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INTEGRAL REPRESENTATION OF SOLUTIONS OF LINEAR PARTIAL

DIFFERENTIAL EQUATIONS, II

par

Francois TREVES

0. - INTRODUCTION.
The present article studies a first-order linear partial differen-

tial operator L , with C°° coefficients, nondegenerate, which satisfies the solvabi-
lity condition ( P ) (of [ I ] , [ 2 ] ; see ( 1 . 3 ) ) . If U is a sufficiently small open set
( i n the manifold where L is defined and has the above properties), we exhibit an
integral operator G , akin to Fourier integral operators ( h i s not quite o n e ) , such
that

( 1 ) L G f = f jji U ,
for any f £ C ^ ( U ) . This generalizes part of the results proved in [ 5 ] when the
coefficients are analytic. However, unlike in the analytic case, I have not succeeded
in constructing a right-inverse G to L which maps C^U) into C ° ° ( U ) . Rather, given
any positive integer m , one can choose the neighborhood U and adapt the construction
so as to insure that G maps C ° ° ( U ) into ( ^ ( U ) . Thus, except in certain particular
cases (see end of Section 1 ) , the problem of the C°° solvability of the equation
Lu = f is still open. Nevertheless the extension of the partial result from analytic
to non analytic coefficients requires some modifications which are not quite straight
forward, and seem to warrant publication.

Notation and definitions are those of [ 5] , to which we refer.
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F. TREVES

1 . STATEMENT OF THE RESULT AND PRELIMINARY REDUCTION.

Let ft be an open subset of ]R , containing the on gin, where the coefficients
of L are defined and smooth (i.e. C°°). We suppose that the coordinates in IR1^, which
we systematically denote by (x1 , ... , x", t), setting n = N-l, are such that

(1.1) L = ^ ( x . t ) { — + i ^ b^x.t)-8 + c ( x , t ) }
^ J=l ax3

where c, does not vanish at any point of ft, and the b" are real valued {c,, the b"
and c are C°° functions in f t ) . To put L in the form ( 1 . 1 ) is always possible, pro-
vided that ft is small enough (thanks to the hypothesis that L is nondegenerate).
We deal with open neighborhoods of the origin in ]R , of the form

( 1 . 2 ) U(T) = { (x , t ) ; x e UQ, |t| < T}.
where UQ is an open neighborhood of 0 in IR". We assume that U(T) c ft and is com-
pact. We make the hypothesis that Condition (P) is satisfied in ft, in the following
strong sense :

( 1 . 3 ) '?(x,t) = |^(x,t)|^(x), (x,t) e ft,
where ^ = (b , ..., b"). Of course, ^ is a unit vector, unambiguously defined for
a given x if there is some t e ]R such that (x,t) ^ ft and |1?(x,t)| ^ 0.

THEOREM 1 . 1 . - Under Hypothesis (1 .3 ) , to every non negative integer m there is a
number T > 0 and a continuous linear operator

( 1 . 4 ) G^ : C;(U(TJ) -C^Urj) -C^UtTJ)

such that LG^ = I, identity of C^(U(T^)) .

As it is stated, Th. 1 . 1 follows essentially from the results of [ 2] , [ 3 ] .
The novelty in the present approach lies in the construction, and the resulting
integral expression of the operators G .

We may of course assume that the multiplicative factor ^ is identically equal
to one, and write

( 1 . 5 ) L = LQ + c(x. t) .
with

( 1 . 6 ) Lo=^ i^ (x . t ) .^

(stands for the gradient operator).

We begin by applying Th. 2.1 of [5 ] ( i n a slightly more precise form). Let us
introduce the function in U = U(T) ,

(1 .7) p ( x , t ) = [t |^(x,s) |ds.
•'-T
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INTEGRAL REPRESENTATION OF SOLUTIONS...

We say that a_ C°° function f jm U ^s p-flat if, given any integer M ^ 0 and any
linear partial differential operator P with C" coefficients in U, p'^f is a con-
tinuous function in U. We denote by Cp.^t^ the ^9ice of those functions, by
^p-flat^ the subsPace "^de up by those with compact support.

LEMME 1 . 1 . - j[f T > 0 is small enough, there is a continuous linear map E :
Cc(U(T ) ) -> C°°(U(T)) such that R = LE - I maps C^(U(T)) into e _^ . (U (T ) ) .

Note that the open set UQ is left unchanged ; that this can be is easily seen
on the proofs of Theorems 1 of [4 ] , and of 2 .1 of [ 5 ] , to which we refer.

