JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

PHAM THE LAI

Comportement asymptotique des valeurs propres d'une classe d'opérateurs elliptiques et dégénérés en dimension 2

Journées Équations aux dérivées partielles (1974), p. 1-10

http://www.numdam.org/item?id=JEDP_1974____A5_0

© Journées Équations aux dérivées partielles, 1974, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

COMPORTEMENT ASYMPTOTIQUE DES VALEURS PROPRES

D'UNE CLASSE D'OPERATEURS ELLIPTIQUES DEGENERES EN DIMENSION 2

par

PHAM THE LAI

§ 1. Introduction

Le but essentiel de ce travail est l'étude du comportement asymptotique des valeurs propres d'une classe d'opérateurs elliptiques A autoadjoints positifs dégénérant au bord d'un domaine Ω borné de \mathbb{R}^{n} .

Ces opérateurs constituent une généralisation en dimension quelconque de l'opérateur de Legendre $\frac{d}{dx}$ (1-x²) $\frac{d}{dx}$ sur l'intervalle [-1,1].

Une étude spectrale de ces opérateurs a été faite par M.S. Baouendi et C. GOULAOUIC [3] dans le cas du second ordre. Leurs résultats sont précis pour dim Ω = n = 1, mais la précision diminue lorsque n augmente.

En étudiant la classe de compacité d'un opérateur continu de $L^2(\Omega)$ à image dans une classe d'espaces de Sobolev avec poids, nous avons, dans [8] déduit une minoration des valeurs propres de A. Auparavant, Boutet de Monvel et P. Grisvard dans [4], ont donné une majoration et une minoration de ces valeurs propres ; leur méthode est basée sur la connaissance des valeurs propres de A lorsque Ω est la boule unité et A l'opérateur type de Legendre.

En adaptant la méthode de S. Agmon [1] et [2] au cas d'opérateurs dégénérés, nous donnons dans ce travail un équivalent de N(t) = \sum 1 $\lambda_{j\leqslant t}$ avec une estimation du reste dans le cas n=2 pour une classe d'opérateurs d'ordre 2m, m $\geqslant 1$.

C. Goulaouic a eu la gentillesse de nous signaler le travail de C. Nordin $\cite{7}$ qui donne un équivalent de N(t), pour n quelconque, pour l'opérateur de second ordre div($\cite{\Psi}$ grad), nous lui en remercions.

§ 2. Enoncé des résultats

Considérons Ψ une fonction de $\mathbb{R}^{\mathsf{N}} \longrightarrow \mathbb{R}_+$ de classe \mathscr{C}^{∞} telle que $\Omega = \{\mathsf{x}; \, \Psi(\mathsf{x}) > 0\}$; $\partial \Omega = \{\mathsf{x}; \, \Psi(\mathsf{x}) = 0\}$; $\mathrm{d}\Psi(\mathsf{x}) \neq 0$ pour $\mathsf{x} \in \overline{\Omega}$. Les différentes normes rencontrées seront notées $| \ |$, sauf mention du contraire.

Nous utilisons les notations :

$$D_{j} = -i \frac{\partial}{\partial x_{j}}$$
, $i = \sqrt{-1}$, $j \in \{1, ..., n\}$

pour un multi-indice $\alpha = (\alpha_1, \dots, \alpha_n)$,

$$D^{\alpha} = D_1^{\alpha} \dots D_n^{\alpha}$$

 $\mathcal{C}(\Omega)$, $\mathcal{C}^{\mathsf{k}}(\Omega)$, $\mathcal{C}(\Omega)$ désignent respectivement l'espace des fonctions continues, continûment différentiables jusqu'à l'ordre k, indéfiniment différentiables à support compact, sur Ω .

 $L^2(\Omega)$ désigne l'espace des (classes de fonctions de carré intégrable sur Ω , de produit scalaire

$$(u,v)_{1}^{2} = \int_{\Omega} u(x) \overline{v(x)} dx$$

Pour m entier \geqslant 1, $\mbox{H}^m(\Omega)$ désigne l'espace de Sobolev usuel avec la norme naturelle :

$$\left| \mathbf{u} \right|_{H^{\mathbf{m}}(\Omega)} = \left(\sum_{\alpha \leq \mathbf{m}} \left| \mathbf{D}^{\alpha} \mathbf{u} \right|_{L^{2}(\Omega)}^{2} \right)^{1/2}$$

