x}^{k} \widetilde{\Phi}_{x}^{k} w \quad \text{sur} \quad \Omega_{t,x}^{k}$$

Par suite, pour $t \ge t_1$ on a puisque $\Omega_{t,x} \supset U_0$:

$$\forall k \in \mathbb{N}$$
 $G_{t,x}^k F_{t,x}(\lambda) u \in L^2(U_0)$ et

$$\|\alpha_{t,x}^k F_{t,x}(\lambda) u\|_{L^2(U_0)} \le \lambda^k \|u\|_{L^2(U_0)}$$

ce qui achève la vérification de l'hypothèse (2.11) .

Démonstration du Lemme 4.5

Nous reprenons la démonstration du théorème 3.6 (cf [8]).

Fixons nous $f \in L^2(\mathbb{R}^n)$, $\lambda > 0$ et $\varepsilon > 0$ ($\varepsilon < 1$). D'après la proposition 3.7 il existe $\eta > 0$ tel que pour tout $x \in \overline{\omega}_2$:

$$\left\{ \begin{array}{c} \left\| \hat{E}_{x}(\lambda + \eta) f - \hat{E}_{x}(\lambda) f \right\|_{0} \leq \varepsilon \\ \left\| \hat{E}_{x}(\lambda) f - \hat{E}_{x}(\lambda - \eta) f \right\|_{0} \leq \varepsilon \end{array} \right.$$

Pour alléger les notations nous posons $E_{\times}^{+}=1-\hat{E}_{\times}(\lambda+\eta)$ et $E_{\times}^{-}=\hat{E}_{\times}(\lambda-\eta)$. D'après la proposition 3.7 les ensembles $K_{\pm}=\{E_{\times}^{\pm}f; \times \in \overline{\omega}_{2}\}$, images d'un compact par une application continue, sont des compacts de $L^{2}(\mathbb{R}^{n})$.

On désigne par Γ_+ [resp. Γ_-] le cercle dans le plan complexe de centre O de rayon $(\lambda + \mathbb{N}_2)$ [resp $\lambda - \mathbb{N}_2$], et par Γ_+^i [resp Γ_-^i] l'arc de cercle des $\mu \in \Gamma_+$ [resp $\mu \in \Gamma_-$] tels $|\mu - \lambda - \mathbb{N}_2| \ge \varepsilon \eta$ [resp $|\mu - \lambda + \mathbb{N}_2| \ge \varepsilon \eta$].

On déduit de la proposition 3.5 qu'il existe des bornés \mathbf{g}_+ et \mathbf{g}_- de $\mathbf{B}(\mathbf{R}^n)$ tels que

(4.17)
$$\forall (x, \mu) \in \overline{\omega}_2 \times \Gamma_{\pm}^1 \quad \exists g \in \mathbb{R}_{\pm} : \|(\hat{G}_{x} - \mu)g - E_{x}^{\pm} f\|_{G} \leq \varepsilon^2 \eta$$

Notant la majoration :

$$\forall \mu \in \Gamma_{\pm}^{r} \quad \left\| \left(\hat{A}_{\times} - \mu \right)^{-1} \right\|_{L^{2}(\mathbb{R}^{n}) \to L^{2}(\mathbb{R}^{n})} \leq \frac{1}{\varepsilon \eta}$$

on a avec les notations de (4.17)

$$||g - (\hat{A}_{x} - \mu)^{-1} E_{x}^{\pm} f||_{Q} \leq \varepsilon$$

D'après le lemme 4.3 il existe $t_0 \ge t_1$ tel que pour tout $t \ge t_0$ on ait :

(4.19)
$$\sup_{\mathbf{x} \in \overline{\mathbf{w}}_{2}} \sup_{\mathbf{u} \in \mathbf{B}_{+}^{+} \cup \mathbf{B}_{-}} \|\mathbf{G}_{t,\mathbf{x}} - \hat{\mathbf{G}}_{\mathbf{x}} \|_{2} \leq \epsilon^{2} \eta$$