Remark 1 . 1 . - The proof of Th. 2 . 1 . [5 ] yields an operator E which resembles a
Fourier integral operator (with respect to the variables x) with complex phase,
but which is not really one. As it is written in [5 ] it does not act on arbitrary
distributions, only on functions whose Fourier transform have a certain rate of
decay at infinity. It can be extended to functions with a finite degree of regula-
rity (and with compact support), which it transforms into functions with a smaller
degree of regularity. The same is then true for the "error term" R which further-
more introduces a certain degree of p-flatness, related to the degree of regularity
of the functions on which it acts.

Lemma 1 . 1 reduces the construction of the operator G of Th. 1 . 1 to that of an
operator

( 1 - 8 ) ^^-flat^n,))^"'^))'
such that

(1 .9 ) L^ - I. identity of g)^^(U(T^)).

We take then

( 1 . 1 0 ) G^f = Ef -3^Rf).

where ^ e C^(U(T^)) is equal to one in a relatively compact open subneighborhood

^^'m ^V of^'

In the forthcoming argument of foremost importance will be the behaviour of
the vector ^(x,t) (cf. ( 1 . 3 ) ) near the "critical set"

(1.11) ^ = { X < = U Q ; Vie [-T.T], b (x , t ) = 0}.

As a matter of fact, by pushing further the analysis begun here, one could
construct the operator G^ of Th. 1 . 1 in such a way that, whatever f e C°°(U(T ) ) ,
V is a c00 function of (x,t) for t ^<^. We have decided not to include in the
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F. TREVES

present article the proof of this property, so as not to increase excessively its
length. Note that the property in question has the implication that G f E C°°(U(T ))
whatever f £ ^(^(^m)) whenever the critical setc/i^ is empty. Actually one can prove
that G^ maps C^fU(T^)) into C°°(U(T^)) if there is a factorization of b of the kind

(1.12) l?(x,t) = x (x . t )^ (x) ,

where \ e C°°(U(T)), \ ̂  0, and W'e C^UQ;^). A non trivial case in which ( 1 . 1 2 )
holds is that where we have:

( 1 . 1 3 ) Vx e^, 3t, |t| < T, a^(x,t) ^ 0

(notice that a_b(x , t ) is an n x n matrix ; ( 1 . 1 3 ) does not require it to be inver-
A

tible, merely not to vanish).

II. THE FUNCTION r AND THE PARAMETRIZATION OF THE ORBITS OF v

Every point XQ e LL\̂ o has an ^^ neighborhood QQ such that l^x^n)! ^ ° for

all x e OQ and some fixed tg, |tol< T. This implies that ^(x) = ?(x,tQ)/|^(x,tQ)f is
C00 in &'. Furthermore, if Oj. is small enough, we have [v^x) ! ^ l/2n in &/p for some
index j. 1 5 j 5 n. This implies that |^(x,t)| = b^x.tVv^x) is C°° in &x]-T,T[ .
Thus:

PROPOSITION 2 .1 . - The mappings x -^(x), of UQ\^ into R", an^ (x,t) ^ |^(x,t)|.
of_ (UQVVQ)X]-T,T[ into R, ajre C00.

We shall consider the orbits of v in U^U ,̂ that is the maximal connected in-
tegral curves of v in UA4^ according to Prop. 2.1 they are smooth curves. With such
an orbit r we associate the cylinder

z = r x ]-TJ[ .

If x £ UQ\^ lies on r we often write r and £ . We are going to select a con-
venient parametrization of the curves r, which, among other properties, will have
the effect that the parametric distance between two points x and. x^ of r will grow
to infinity whenever x nears the boundary of U/V^ while x^ stays away from it. This
is achieved by means of a strictly positive C°° function r(x) in U/A^ which tends

to zero at the boundary,^ UCUo' at a ^^^y fast ^ate. Actually it is conve-
nient to assume that ^(x,t) vanishes identically for x f. IL, which can always be
achieved after multiplication of ^(x,t) by a cut-off function g(x) e C^IR")^ = 0
in (^UQ, g > 0 in Ug, g = 1 in an arbitrary relatively compact open subset U'^ of U^
(containing the origin). This of course modifies L outside U ' Q , but the latter is
as arbitrary as Ug was (UQ was solely submitted to the requirement that II c (^t).
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INTEGRAL REPRESENTATION OF SOLUTIONS...