 $H^m_0(\Omega)$ désigne l'adhérence de $\mathcal{Q}(\Omega)$ dans $H^m(\Omega)$ $D^{2m}(\Omega)$ désigne l'espace des distributions :

$$\{u \in \mathcal{D}'(\Omega) ; \varphi^m \ D^\alpha u \in L^2(\Omega), \ |\alpha| \leq 2m\}$$

avec la norme

$$|\mathbf{u}|_{\mathsf{D}^{2\mathsf{m}}(\Omega)} = \left(\sum_{|\alpha| \leq 2\mathsf{m}} |\varphi^{\mathsf{m}} \mathsf{D}^{\alpha} \mathsf{u}|_{\mathsf{L}^{2}(\Omega)}^{2}\right)^{1/2}$$

c'est un espace de Hilbert.

Soit

$$Q(x,D) = Q(x)^{m} \sum_{|\alpha|=2m} a_{\alpha}(x) D^{\alpha} + Q(x)^{m-1} \sum_{|\alpha|=2m-1} a_{\alpha}(x) D^{\alpha} + \ldots + \sum_{|\alpha|\leq m} a_{\alpha}(x) D^{\alpha}$$

un opérateur différentiel linéaire d'ordre 2m.

Nous faisons les hypothèses (H) :

- les coefficients a_{α} , pour $|\alpha|$ = 2m, sont des restrictions à Ω de fonctions de classe $\mathcal{C}^1(\mathbb{R}^n)$
- les coefficients \mathbf{a}_{α} , pour $\left|\alpha\right|$ < 2m, sont des fonctions dans $\mathbf{L}^{\infty}(\Omega)$
- α est formellement auto-adjoint

$$-\overset{\sim}{\Omega}'(x,\mathbb{D}) = \sum_{\alpha \mid \alpha \mid = 2m} a_{\alpha}(x) \; \mathbb{D}^{\alpha} \; \text{est uniformément elliptique, c'est-à-dire} : \\ & \overset{\sim}{\Omega}'(\xi) = \sum_{\alpha \mid \alpha \mid = 2m} a_{\alpha}(x) \; \xi^{\alpha} \geqslant c \; |\xi|^{2m}$$

pour tout $x \in \Omega$; $\xi \in \mathbb{R}^n$, c étant une constante > 0.

Un opérateur non borné A dans L $^2(\Omega)$ est dit une réalisation auto-adjointe dans L $^2(\Omega)$ de Ω si A est auto-adjoint avec un domaine de définition $\mathcal{D}(A)$ vérifiant

(2.1)
$$H_0^{2m}(\Omega) \subset \mathcal{D}(A) \subset D^{2m}(\Omega)$$

et si tout u ϵ &(A) est solution au sens des distributions de :

$$Q(x,D)_{u} = Au$$

Le résultat suivant est vrai pour n quelconque :

Théorème 1 : Soit A une réalisation auto-adjointe positive dans $L^2(\Omega)$ de Q(x,D) d'ordre 2m, vérifiant les hypothèses (H). Alors le spectre de A est discret.

Supposons, en plus, que m > n = dim . Alors :

1) A a une résolvante compacte. Pour tout t>0, A+t est inversible et ${\rm (A+t)}^{-1}\ est\ un\ opérateur\ intégral\ avec\ un\ noyau\ d'Agmon\ (cf.\ [\]\)\ continu\ et\ borné\ G_t(x,y):$

$$(A+t)^{-1}f = \int_{\Omega} G_{t}(x,y) f(y) dy \qquad f \in L^{2}(\Omega)$$

2) Il existe une constante C > O telle que l'on ait :

pour tout $\times \in \Omega$ et $t \ge 1$.

Dans (2.2), c(x) est la fonction de classe $C^1(\mathbb{R}^n)$

(2.3)
$$c(x) = (2\pi)^{-n} \int_{\tilde{Q}_{x}'(\xi)<1} d\xi$$

Remarque : En vertu de (2.1), nous avons :

$$\mathfrak{D}(A) \subset H_{loc}^{2m}(\Omega)$$

En utilisant les résultats de $\begin{bmatrix} 2 \end{bmatrix}$ ou de $\begin{bmatrix} 3 \end{bmatrix}$, nous avons :

$$\lim_{t\to +\infty} 1 - \frac{n}{2m}$$

$$\lim_{t\to +\infty} G_t(x,x) = \frac{n\pi}{2m} \left(\sin \frac{n\pi}{2m} \right)^{-1} \varphi(x)^{-n/2} c(x)$$

uniformément sur tout compact de Ω .