D'autre part, on déduit de l'inclusion $\overline{w}_2 \subset w_1 \cap \Omega$ et de la compacité de \overline{w}_2 qu'il existe un voisinage $U_1 \subset U_0$ de 0 tel que pour tout $x \in \overline{w}_2$ $\theta_x(w_1 \cap \Omega) \supset U_1$. On peut supposer t_0 assez

grand pour que pour tout $t \ge t_n$ on ait

$$\forall u \in \mathcal{B}_{+} \cup \mathcal{B}_{-}$$
 supp $(u \circ h_{t}) = \text{supp } H_{t} \cup U_{1}$

Pour $u \in \mathcal{B}_+ \cup \mathcal{B}_-$ et $t \ge t_0$ on a donc $H_t u \subset \mathcal{B}(U_1)$ et par suite \mathcal{B}_\times $H_t u \in \mathcal{B}(\omega_1 \cap \Omega)$. Par (4.7) et (4.8) on a alors :

$$(4.20) \quad (G - t^2 \mu) \otimes_{\times} H_t u = t^2 \otimes_{\times} (G_{t, \times} - \mu) u \in \mathcal{B}(\omega_1 \cap \Omega)$$

Nous notons $R(\mu) = (A - \mu)^{-1}$ la résolvante de A et $\widetilde{R}(\mu)$ l'opérateur défini par : $\widetilde{R}(\mu)v$ est le prolongement par 0 sur $M \setminus \Omega$ de $R(\mu)(v_{\mid \Omega})$. Pour $u \in \mathcal{B}_+ \cup \mathcal{B}_-$ on a $\mathcal{B}_+ \cup \mathcal{B}_+ \cup \mathcal{$

$$\Theta_{X} H_{t} u = t^{2} R(t^{2} \mu) \Theta_{X} H_{t}(G_{t,X} - \mu) u$$

et

(4.21)
$$\widetilde{\Theta}_{\times} H_{t} u = t^{2} \widetilde{R}(t^{2} \mu) \cdot \widetilde{\Theta}_{\times} H_{t}(G_{t,\times} - \mu) u$$

On a la majoration suivante :

(1.22)
$$\|t^2 \widetilde{R}(t^2 \mu)\| \leq \frac{1}{\varepsilon \eta} \qquad (\mu \in \Gamma_{\pm}^{\bullet})$$

On pose pour simplifier :

$$S_{t,x}(\mu) = \widetilde{\Theta}_{x} H_{t}(\widehat{A}_{x} - \mu)^{-1} - t^{2} \widetilde{R}(t^{2} \mu) \widetilde{\Theta}_{x} H_{t}$$

On déduit alors des estimations (4.17) à (4.22) que :

On définit encore les opérateurs :

$$\Delta_{t,x}^{+}(\mu) = \widetilde{E}(t^{2} \lambda) S_{t,x}(\mu) E_{x}^{+}$$

$$\Delta_{t,x}^{-}(\mu) = (1 - \widetilde{E}(t^{2} \lambda)) S_{t,x}(\mu) E_{x}^{-}$$

Notons les majorations :

$$\sup_{\mu \in \Gamma_{\pm}} \|(\widehat{A}_{x} - \mu)^{-1} E_{x}^{\pm}\| \leq 2/\eta$$

$$\sup_{\mu \in \Gamma_{\pm}} \|\widehat{E}(t^{2} \lambda) t^{2} \cdot \widehat{R}(t^{2} \mu)\| \leq 2/\eta$$

$$\sup_{\mu \in \Gamma_{\pm}} \|(1 - \widetilde{E}(t^{2} \lambda)) t^{2} \cdot \widehat{R}(t^{2} \mu)\| \leq 2/\eta$$

les normes étant celles d'opérateurs de L²

On en déduit la majoration :

$$(4.24) \qquad \sup_{\mu \in \Gamma_{+}} \|\Delta_{t,x}^{\pm}(x)\|_{L^{2}(\mathbb{R}^{n}) \to L^{2}(M)} \leq 4/\eta$$

On considère maintenant les intégrales $\frac{1}{2i\pi}\int_{\Gamma_{+}}\Delta_{t,x}^{\pm}(\mu)f_{\bullet}d\mu$.