Then we may introduce the function (in IR"):

( 2 . 1 ) r*(x) = sup |^(x,t)[ ,
| t [ 5 T ^

which is uniformly Lipschitz continuous ; r (x) > 0 if and only if x € LI/A^. With
this function we may associate a Whitney partition of unity in UpV^° in the manner
of [ 3 ] , Appendix. Its elements ^ . (j = 1 , 2, ...) are non negative and have the
following important properties:

(2.2) there is an integer v ^ 1 such that M supp c . = 0 jjF Card J > v ;

(2.3) to every a e ̂  there is C > 0 such that (_m UQ\-^°)

J^^l^^-l-l;

(2.4) sup r*(x) < 2 inf r*(x),Vj=l, 2, ...
^(x)^0 " ^.(x^O

For each j = 1, 2, ..., we select arbitrarily a point x . in supp c, and setj j
(2.5) r(x) = ̂  r*(Xj) ^(x), x e UQ^.

Clearly r e C"(UQ\-VQ) and by virtue of (2.3) and (2.4),

(2.6) ^ r* ^ r ^ 2r*.

(2.7) |3°r| < 2vC (r*)1'!"! < 2 l ° l vC r1"!"!
X "" 01 CX

If XQ e UQ\^ there is t^, 1 ^ 1 ^ T, such that |^(XQ,IQ)| = ,|u^[^(x,t) |. In
a sufficiently small neighborhood &Q of XQ we may write v (x ) = b (x , to ) / |b (x , to ) | .
By differentiating with respect to x and putting x=x^ in the result we obtain at
once

(2.8) a e ̂ , 3 C >0 such that, j_n 0^

1^1 lC^)-H <_ 21^^ -1^ .

If we combine (2.7) and (2.8) and increase C we obtain

(2.9) |^ [ r (x) \T(x) ] | ^^(x)1 '^ ! . X€UQ\^ .

In particular, rv is uniformly Lipschitz continuous in UpW^. Therefore the
solution x = x(^,x/J of the problem

(2 .10 ) ^=r(x)^(x). x^=x^U^

exists for all^c.^ 1R and defines a local diffeomorphism of ]R onto the orbit I\Q.
Of course it need not be a global diffeomorphism, as we see when r\n is "closed",
i.e., when x(y,x,J is periodic with respect to 'X. We have (as we see by the Picard
iteration method):

(2.11) |x-xJ 5 r (x ) le^l-ll.
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F. TREVES

Thus, if we keep x. fixed and let x go to the boundary of LLVY^, which imply that
r(x) -^ 0 we must have |x| -> +°°.

The "inversion" of the local diffeomorphism X-^ x(:<,xj defines :X,= (x,xj as
a C00 function on the universal covering of r^g; it is the solution of the ordinary
differential equation

(2.12) r ( x ) I v^x) -^ 1,
J 9X"

with "initial" condition
(2.13) ^ = 0.^-^o

We recall the standard relation
( 2 . 1 4 ) ^C(X.XQ) +X (XQ,X^ ) = X ( x . x ^ ) .

if x, XQ, x^ belong to the same orbit r; (2 .14) implies
( 2 . 1 5 ) V(XQ.X) = - X(X.XQ).

By vitue of ( 2 . 1 2 ) we have the right to use the notation

(2 .16) ^ r(x) ̂  v^x) -^
dX

and we shall do so in the future. Note, for future reference, that (2.7) implies:

(2 .17 ) 1|̂ | <.Cr

on each orbit r of v ; the constant C is independent of the orbit.

III. APPROXIMATE PHASE AND AMPLITUDE FUNCTIONS

We are going to define an operator-K acting on elements f of 3D 4:1 4. (U(T)) byP — T i a t .
a formula

( 3 . 1 ) ^f(x,t) = f f K ( x . t , x ' , t ' ) f (x ' , t ' )d-^ df,

where K ( x , t , x ' , t 1 ) is a kernel in z^ x z (i.e., is defined only for x, x ' belonging
to one and the same orbit, r^), and dX; is the measure on r defined by X' =^x ,x ' ) .
The operator-K, after one last modification, will become the songht operator "31 of
( 1 . 8 ) - ( 1 . 9 ) . We begin to describe the kernel . In doing so the model we have in
mind is a special fundamental kernel of the operator — + i 3 in R2, specifically

" 7 j ' " ' ' d L ^)X

^•2) ^k9^- ' z = x -x- - i ( t - f ) .
2

The reason for the exponential factor e'2 is the same as in [5 ] ; it lies in the
need to handle on a uniform manner the various kinds of orbits of r, periodic,
almost-periodic, flowing to the boundary of U^Y^, which might occur.