(2.2) précise donc le comportement de $\textbf{G}_{\textbf{t}}(\textbf{x},\textbf{x})$ lorsque x est voisin du bord de $\Omega.$

Théorème 2: Soit A une réalisation auto-adjointe positive dans $L^2(\Omega)$ $\mathbb{Q}(x,D)$ d'ordre 2m, vérifiant les hypothèses (H).

Supposons en plus que :

- (i) $\dim \Omega = 2$
- (ii) pour un certain entier $k > \frac{2}{m}$, on a :

$$H_0^{2km} \subset \mathcal{D}(A^k) \subset D^{2km}(\Omega)$$

Si $\{\lambda_j^c\}$ est la suite croissante des valeurs propres de A répétées avec leur multiplicité, alors :

(2.4) N(t) =
$$\sum_{\substack{\lambda \\ 1 \le t}} 1 = \langle \omega_{\varphi}, c \rangle \quad t^{1/m} \text{ Log } t^{1/m} + O(t^{1/m})$$
 (t\rightarrow+\infty)

Dans (2.4), ω_{ψ} est la forme de Leray associée à Ψ et c est la fonction définie par (2.3).

§ 3. Preuve (rapide) des résultats

3.1. Preuve du théorème 1

Pour cela, nous utilisons essentiellement le résultat suivant $\left[\ \right]$:

Théorème 3.1: Soit m entier avec m > n. Soit T un opérateur continu dans $L^2(\Omega)$ dont les images $\Re(T)$ et $\Re(T^*)$ $(T^*$ adjoint de T) sont dans $D^{2m}(\Omega)$. Alors T est un opérateur intégral avec un noyau d'Agmon K continu et borné sur $\Omega \times \Omega$:

Tf = $\int_{\Omega} K(x,y) f(y) dy$ $f \in L^2(\Omega)$

De plus, nous avons :

(3.1)
$$|K(x,y)| \le C \left(||T||_{D^{2m}} ||T^*||_{D^{2m}} \right)^{n/2m} ||T||_{L^2}^{1-\frac{n}{m}}$$

(3.2)
$$|K(x,y)| \le C \left[\Psi(x) \Psi(y) \right]^{-n/4} \left(\|T\|_{D^{2m}} \|T^*\|_{D^{2m}} \right)^{n/4m} \|T\|_{L^2}^{1 - \frac{n}{2m}}$$

pour tout $(x,y) \in \Omega \times \Omega$; C étant une constante > D indépendante de x et y. Dans (3.1) et (3.2), $\|T\|_{L^2}$, $\|T\|_{D^{2m}}$, $\|T^*\|_{D^{2m}}$ désignent respectivement les normes de T de $L^2(\Omega)$ dans $L^2(\Omega)$, de T de $L^2(\Omega)$ dans $D^{2m}(\Omega)$, de T^* de $L^2(\Omega)$ dans $D^{2m}(\Omega)$.

Ce résultat appliqué à $S_t = (A+t)^{-1}$, pour t > 0, donne le :

Corollaire 3.2 : Dans les conditions du théorème 1, S_{t} est un opérateur intégral avec un noyau d'Agmon $G_{+}(x,y)$ continu et borné sur $\Omega \times \Omega$.

Nous avons:

(3.3)
$$|G_{t}(x,y)| \le C t$$

(3.4)
$$|G_{t}(x,y)| \le C [\varphi(x) \varphi(y)]^{-n/4} t^{-1 + \frac{n}{2m}}$$

pour tout $(x,y) \in \Omega \times \Omega$, $t \ge 1$, C étant une constante > 0 indépendante de x,y,t.

Considérons $x \in \Omega$ et $t \ge 1$ fixés.

Si l'on a :

$$t^{\frac{1}{m}} > \varphi(x)$$

il est facile, grâce au corollaire 3.2, de vérifier (2.2).

Nous pouvons donc, pour la preuve du théorème 1, supposer :

(3.5)
$$t^{\frac{1}{m}} \leqslant \Psi(x)$$

Notons :.

$$F_{x,t}(\eta) = (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{e^{i < \xi, \eta >}}{\tilde{Q}'_{x}(\xi) + t} d\xi$$

et considérons, pour f \in $L^2(\Omega)$, l'opérateur de convolution :

$$R_{x,t} f = F_{x,t} * f |_{\Omega}$$

 \hat{f} étant la fonction de $L^2(\mathbb{R}^n)$ obtenue en prolongeant f par 0 hors de Ω et $F_{x,t}$ * \hat{f} $|_{\Omega}$ est la restriction à Ω du produit de convolution $F_{x,t}$ * \hat{f} . Il est clair que $R_{x,t}$ est continue dans $L^2(\Omega)$.