On majore l'intégrale sur Γ_\pm^i par (4.23) et l'intégrale sur $\Gamma_+ \setminus \Gamma_\pm^i$ par (4.24) pour obtenir :

Or, on a :

$$\frac{1}{2i\pi} \int_{\Gamma_{+}} \Delta_{t,*}^{+}(\mu) f_{\bullet} d\mu = -\widetilde{E}(t^{2} \lambda) \widetilde{\Theta}_{X} H_{t}(1 - \hat{E}_{X}(\lambda + \eta)) f$$

$$\frac{1}{2i\pi} \int_{\Gamma_{-}} \Delta_{t,*}^{-}(\mu) f_{\bullet} d\mu = (1 - \widetilde{E}(t^{2} \lambda)) \widetilde{\Theta}_{X} H_{t} \hat{E}_{X}(\lambda - \eta) f$$

Ajoutant ces égalités et tenant compte de (4.16) et (4.25), on obtient finalement que :

(4.26)
$$\sup_{t \ge t_0} \sup_{x \in \overline{u}_2} \|\widetilde{E}(t^2 \lambda)\|_{X}^{\widetilde{\Theta}} + \|_{t}^{f} - \widetilde{\Theta}_{x} + \|_{t}^{\widehat{E}_{x}(\lambda)} \|_{L^{2}(M)}^{2}$$

$$\leq (6\lambda + 18) \varepsilon$$

Revenant à la définition de $E_{t,x}(\lambda)$ ((4.10)), en notant $G_{t,x}=H_t^{-1}\widetilde{\Phi}_x\widetilde{\Theta}_xH_t$, et utilisant une fois de plus que $\widetilde{\Phi}_x$ et H_t^{-1} sont de norme ≤ 1 , on a :

$$(4.27) \sup_{t \geq t_0} \sup_{x \in \overline{w}_2} ||E_{t,x}(\lambda)f - G_{t,x}.\widehat{E}_{x}(\lambda)f||_{L^{2}(\mathbb{R}^{n})} \leq (6\lambda + 18)\varepsilon$$

On aura terminé la démonstration si l'on prouve que pour tout $u \in L^2(\mathbb{R}^n)$ $G_{t,\times}$ $u \to u$ quand $t \to +\infty$, uniformément en $x \in \overline{w}_2$; en effet, par la proposition 3.7 l'ensemble des $\widehat{E}_{\chi}(\lambda)f$ $(x \in \overline{w}_2)$ est un compact. K de $L^2(\mathbb{R}^n)$ et alors la convergence $G_{t,\chi}$ $u \to u$ sera uniforme en $(x, u) \in \overline{w}_2 \times K$ et par suite, on aura :

$$\lim_{t \to +\infty} \{ \sup_{x \in \overline{\omega}_2} \| (G_{t,x} - 1) \hat{E}_x(\lambda) f \|_{L^2(\mathbb{R}^n)} \} = 0$$

ce qui, joint à (4.27) , donne bien la proposition.

Or, pour $\varphi \in \mathcal{B}(R^{n})$, pour t assez grand, on a $H_{t} \varphi \in \mathcal{B}(U_{0}) \text{ et } \Theta_{\times} H_{t} \varphi \in \mathcal{B}(\omega_{0}) \text{ ; mais alors on a}$ $\Phi_{\times} \stackrel{\widetilde{\Theta}}{\sim} H_{t} \varphi = H_{t} \varphi \in \mathcal{B}(U_{0}) \text{ et } G_{t, \times} \varphi = \varphi \text{ . Comme de plus}$ $\|G_{t, \times}\|_{L^{2}(R^{n}) \to L^{2}(R^{n})}^{2} \leq 1 \text{ , il en résulte que } G_{t, \times} \text{ converge}$ fortement vers l'identité uniformément en $\times \in \overline{\omega}_{2}$.