For a general operator L restricted to the two-leaf £ the fonction z of (3.2)
should be replaced by "the" solution of the Cauchy problem
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INTEGRAL REPRESENTATION OF SOLUTIONS...

(3.3) L^Z = 0, Z|^. = Y(x ,x ' ) ,

except, of course, that for arbitrary C°° coefficients, we shall not be able to
solve (3.3) exactly. This will generate an error whose "absorption" will force us
to modify'5^, in order to get "K.

Before pursuing the description of the kernel K in (3 .1 ) we state the lemma
about Problem (3.3) which we shall need later. Let us set:

(3.4) Z = ^(x,x') + ^(x.t.f).

The function ^ must be (approximately) a solution of

(3.5) ^^•^^(x.t)-^^^i=0,
dX

(3.6) f|^. .

In (3.5)-(3.6) ")G(x,x') , hence x ' and the orbit r have disappeared. We may try to
solve (approximately) this Cauchy problem for x ranging freely in UQ\^.

LEMMA 3 .1 . - Let 1?(x,t) satisfy the hypotheses of Th. 1 . 1 . There is a C°° function
^(x , t» t " ) in the region

(3.7) x e UQ\^. |t| < T, |f| < T.

satisfying , for these (x,t,f), the equations

(3.8) g.^(x.t).g.iJ^l=H(x,t,t.),

(3.9) 'fj^, = 0,
with H having the following properties :

(3.10) to every a _m 4'> !t" ! t- ' ' M _[n Z there is a positive constant
C = C(a, A, s.', M) > 0 such that, for all (x,t,f) in the set (3.7),

( 3 . 1 1 ) |^'H(x,t,f)| ,Cr(x)-H-^' | f.^f^ds )" .

Furthermore, to every a, Jl, ^ ' , there is C , > 0 such that, in the set (3 .7) ,
—_—_—————.—.—.—. — ' ' • —"—"—~~—•—~~"— CX , X» , A/

( < C , rtx)'"!0^""^1'1 if ̂ ' > 0
n 1?} \^^^ ^fx t t ' ^ l J " "'^^ i i —
iJ . l^-J d,,dj.dj.niX»L,C / •< - /M

x t t < C n nit^'l r(x) 1 1 if ^1 = °[^- cx,U,U1 —

The proof of Lemma 3 .1 , which is rather technical, has been postponed to the
Appendix. But we draw right now some of its consequences :

Corollary 3 .1 . - For some C > 0 and all (x,t,f) _m (3.7)

(3.13) |^.t,t.).i^i%^ds|,C|t-t.| ^l^f
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F. TREVES

Proof. - Integrate (3.8) from t' to t, taking (3.9) into account, then apply ( 3 . 1 1 )
and the fact, deriving from ( 3 . 1 2 ) , that |9 4>| ^ const. | t - t ' | / r (x) .

Corollary 3.2. - lr^ (3.7) (and with the notation ( 2 . 1 6 ) )

(3 .14) ||̂ | 5 const. |t-f|.
Immediate consequence of (3 .12 ) .

Corollary 3.3. - To every a _m Z^, £, ^ _m 1^ such that a+a1 > 0 there are cons-
tants C > 0, C „ ,, > 0 such that. in (3.7) ,

—————— (X CX, X<, )L —————————— ——

(3 .15) |̂ )| 5 C , |t-f| ^-H.

n i6^ i^A^' f9^! < r r^rl01!"^'"1(j.ib) px^t'w ^ ̂ y^
Combine (2.9) with ( 3 . 1 2 ) .

Due to the fact that, in general, the operator L under study is not equal to
its leading part, L/., we need also an amplitude function (in dealing with J- + i -3-

u dt 8X
+ c(x,t) the kernel to use is not (3.2) : we must multiply (3.2) by a function
k = k (x , t ,x ' , t ' ) such that |̂  + i -J^ + ck = 0, k ( x ' , t ' , x ' , t ' ) = 1 ) . Here we shall
solve approximately

(3.17) [ L Q + c ( x . t ) ] k = 0, k|^, = 1 .