Soit $\rho>0$ suffisamment petit et considérons $\zeta_{\times,\rho}$ une fonction de classe \mathfrak{C}^{∞} , à support dans la boule de centre x, de rayon ρ , égale à 1 sur x. Notons alors :

$$T_{x,t;\rho} = \zeta_{x,\rho} (S_t - R_{x,t}) \zeta_{x,\rho}$$

 $T_{x,t,\rho}$ est un opérateur intégral avec un noyau d'Agmon donné par :

$$H_{x,t;\rho}(y,z) = \zeta_{x,\rho}(y) \zeta_{x,\rho}(z) \left[G_t(y,z) - F_{x,t}(y-z)\right]$$

En particulier, lorsque y=z=x, nous obtenons, par un calcul aisé :

(3.6)
$$H_{x,t;\rho}(x,x) = G_t(x,x) - \frac{n\pi}{2m} \left(\sin \frac{n\pi}{2m}\right)^{-1} \varphi(x)^{-n/2} t^{-1 + \frac{11}{2m}}$$

La quantité ρ restant à notre disposition, nous allons la choisir égale à :

(3.7)
$$\rho = \frac{(x)}{2k} (\psi(x) t^{1/m})^{-1/4}$$

k étant égal au sup $|\operatorname{grad} \varphi|$. $\times \in \Omega$

Grâce à (3.5) et au choix (3.7), l'utilisation du théorème 3.1 permet de prouver qu'il existe une constante C > 0 telle que :

Alors (3.6) et (3.8) prouvent (2.2) dans le cas (3.5), ce qui achève la preuve du théorème 1.

3.2. Preuve du théorème 2

Elle s'appuie sur l'égalité bien connue :

(3.9)
$$\int_{\Omega} G_{t}(x,x) dx = \int_{0}^{\infty} (\tau+t)^{-1} dN(\tau)$$

Grâce à l'hypothèse (ii), on voit aisément que l'on peut supposer, sans diminuer la généralité, que m > 2 = $\dim \Omega$.

Soit
$$\Omega_1 = \{x \in \Omega; (x) \ge t^{-1/4}\}$$
 et $\Omega_2 = \Omega - \Omega_1$.

Alors, en vertu de (3.3), nous avons

(3.10)
$$0 \le \int_{\Omega_2} G_{t}(x,x) dx \le C t$$

En vertu de (2.2), nous avons :

$$(3.11) \quad \left| \int_{\Omega_{1}} G_{t}(x,x) dx - \frac{\pi}{m} (\sin \frac{\pi}{m})^{-1} t^{-1+\frac{1}{m}} \int_{\Omega_{1}} \varphi(x)^{-1} c(x) dx \right| \leq C t^{-1+\frac{3}{4m}} \int_{\Omega_{1}} \varphi(x)^{-5/3} dx$$

Un calcul aisé prouve que l'on a :

(3.12)
$$\int_{\Omega_1} \varphi(x)^{-1} c(x) dx = \langle \omega_{\varphi} \cdot c \rangle - \log t^{1/m} + O(1) \qquad (t \to +\infty)$$

où < $\omega_{oldsymbol{\phi}}$.c> est la valeur de la forme de Leray $\omega_{oldsymbol{\phi}}$, associée à $oldsymbol{\phi}$, en c.

(3.10), (3.11) et (3.12) donnent donc :

$$(3.13) \int_{\Omega} G_{t}(x,x) dx = \frac{1}{m} (\sin \frac{\pi}{m})^{-1} t + \frac{1}{m} \log t^{1/m} + O(t^{-1+\frac{1}{m}})$$
 $(t^{++\infty}).$

En utilisant maintenant un théorème taubérien de J. Karamata [5], avec la précision du reste de P. Malliavin (cf. introduction de [6]), nous obtenons (2.4); la preuve est donc achevée.

Remarques

1) La classe d'opérateurs elliptiques dégénérés de second ordre, de type variationnel, étudiée dans [3] entre dans le cadre étudié ici.

Rappelons qu'il s'agit de la classe d'opérateurs :

$$Q(x,D) = \sum_{0 \le j,k \le n} D_j a_{j,k}(x) \Psi(x) D_k$$

avec $a_{i,\epsilon} \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ pour j,k ϵ (0,...,n).

