

Journées mathématiques X-UPS Année 2010

Facettes mathématiques de la mécanique des fluides

David GÉRARD-VARET

Interaction fluide-solide Journées mathématiques X-UPS (2010), p. 61-74. https://doi.org/10.5802/xups.2010-03

© Les auteurs, 2010.

Cet article est mis à disposition selon les termes de la licence LICENCE INTERNATIONALE D'ATTRIBUTION CREATIVE COMMONS BY 4.0. https://creativecommons.org/licenses/by/4.0/

Les Éditions de l'École polytechnique Route de Saclay F-91128 PALAISEAU CEDEX https://www.editions.polytechnique.fr Centre de mathématiques Laurent Schwartz CMLS, École polytechnique, CNRS, Institut polytechnique de Paris F-91128 PALAISEAU CEDEX https://portail.polytechnique.edu/cmls/

Publication membre du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org Journées mathématiques X-UPS 2010, p. 61–74

doi: 10.5802/xups.2010-03

INTERACTION FLUIDE-SOLIDE

par

David Gérard-Varet

Résumé. Ce texte traite du mouvement d'un corps solide plongé dans un fluide visqueux. Après la présentation des équations correspondantes, la question du problème de Cauchy est traitée, et enfin on présente une discussion autour du paradoxe de Cox-Brenner (selon lequel aucune collision ne serait possible entre un corps plongé dans un bassin rempli de liquide, et soumis à la gravitation, et le fond de ce bassin). Il y est en particulier montré que ce paradoxe tombe en défaut dès que le solide est suffisamment irrégulier.

Table des matières

dans un fluide visqueux	3.1. Equations du mouvement d'un corps solide	
3.2. Solutions turbulentes et fortes.643.3. Poussée d'Archimède et paradoxe de Cox-Brenner.693.4. Rôle de l'irrégularité du solide.71Références.74	dans un fluide visqueux	62
3.3. Poussée d'Archimède et paradoxe de Cox-Brenner 69 3.4. Rôle de l'irrégularité du solide 71 Références 74	3.2. Solutions turbulentes et fortes	64
3.4. Rôle de l'irrégularité du solide71Références74	3.3. Poussée d'Archimède et paradoxe de Cox-Brenner	69
Références	3.4. Rôle de l'irrégularité du solide	71
	Références	74

Dans le texte précédent [6], nous avons considéré les équations de Navier-Stokes dans le cas où la variable spatiale x décrit \mathbb{R}^d , c'est-àdire en l'absence d'interaction avec des obstacles ou des parois. Nous souhaitons évoquer ici un aspect de cette interaction : le mouvement de corps solides immergés dans un fluide.

Pour éviter le paradoxe de d'Alembert relatif aux fluides parfaits irrotationnels (voir le paragraphe 1.7 de [2]) il est préférable d'inclure dans la description du mouvement le terme de frottement visqueux.

Publication originelle dans Journées X-UPS 2010. Facettes mathématiques de la mécanique des fluides. Éditions de l'École polytechnique, 2010.

Mais ce terme génère à son tour un paradoxe, mis en évidence par Cox et Brenner [1] dans les années 60 : dans les fluide visqueux, les corps solides coulent mais ne touchent jamais le fond! C'est ce paradoxe que nous allons expliciter et analyser dans les paragraphes suivants.

3.1. Équations du mouvement d'un corps solide dans un fluide visqueux

Pour fixer les idées, nous considérons le cas d'un seul solide rigide et homogène, plongé dans une cavité emplie d'un fluide visqueux, incompressible et homogène. Nous souhaitons décrire la dynamique du solide jusqu'au temps de première collision. La cavité Ω est un ouvert connexe de \mathbb{R}^d , d = 2 ou 3. Elle se décompose en

$$\Omega \stackrel{\text{def.}}{=} \overline{S(t)} \cup F(t)$$

où S(t) et F(t) sont les domaines occupés respectivement par le solide et le fluide à l'instant t. Le solide S est connexe. Nous supposons que le fluide est décrit par les équations de Navier-Stokes. Nous notons u_F et p_F les vitesse et pression du fluide, ρ_F sa densité, μ_F sa viscosité. Ainsi :

(NS)
$$\begin{cases} \rho_F \left(\partial_t u_F + u_F \cdot \nabla u_F \right) - \mu_F \Delta u_F = -\nabla p_F - \rho_F g e_d, \\ t > 0, \ x \in F(t), \\ \operatorname{div} u_F = 0, \quad t > 0, \ x \in F(t), \end{cases}$$

avec $-\rho_F ge_d$ la force de gravité. Parallèlement, le mouvement du solide est régi par les conservations des moments linéaire et angulaire. Pour d = 3, en notant $x_S(t) \in \mathbb{R}^3$ la position du centre de masse, $U_S(t) \in \mathbb{R}^3$ sa vitesse, et $\omega_S(t) \in \mathbb{R}^3$ la vitesse angulaire, ces conservations s'écrivent