Because of our choice of the condition at t=t' we may take k = k(x,t , t ' ) indepen-
dent of x " (and of the orbit r ). Actually we apply directly Th. 1 of [4]and state:

LEMMA 3.2. - There is a C°° function k(x, t , t ' ) in the region

(3.18) x e UQ, |t| < T, |f| < T " .
satisfying there

(3.19) |J| + i ̂ (x.t).|t + c(x. t )k = h(x,t,f),

(3.20) k | . = 1.
^ -^where h(x,t,f) is | | b ( x . s ) | ds | - flat (cf. p. 1-03).

IJ t ' 1 ——

IV. SOLUTION ON THE INDIVIDUAL LEAVES

We proceed with the definition of the operator "̂  in ( 3 . 1 ) . The next step mi-
micks what can be done with the kernel (3.2) , namely that one may write (setting
Z = x-x ' - i ( t - f ) ) , ^

^'1) ^ [f9——^',!^' df =^- f f f e1 6 2-2 f ( x ' . f ) d x - d e df
k2 9=-00 k
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INTEGRAL REPRESENTATION OF SOLUTIONS...

.+00 .+00 „ ^ ^

- ^ J t L=0 ^e'QI~I ^''^dx' do df.

Thus we take
(4.2) ^= ̂  - X_ ,

^^(x,t) =^ f f ^(x^e.t^de df.

( 4 - 3 ) < +: +:'00

A . f ( x , t ) = — f f ^(x,t;e,f)de df,
"7r Jt J Q

where we use the notation
c+°° . 2

(4.4) 9-'= e197"2 k(x,t,t ') f (x ' , f )dX ' .
•' -oo

with Z given by (3.4) (in (3.4) we take y as in Lemma 3 .1 ) and k as in Lemma 3.2.
By (3 .13) 1 1 m 1 ? | = |Im Z| 5 |t-f| + C|t-f |2 , hence the integral (4.4) converges.

We have, according to (3.4), (3.9) and (3.20):
i n

^(x.t.e.t) = f e161-''" f (x ' , t )dX ' .
and thus:

r\

^ ' ^ r f f e1 9^-^ f ( x - , t ) dX 'd9 + Sf,
P'2where

(4.5) S = S, - S ,+

1 ft r0
S+f(x.t) =^ L^(x.t;e,f)dedf.r e

(4.6) / ^-co J-.
i f ' 1 ' 0 0 f"1'00

S f(x,t) = — L^(x,t;e,f)d9df.
^ ~ " •'t •'0

But
1 f t lAY.' Y12 X1^
^ e19"""- f (x ' . f )dx 'de = e' f (x ' . t ) ^ = f ( x , t ) .

and thus, with the notation (4 .5) - (4 .6) ,
(4.7) LAf = f + St.

We have, in connection with (4.6) ,
<'+°° • 2

(4.8) L^ = e197 '7 a f (x ' , f )d^,
J -oo

where a = CT(x , t , x ' , f ,o ) is defined by taking (3.8) and (3 .19 ) into account:
(4.9) a = (i9 - 2Z)H + h.

The last step in the proof consists of showing that, if the length T of the
time interval is small enough, S defines a bounded linear operator in a suitable
Banach space of fuctions, with a norm so small that I + S can be inverted -and that
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•Sf = "%(I+S)~ possesses the properties we are looking for.

V. EXISTENCE AND ACROSS - THE - BOARD. REGULARITY OF THE SOLUTIONS

In this section we explain how to prove the estimates about •%, defined in (4.2)
- (4 .3) , and S, defined in (4 .5 ) - (4 .6 ) , which we need to complete the proof of Th.
1 .2 .

We shall need some notation. Let us set

( 5 . 1 ) ^=^0 x ] -T,T[ .

and for p e z, q e ~JL^ (x,t) e uV ,̂

(5 .2) N .(f;x.t) = ^x)^ Z ^x)!"!^ ^^(x.t) .
H+&5q

Furthermore we denote byf8 -(U,r) the space of C01 functions f in UV^such that
P»H

< 5 - 3 ) ^.q^) = ̂ W^'^ < +">

equipped with the norm N (which obviously turns it into a Banach space).

In the integral (4.4) x " must be regarded as a function of x € LLV^ and of
"^' e ]R , the one defined by

(5.4) î - = r ( x ' ) 7(x') . x - ̂  = x.

Observe that we can differentiate this initial value problem with respect to x and
to ^.'. In particular:

( 5 - 5 ) ^^'^(^'^'^^o-1-
By repeated differentiations, with respect to x and to x '» by applying (2.9) and
using induction on the order of differentiations one easily obtains the following:

LEMMA 5 .1 . - To every a e 2" j e Z there is a constant C . > 0 such that————————— + -(. ——————————————————————— O^j ———————————

(5.6) l^x-l 5 C^j ^x^-H^'

whatever x e UQ\^V° and V ^ 3R.