4.3 Etude au voisinage du bord

Nous abordons maintenant la démonstration du théorème 1.3 : nous supposons donc en plus des hypothèses précédentes que $\overline{\Omega}$ est compact, que $\overline{\Omega} \subset \omega$ et que (A, D(A)) est l'extension de Fried richs de $(G, \mathcal{B}(\Omega))$. On introduit l'espace $V = D(A^{\frac{1}{2}})$ qui est l'adhérence de $\mathcal{B}(\Omega)$ dans l'espace :

{
$$u \in L^2(\Omega) \mid \forall i = 1, ..., p : X_i u \in L^2(\Omega)$$
 }.

Nous reprenons les notations du paragraphe 4.1 et nous fixons $x_0 \in \partial \Omega$ et $\overline{w}_2 \subset w_1$ un voisinage compact de x_0 . On pose $\Omega_{t,x}^i = \Omega_{t,x}$ \cap U_0 et l'on définit $V_{t,x}$ comme étant l'adhérence de $\mathcal{B}(\Omega_{t,x}^i)$ dans

(4.28) {
$$u \in L^2(\Omega^i_{t,x}) / \forall i = 1,...,p : X_{i,t,x} u \in L^2(\Omega^i_{t,x})$$
 }
Nous notons d'abord le

Lemme 4.7. Pour $u \in L^2(\Omega)$ H_t^{-1} Φ_x u est défini sur $\Omega_{t,x}^i$; de plus si $u \in V$ et si $\zeta \in \mathcal{B}(U_0)$ alors ζH_t^{-1} Φ_x $u \in V_{t,x}$. Démonstration. Si $u \in L^2(\Omega)$, Φ_x u est défini sur Ω_x , et H_t^{-1} Φ_x u est défini sur $h_t(\Omega_x) = \Omega_{t,x} \supset \Omega_{t,x}^i$. De plus, on a, pour $\zeta \in \mathcal{B}(U_0)$:

$$\zeta H_{t}^{-1} \Phi_{x} u = H_{t}^{-1} \Phi_{x} (\zeta \circ h_{t} \circ \theta_{x}) u .$$

On en déduit que pour $u\in\mathcal{B}(\Omega)$, $(\zeta\circ h_t\circ\theta_{\times})$ u est à support compact dans $\theta_{\times}^{-1}(h_t^{-1}(U_o))\cap\Omega$ et par suite que $\zeta.H_t^{-1}\Phi_{\times}$ $u\in\mathcal{B}(\Omega_{t,\times}^i)$.

On a d'autre part pour $v \in V$:

$$X_{i,t,x}$$
 H_t^{-1} Φ_x $V = t^{-1}$ H_t Φ_x X_i V

d'où il résulte la continuité de l'application $u \to \zeta h_t^{-1} \Phi_x u$ de V dans l'espace (4.28).

La conjonction des deux remarques donne le Lemme.

Pour (t, x) \in [1, ∞ [x \overline{w}_2 nous définissons les opérateurs $E_{t,x}^{\prime}$ positifs autoadjoints dans $L^2(\Omega_{t,x}^{\prime})$ en posant :

$$(E_{t,x}^{i}u) = (F_{t,x}(\lambda)^{\widetilde{u}})|_{\Omega_{t,x}^{i}}$$

 ${\mathfrak V}$ étant le prolongement de u par ${\mathfrak V}$ sur ${\mathbb V}_{{\mathfrak O}}$ ${\mathfrak N}_{{\mathsf t},\times}^{{\mathsf t}}$

Notre but est d'appliquer la proposition 2.8 : nous savons déjà que les hypothèses (2.9) et (2.10) sont satisfaites par les opérateurs $\mathbf{C}_{\mathsf{t},\mathsf{x}}$ ($\mathsf{t} \in [1,\infty], \mathsf{x} \in \overline{\mathbf{w}}_2$) sur U_0 ; c et les X_1 étant bornés sur un voisinage de $\overline{\Omega}$, l'hypothèse (2.13) est aussi satisfaite, quitte à restreindre w_0 .