(S3D)
$$\begin{cases} m_S \dot{U}_S = \int_{\partial S(t)} \Sigma_S n \, d\sigma - m_S \, g \, e_3, \\ J_S \dot{\omega}_S = \omega_S \times (J_S \, \omega_S) + J_S \int_{\partial S(t)} (x - x_S) \times (\Sigma_S \, n) \, d\sigma \\ + \rho_S \int_{S(t)} (x - x_S) \times (-g e_3) \, dx. \end{cases}$$

Selon les notations consacrées, $\Sigma_S(t,x) \in M_3(\mathbb{R})$ est le tenseur de cisaillement du solide, $J_S(t) \in M_3(\mathbb{R})$ sa matrice d'inertie, m_S sa masse, et ρ_S sa densité. Le vecteur $n(t, \cdot)$ désigne la normale unitaire sortant du solide S(t). Lorsque d = 2, ω_S et J_s sont des scalaires, et le système se réduit à

(S2D)
$$\begin{cases} m_S \dot{U}_S = \int_{\partial S(t)} \Sigma_s n \, d\sigma - m_S \, g \, e_2, \\ J_S \dot{\omega}_S = J_S \int_{\partial S(t)} (x - x_S)^{\perp} \cdot (\Sigma_S \, n) \, d\sigma \\ + \rho_S \int_{S(t)} (x - x_S)^{\perp} \cdot (-g e_2) \, dx, \end{cases}$$

où l'on note $y^{\perp} \stackrel{\text{déf.}}{=} (-y_2, y_1)$ l'orthogonal d'un vecteur $y = (y_1, y_2)$ de \mathbb{R}^2 . Le couplage entre les sous-systèmes fluide et solide se fait *via* l'interface $\partial S(t)$. Introduisons pour cela la vitesse $u_S(t, x)$ en tout point x du solide :

$$u_S(t,x) \stackrel{\text{def.}}{=} \begin{cases} U_S(t) + \omega_S(t) \times (x - x_S(t)) & \text{si } d = 3, \\ U_S(t) + \omega_S(t)(x - x_S(t))^{\perp} & \text{si } d = 2. \end{cases}$$

On a alors

(In)
$$\begin{cases} (\Sigma_S n) |_{\partial S(t)} = (2\mu_F D(u_F)n - p_F) |_{\partial S(t)} \\ u_F |_{\partial S(t)} = u_S |_{\partial S(t)}, \end{cases}$$

où $D(u_F) := \left(\frac{1}{2}(\partial_i u_{F,j} + \partial_j u_{F,i})\right)_{i,j}$ est la partie symétrique du gradient. On complète le système en exprimant que le fluide adhère à la cavité :

(Adh)
$$u_F|_{\partial\Omega} = 0,$$

et en spécifiant les conditions initiales, c'est-à-dire la position initiale du solide S(0), ainsi que $u_F|_{t=0}$, $U_S(0)$ et $\omega_S(0)$.

Ce système d'équations aux dérivées partielles est passablement plus compliqué que le système de Navier-Stokes usuel. Outre la présence d'équations supplémentaires, la principale difficulté est qu'il s'agit d'un problème à frontière libre, l'interface entre les domaines fluide et solide se déplaçant au cours du temps. La construction de solutions pour ce système est abordée dans le paragraphe suivant.

3.2. Solutions turbulentes et fortes

Pour décrire les solutions du système fluide solide, nous aurons besoin de plusieurs espaces fonctionnels. Ceux-ci reposent sur la notion de dérivée faible, contenue dans la

Définition 3.2.1. Soit $n \ge 1$, Ω un ouvert de \mathbb{R}^n , $v \in L^1_{loc}(\Omega)$. On dit que v admet une dérivée faible $g_i \in L^1_{loc}(\Omega)$ dans la direction $i \in \{1, \ldots, n\}$ si

$$\int_{\Omega} v \partial_i \phi = -\int_{\Omega} g_i \phi, \quad \forall \phi \in \mathcal{D}(\Omega),$$

où $\mathcal{D}(\Omega)$ est l'espace des fonctions C^{∞} à support compact dans Ω . On peut montrer qu'une telle fonction g_i est unique, on la note $\partial_i v$. Le gradient faible ∇v est le champ $(\partial_1 v, \ldots, \partial_n v)$.