On the other hand, by applying GronwaTl's inequality to (2 .17 ) we obtain at
once

LEMMA 5.2. - There is a constant C^ independent of x and of X' such that

(5.7) e-^'l ̂ ^e^l .

We recall that x ' = x ' ( x , X 1 ) , X' = X(x,x ' ) .
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INTEGRAL REPRESENTATION OF SOLUTIONS...

We may exploit Lemma 5 . 1 to get:

(5.8) |^ [ f (x- . f ) ] 5 C^ z ^x')" !^6 ! | ( 9 ^ f ) ( x - . f ) [ .

We begin by proving an estimate concerning S.

PROPOSTION 5 . 1 . - Given any p, q in Z, q ^ 0, there is C(p,q)>0 such that, _for
every (x,t) _m UW,

(5.9) Np^(Sf;x.t) _< C(p,q)T ^.su(^ Np^(f ;x ' , f ) .N.
"x

Proof. - The error terms H and h vanish of infinite order when t=t', and so does
therefore o defined in (4.9). This implies that, whatever a e Z" and £ £ Z'1',

t 0 +

(5.10) s^S^f(x,t) = ^ f f s^ L^x.t ; e.f)de df,

and l ikewise with S_ in place of S . We have( 5 - 1 1 ) ̂ - Bj^r;6197'720^.3^^-.!'^^.
We have written

(5.12) o^^e-^^a^e167-^).

We apply ( 3 . 1 1 ) , (3 .13 ) , (3 .19) : given any M and & in 7^, (3 in Z^, there is

C« o > ° such that (for I 6 ! ^ l )»

<5-1 3) I^.J -< ^B.J8^^^^'" 11^1'.

Thus, for a suitable constant C ' > 0, (using (5.8)) we derive from (5.11)

(5 .14) ^xrP^"!^ la^L^ < C - r e-91"1^12 (|e|+|^ 1 1 ° ! ^ |I^^T|M
X L " | 1

•' -oo

By (3 .13 ) we know that Im ^f has the sign of -(t-f), hence e Im ̂  = |e Im^| on the
domains of integration in (4.3) and (4.6). By applying (5.7) we draw from ( 5 . 1 4 ) :

( 5 . 1 5 ) r(x)-P+lal+A|^a^^| < C - | e | ^^-^e-^I^HI'IX'lN , ,x - 1 1 j^ P » | a |
( f ;x ' , t ' )d^

We take M ^ q+&+3, q ^ [ a | . By virtue of ( 5 . 15 ) , ( 5 . 1 1 ) yields easily (5 .9 ) .

COROLLARY 5 . 1 . - lf_ p e Z, q e z^_, s defines a bounded linear operator of^ (U,r)
into itself, with norm < C(p,q)T.
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COROLLARY 5.2. - Jf T < C(p,q) ' 1 , I + S is an automorphism of % (U,r).

PROPOSITION 5.2. - Given p _m Z, q jji 2^, there is C(p,q) > 0 such that, whatever
(x,t) _m UV^

(5 .16 ) N^(Xf;x.t) , C(p,q)T ^.sup^ N^(f;x-,f).

^roof. - Since a^(f = f + Sf - b^(x,t)3^f, by virtue of Prop. 5 .1 we only need to
establish estimates for the derivatives of W with respect to x. We shall only do
it when the order of differentiation does not exceed one. This will give a pretty
good idea of what the argument in the general case would be ; the generalization is
routine. We have therefore:

+00 ?

(5.17) ^3- J e167-7 ( k ^ f + kf^ -^)dX«

where f stands for f (x ' , f ) , f^ for f ^ (x ' , t ' ) and

(5.18) k^ = ( ie-2Z)Z^k + k^.

Recalling that Z = X '+^ f , l = 4> , we see thatx x

^reiez-z2 ^kf dxl = - r" ^ke iez ^-(e'22^dxl
J -oo A J -oo x 0^

.J^TeZ-Z^^f-z^^dX",
whence, by (5.17) and (5.18),

(5.19) ^- ^e^^tk^.kf^-^^ldX..

After an integration by parts we have (for j ^"Z)

(5.20) (-ie)J 3^ = |̂  e1^ a^e-^kf^ + kf^(^ - ̂  ^)]}dX-.