Soit la forme intégro-différentielle :

$$a(u,v) = \sum_{0 \le j,k \le n} \int_{\Omega} a_{j,k}(x) \, \Psi(x) \, D_j u \, \overline{D_k v} \, dx$$

et 91'espace des distributions :

$$\Psi = \{ \mathbf{u} \in \mathfrak{Z}'(\Omega) \; ; \; \Psi^{1/2} \mathbf{u} \in L^2(\Omega) \; , \; \Psi^{1/2} \; \mathbf{D}_{\mathbf{j}} \mathbf{u} \in L^2(\Omega) \; , \; \mathbf{j} \in \{1, \ldots, n\} \}$$

muni de la norme hilbertienne naturelle.

On suppose que a est $\,$ -coercive : il existe donc un opérateur non borné A dans L^2(Ω) tel que :

(3.14)
$$a(u,v) = (Au,v) \qquad u \in \mathcal{D}(A), v \in \mathcal{D}$$

Si l'on suppose que a est hermitienne, alors A est auto-adjoint positif. Suivant un résultat de régularité de [3], nous avons :

$$(3.15) (Ak) = D2km(\Omega) \forall k \in \mathbb{N}$$

(3.14) et (3.15) prouvent que A est une réalisation de $\Omega(x,D)$ au sens de la définition du § 2 et les théorèmes 1 et 2 sont applicables à A.

2) Considérons à présent le cas particulier intéressant suivant :

$$\Omega = \{x : |x| < 1\}$$

$$\Psi(x) = 1 - |x|^{2}$$

$$\Omega(x,D) = \sum_{0 \le j \le D} D_{j} \Psi(x) D_{j}$$

La forme de Leray est ici proportionnelle à la mesure de surface de la sphère unité :

 $\langle \omega_{\varphi}, c \rangle = \frac{1}{2} \int_{\partial \Omega} c(s) dS$

La fonction c est, dans le cas présent, constante et nous avons, pour n=2 :

$$c = (2\pi)^{-2} \int_{|\xi|^2 < 1} d = \frac{1}{4}$$

D'où :

$$\langle \omega_{\psi}, c \rangle = \frac{1}{8} \int_{\partial\Omega} dS = \frac{1}{4}$$

Le théorème 2 donne donc :

$$N(t) = \frac{t \text{ Logt}}{4} + O(t) \qquad (t \to +\infty)$$

Nous retrouvons ainsi l'équivalent de N(t) déjà donné par N. Shimakura [9] (cf. aussi Nordin [7]). La méthode de N. Shimakura utilise la connaissance explicite des valeurs propres de A dans ce cas.

BIBLIOGRAPHIE

- [1] S. AGMON Lectures on elliptic boundary value problems

 Van Nostrand (1965).
- [2] S. AGMON Y. KANNAI On the asymptotic behavior of spectral fonctions and resolvant kernels of elliptic operators

 Israël Journal of Mathematics Vol. 5, n° 1, (1967), p 1-30.
- [3] M.S. BAOUENDI C. GOULAOUIC Régularité et théorie spectrale pour une classe d'opérateurs elliptiques dégénérés.

 Arch. for Rat. Mech. and Analysis Vol. 34, n° 5, (1969), p. 361-369.
- [4] BOUTEL DE MOUVEL P. GRISVARD Le comportement asymptotique des valeurs propres d'un opérateur

 C.R. Acad. Sciences Paris. t. 272, n° 1, (1971), p. 23-26.
- [5] J. KARAMATA Neuer Beweis und Verallgemeinerung der Tauberschen Sätze welche die Laplacesche une Stieltjesoche Transformation betreffen

 Journ. fur reine und anjew. Math. 164, (1931), p. 27-39.
- [6] P. MALLIAVIN Un théorème taubérien relié aux estimations de valeurs propres Collège de France. Séminaire J. Leray. Année 1962-1963.
- [7] C. NORDIN The asymptotic distribution of the eigenvalues of a degenerate elliptic operator Arkiv for Mathematik, Vol. 10, n° 1, (1972), p. 3-21.
- [8] PHAM THE LAI Classe de compacité d'opérateurs intervenant dans une classe de problèmes elliptiques dégénérés.

 A paraître à Israël Journal of Mathematics.
- [9] J. SHIMADUA Quelques exemples des ζ-fonctions d'Epstein pour les opérateurs elliptiques dégénérés de second ordre. Proc. Japan Acad. Sciences, 46, (1970), p. 1065-1069.