Soit
$$u \in L^{2}(\Omega_{t,x}^{i})$$
; soit $v = (\widetilde{\Theta}_{x} H_{t} \widetilde{u})_{|\Omega_{t}}$

Sur $\Omega_{t,x}^{i}$, on a :

$$E_{t.x}^{\dagger} u = H_{t}^{-1} \Phi_{x} E(t^{2} \lambda) v$$

Comme pour le lemme 4.4 on a

$$\|\mathbf{G}_{t,x}^{k} \, \mathbf{E}_{t,x}^{i} \, \mathbf{u}\|_{L^{2}(\Omega_{t,x}^{i})} \leq \lambda^{k} \|\mathbf{u}\|_{L^{2}(\Omega_{t,x}^{i})}$$

G'est-à-dire que les hypothèses (2.15) et (2.16) sont satisfaites. De plus, on déduit immédiatement de (4.29), du lemme 4.7 et de l'appartenance : $G^k E(t^2 \lambda) \in D(A) \subset V$, que l'hypothèse (2.17) est aussi satisfaite.

Le noyau de $E_{t,x}^i$ est la restriction à $\Omega_{t,x}^i \times \Omega_{t,x}^i$ du noyau de $F_{t,x}(\lambda)$ et est donc aussi la restriction à $\Omega_{t,x}' \times \Omega_{t,x}'$ du noyau de $E_{t-x}(\lambda)$.

Appliquant la proposition 2.8 et utilisant (4.11) on obtient le

Lemme 4.8. Pour tout
$$\lambda > 0$$
, la fonction
$$K(t, x) = \int_{\Omega} \int_{\Omega} \left(h_{t}^{-1}(U_{0}) \right) dy$$
 est bornée sur [1, ∞ [\times \overline{w}_{2} .

Nous aurons besoin du lemme suivant :

Lemme 4.9. Posant $\Gamma_{t,y} = \{ x \in \overline{w}_2 / \theta(x, y) \in h_t^{-1}(U_0) \}$, il existe $t_1 \ge 1$, $c_0 > 0$ et un voisinage $\overline{w}_0^i \subset w_2$ de x_0 tels que : $\forall t \ge t_1$, $\forall y \in \overline{w}_0^i$: $\int_{\Gamma_{t,y}} dx \ge c_0.t^{-y}$

$$\forall t \ge t_1$$
, $\forall y \in \overline{w}_0^t$: $\int_{\Gamma_{t,y}} dx \ge c_0 \cdot t^{-\gamma}$

Démonstration.

Notons θ^{y} l'application $x \to \theta(x, y)$.

Pour tout \times on a $\theta(\times, \times) = 0$; différentiant on obtient que :

$$d\theta_{\times_{\Omega}}(\times_{\Omega}) + d\theta^{\times_{\Omega}}(\times_{\Omega}) = 0$$

Puisque $d\theta_{x_0}(x_0)$ est bijective, l'application $(x,y) \longmapsto (\theta(x,y),y)$ est un difféomorphisme d'un voisinage $\omega_3 \times \omega_3$ de (x_0,x_0) sur un voisinage de $(0,x_0)$ qui contient un voisinage de la forme $U_1 \times \overline{\omega}_0^*$. On a $\overline{\omega}_0^* \subset \omega_3$ et l'on peut supposer $\omega_3 \subset \omega_2$. Donc, pour $y \in \overline{\omega}_0^*$ est un difféomorphisme de ω_3 sur $\theta^y(\omega_3) \supset U_1$.

Pour t assez grand, on a $h_t^{-1}(U_0)\subset U_1$ et $\Gamma_{t,y}\subset \omega_3$. Restreignant au besoin les voisinages, on a $\Gamma_{t,y}=(\theta^y)^{-1}(H_t^{-1}(U_0))$ et :

$$\int_{\Gamma_{t,y}} dx \ge c_0 \int_{h_t^{-1}(U_0)} d\xi = c_0 t^{-\nu} \int_{U_0} d\xi$$

et le lemme suit.