We apply (5.6) with j arbitrary and a=0 or 1. We also use the fact that
9 Im ̂  0 in the domains of integration (in (4 .3) ) , and thus obtain

( 5 . 2 1 ) \^\ |a<3?| < C ' f^e'^ IX'I3' z r ( x • ) - j + 1 3 1 [ ^ 3 f ( x • . t • ) |
J j-w | e |5J

+ l ^ ^ ( ^ x f ) ( x l » t l ) l > d x l •

We multiply both sides in (5 .21 ) by ^x)1"13 , p e 2 and obtain:

(5.22) ^-P^ |eJ| .C^y^^lPl^^llNp^^f^^t-)^^

' d^:
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It would have been even easier to derive an estimate

(5.23) r(x)-Pf^ Ie3' < C-. [+w e-^'^dPl^D 1^1 N, ,(f;x-.f )d X-.
J J-oo P'J

We always choose j=2 and integrate \y\ and | 9 ̂  with respect to 9. We obtain
thus in the cases q=0 and q=l, the inequality:

(5.24) r(x)-P^r(x)l° |^f)(x,t)| -< C(p)T ̂ ^ ̂ (f;x. ,t').

As we said at the beginning this implies what we wanted.

COROLLARY 5.3. - If p e 2, q e ^,-^is a bounded linear operator <S n^^) ->

^ (U.r) (with norm < C(p ,q)T) .

Remark 5 . 1 . - The two-derivative loss in the preceding result should not come as
a surprise : it is due to the fact that we have used integration with respect to e
and "maximum normus" with respect to (x,t). No such loss would have occured, had
we defined the normus as the supremum, over the collection of all leaves z, of thep
L norm (with respect to d^c'dt') on each individual leaf.

Finally, let p e 2, q e 2^ be arbitrary and TC(p,q) < 1. We form the inverse
(I + S)~ acting on% r^?^^)' and then the compose

(5.25) -K(I+S)"1 ̂ q^^ "^p.q^^

We know we have

(5 .26) L ^(I+S)-1 = I ( identity o ^ ^ q , ^ U » r ) )

in LlW But if p ^ 0 and if p and q are large enough we may achieve :
i) that (5.26) be true, not only in UW, but everywhere in U ;

ii) that^ .(U,r) c ^(U) (m e Z given in advance).
P sH '

The proof of Th. 1 . 1 is complete.

APPENDIX. PROOF OF LEMMA 3 .1 .

We need Prop. 2.1 with some added precision :

LEMMA A.I. - To every a e Z" A e Z there is C , > 0 such that
T T 01 , A/ —"———'—'———'—"—'—

( A . I ) |3^|?(x.t)| 5 C^{|a^(x, t) | + r ( x ) } r(x)~^

for a11 x e UQ\^, |t| ^ T.
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P^oo^ - In any sufficiently small open subset IT/, of U/V< one can find an index
j, 1 5 j 5 n, such that I v^x ) ] ^ l/2n. We have |b^(x,t) [ = b^x^/v^x), whence

^l^x.t)| = ^'(x,!) a^l/v^x)] +^ (^)[ ̂ '(x.t)] ̂  l/v^x)] ,

and it suffices to apply (2.8) , which implies

l^l/v^x)] | < ^ r(x)~^\.
A " Y

Let us set

(A.2) (.(x,t) = |?(x,t)|/r(x).

By (2 .6) we recall that

(A.3) |^(x,t)| 5 2r(x) , x E UQ^, |t| ^ T.

COROLLARY A.I. - lf_ C^ ^ > 0 is large enough we have in U\^T

(A.4) ^(x.t)! < C . r (x )~ l a l .
A CX ;U

(A .5 ) la^^x.t)! < C . r^x)"!01!'1 if i > 0.
A l» CX ) X- —— —

Remark A.I. - Thanks to Hyp. (P) , i.e. ( 1 .3 ) , we can slightly improve the inequa-
lity (A.5) : the right-hand side can be taken equal to C r (x)~ H~1/2 when ji=l.

a»1

We may now form an almost analytic extension of o)(x,t), with respect to the x
variables, in a suitable neighborhood of U/A^ in C". We write :

(A.7) ^(z,t) =^i^F^(x.t) ^(x.y).

The ^ are cut-off functions, chosen according to the following scheme. Select
arbitrarily ^ <E C^IR"), ^ (s) = 0 if s > 1. ^ (s) = 1 if s < 1/2, and take

(A.8) ^(x,y) = ^ (s ) , s = ly^/tc^x)]2.

The e^ are > 0 and converge to zero, as |a| ->• +°°, so fast that the series (A .7 )
converges, as a C°° function of (x,y,t), in the set

(A.9) xGUQ\^. y e R". |t| < T.

THat such a sequence e = (e^)^ ^ ^n indeed exists follows from Coroll. A.I and
from the properties (2.7) of r. (Tne proof of the existence of the sequence e is
standard and goes back to DuBois-Raymond, it essentially consists in proving that,
if we have a sequence of sequences c^ = (a^)^ ^ ^n, k = 1,2,. . . , of positive
numbers, there is another such sequence, e = (e ) +^ ,n, such that z c^e < C^
< +°° for every k). By the same token we obtain : + a

354



INTEGRAL REPRESENTATION OF SOLUTIONS...

LEMMA A.2. - If the sequence e is well chosen, to every pair a,3 jjn 2" and to every
^ JJ1 2" there are constants C - , > 0 such that, in the set (A .9 ) ,-r • a , p, x- ———————• ————————

a.^^(A. 10) |a^a^(z,t) | 5
c a n ̂1 a,0,0 v

.- |a+p| ji_f & = 0,

l^p,.r^
- |a+p | - l .if £ > 0.

On the other hand, if we use the fact that, for any M > 0 and a suitably selec-
ted C« > 0,n

( A . 1 2 ) | e ' ( s ) | 5 C^ \s\M, s e R,

we also obtain -via Cor. A.I, (2.7) and (A.7) :

LEMMA A. 3. - If the sequence e is well chosen, to every pair a,p _m 2", A , M in 2",
there is C „ > 0 such that, in the region (A .9 ) ,——————" a, p, x-, I'l ——————— ——————————

(A. 13) |3^|^(z,t)| ;
^;M -OO-I^I-1^] 21-0

^M^-l"6'-2^ Al-0.

Needless to say,

(A. 14) ^(z,t) = o)(x, t ) jf z=x e ILWC.'0 0-
Next we apply Th. 1 of [ ] . We recall that

L - -9-L n = ^ + 1 ^ ^(x.t)-^" O ~ 8t
J=l

For the sake of brevity we shall write :

( A . 1 5 ) p" = p(x,t,f: |b (x .s ) |ds

9X'

LEMMA A.4. - There is a C°° function z(x, t , t ' ) _m (an open neighborhood of) the do-
sed set

(A .16 ) (x,t) eu. | t ' | 5 T,
such that

(A. 17) L^z is p*-f1at in (A. 16) , z = x.
u ———— t=t'

Moreover :
^ ^ lr t ->(A .18) |z-x+i b (x ,s )ds | < const. | t - t ' | | b (x , s ) |ds
J t ' " Ut 1

Me may now set

(A.19) ^(x.t,!' ^
(z(x , t ,s ) ,s )ds .
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U/e have, using tne fact that z(x,t , f) = x, and ( A . 1 4 ) ,

(A.20) L^T = o)(x.t) + J ^ [ij4)Z]ds.

In the integrals, at the right in (A.20) . z stands for z(x , t ,s ) . The function H in
Lemma 3 .1 will be equal to H, + H., with

( A . 2 1 ) H^^|J(z.s)L,zds.

(A.22) H,=J^|J(z.s) L.zds.

If we keep in mind the fact that L^z is p^flat we conclude easily (via Lemma A.2)
that H^ is also p*-f1at. Concerning 1-L we first note that

4)7 = ^O'1?7 + ̂  = 2i ^x>t)3^z + LQZ.
hence

(A.23) L^z E 2i ?(x,t) [l+0(t-f)]
mod p -flat functions.

We then apply Lemma A.3 , and the obvious consequence of ( A . 1 5 ) ,

(A .24) [ Im z | 5 C p*.

It is a straight forward matter to derive that

(A.25) |3^;H^| _< C(a.^-;M) r(x)- H-^' [^-] .

This, of course, implies (3 .10 ) . The inequality (3 .12) when j^'=0 follows at once
from Lemma A.2 and from the definition ( A . 1 6 ) . On the other hand,

(A.26) f^ = - i b(x.t)g - ioo(x.t) + H(x.t.f),

(A .27 ) |̂ . = - ^(z(x.t.f).f).

If we apply ( A . 1 0 ) , and (3 .10 ) , we easily obtain the inequality (3 .12) when
£+Jl' > 0.
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