Nous sommes maintenant en mesure de démontrer :

Proposition 4.10. sous les hypothèses du théorème 1.3, pour tout $x_0 \in \partial\Omega$, il existe un voisinage w_0 de x_0 , et une constante C tels que : quel que soit l'ouvert $w' \subset w_0$, on a :

(4.30)
$$\limsup_{t \to +\infty} \int_{\omega^i \cap \Omega} t^{-\nu} e(t^2; x, x) dx \le C \int_{\overline{\omega^i \cap \Omega}} dx.$$

$$\begin{split} & \overset{w^{i}}{t} = \underset{y \in w^{i} \cap \Omega}{ U} \overset{\Gamma}{\Gamma_{t,y}} \subset \underset{2}{w_{2}} \text{ et pour } t \geq t_{1} : \\ & \int_{\Omega \cap w^{i}} c_{0} t^{-\nu} \cdot e(t^{2}; y, y) dy \leq \int_{w^{i}_{t}} K(t, x) dx \end{split}$$

On obtient la proposition en remarquant que $\bigcap w' = \overline{w' \cap \Omega}$ t la nous reste à vérifier que la proposition 4.10 et le théorème 1.1 impliquent le théorème 1.3 : considérant un recouvrement fini de $\partial \Omega$, on obtient l'estimation 4.30 pour $w' \subset w$ étant un voisinage de $\partial \Omega$. Il en résulte que si $\partial \Omega$ est de mesure nulle, on peut trouver une suite de compacts $K_p \subset \Omega$ tels que :

Appliquant le théorème 1.1 sur chaque K_p on obtient : $\lim_{t \to +\infty} \int_{\Omega} t^{-\nu} e(t^2; x, x) dx = \int_{\Omega} \gamma(x) dx$

c'est-à-dire l'estimation cherchée.

NOTES

- (¹) Variété est pris au sens de DE RHAM (variétés différentiables, HERMAN, 1955) : M est supposée séparable et donc σ₋ compacte.
- (2) La notation w_1 \subset \subset w signifie que \overline{w}_1 est un compact inclus dans w .

[1]	N. DUNFORD - J.T.	SCHWARTZ Linear Operators : New York Interscience
[5]	A. EL KOLLI	n-ième épaisseur dans les espaces de So- bolev, C.R. Ac. Sc. t 272 (1971)
[3]	G.B. FOLLAND	Subelliptic estimates and function spaces on nilpotent Lie groups.; Arkiv. för Mat, 13, (1975)
[4]	G.B. FOLLAND - E.	STEIN Parametrices and estimates for the δ_b complex on strongly pseudo convex boundaries; Bull. Amer. Math. Soc., 80, (1974)
[5]	G.B. FOLLAND - E.	STEIN Estimates for the $\frac{1}{6}$ complex and analysis on the Heisenberg group; Comm. Pure Appl. Math, 27, (1974).
[6]	R. GOODMAN	Lifting vector fields to nilpotent Lie groups, Publications I.H.E.S.
[7]	L. HORMANDER	Hypoelliptic second order differential equations; Acta. Math, 119, (1967)
[8]	T. KATO	Perturbation theory for linear operators ; Springer Verlag (1966)
[a]	J.J. KOHN	Pseudo differential operators and non elliptic problems; C.I.M.E. (1968)
[10]	J.J. KOHN	Pseudo differential operators and hypoel- lipticity; Proc. Symp. Pure Math, 23, Amer. Math. Soc., (1973)
[11]	KOLMOGOROV	Uber die beste Annäherung; Ann. of Math, 37, (1936)
[12]	O.A. OLEINIK - E.	V. RADKEVIC Second order equations with non negative characteristic form; Amer. Math. Soc., Providence, (1973)
[13]	E.V. RADKEVIC	Hypoelliptic operators with multiple characteristics, Mat Sb, 121, (1969), Math. USSR Sb, 8, (1969)
[14]	L. ROTHCHILD - E.	STEIN Hypoelliptic differential operators and nilpotent groups ; Princeton (Preprint) (1975)
[15]	L. SCHWARTZ	Théorie des distributions à valeurs vecto- rielles ; Ann. Institut Fourier, 7, (1957)