Muni de cette notion, on peut définir l'espace $H^1(\Omega)$ des fonctions $v \in L^2(\Omega)$ qui admettent un gradient faible $\nabla v \in L^2(\Omega)^n$. C'est un espace de Banach, muni de la norme

$$\|v\|_{H^1}^2 = \|v\|_{L^2}^2 + \|\nabla v\|_{L^2}^2$$

On distingue deux grands types de solutions pour le système fluidesolide :

• des solutions dites turbulentes ou "à la Leray", obtenues par des méthodes de compacité. Ces solutions sont très proches des solutions turbulentes introduites au texte précédent pour l'équation de Navier-Stokes. En particulier, elles existent pour tout temps. Leur unicité est un problème ouvert, ce même en deux dimensions d'espace.

• des solutions dites fortes, c'est-à-dire régulières. Elles peuvent être obtenues par méthode de point fixe, et sont uniques (au moins parmi les solutions fortes).

3.2.a. Solutions turbulentes. La construction des solutions turbulentes passe par une formulation variationnelle du système dans tout Ω . Concrètement, on pose

(3.2.2)
$$\begin{array}{c} u(t,x) \stackrel{\text{déf.}}{=} u_S(t,x) \mathbf{1}_{S(t)}(x) + u_F(t,x) \mathbf{1}_{F(t)}(x), \\ \rho(t,x) \stackrel{\text{déf.}}{=} \rho_S \mathbf{1}_{S(t)}(x) + \rho_F \mathbf{1}_{F(t)}(x), \quad \rho^S(t,x) \stackrel{\text{déf.}}{=} \rho_S \mathbf{1}_{S(t)}(x). \end{array}$$

L'avantage de ces nouvelles inconnues est que la contrainte de rigidité dans le solide s'écrit simplement (sous de bonnes hypothèses de régularité)

(3.2.3)
$$\rho_S D(u) = 0, \quad t > 0, \ x \in \Omega.$$

Par ailleurs, le déplacement des domaines fluide et solide au cours du temps s'écrit sous la forme d'équations de transport

$$\partial_t \rho + \operatorname{div}(u\rho) = 0, \quad \partial_t \rho^S + \operatorname{div}(u\rho^S) = 0, \quad t > 0, \ x \in \Omega.$$

Après multiplication par une fonction test et intégration par parties, ces équations de transport aboutissent aux formulations variationnelles :

(3.2.4)
$$\int_0^T \int_\Omega \left(\rho \partial_t \psi + \rho u \cdot \nabla \psi \right) + \int_\Omega \rho_0 \psi(0) = 0,$$
$$\int_0^T \int_\Omega \left(\rho^S \partial_t \psi + \rho^S u \cdot \nabla \psi \right) + \int_\Omega \rho_0^S \psi(0) = 0,$$

pour tout $\psi \in \mathcal{D}([0,T) \times \Omega)$. Enfin, comme pour l'équation de Navier-Stokes, on obtient (toujours sous de bonnes hypothèses de régularité) la formulation variationnelle traduisant la conservation de la quantité de mouvement totale. En notant A : B le produit scalaire usuel des matrices A et B (voir la notation (1.2.15)), cette formulation s'écrit

$$(3.2.5) \quad \int_0^T \int_\Omega \Big(\rho u \cdot \partial_t \varphi + \rho u \otimes u : D(\varphi) \\ -\mu_F D(u) : D(\varphi) - \rho(ge_d) \cdot \varphi\Big) dxds \\ + \int_\Omega \rho_0 u_0 \cdot \varphi(0) = 0,$$

pour tout champ φ dans l'espace fonctionnel

$$\mathcal{D}_{\sigma,S}([0,T) \times \Omega) \stackrel{\text{def.}}{=} \left\{ \varphi \in \mathcal{D}([0,T) \times \Omega)^d \mid \text{div}\, \varphi = 0, \ \rho^S(t,\cdot)D(\varphi) = 0, \ \forall t \right\}$$

Notons $H(\Omega)$, resp. $V(\Omega)$, l'adhérence dans $L^2(\Omega)$, resp. $H^1(\Omega)$, des champs de $\mathcal{D}(\Omega)$ de divergence nulle. Nous pouvons alors poser la

Définition 3.2.6. Une solution turbulente sur (0,T), T > 0, est un triplet (S, F, u) tel que :

(i) S(t) est un ouvert connexe de Ω pour tout 0 < t < T;

(ii) le champ u et les fonctions ρ , ρ^S introduites ci-dessus satisfont

 $u\in L^\infty(0,T;\,H(\Omega))\cap L^2(0,T;\,V(\Omega)),\quad \rho,\,\rho^S\in L^\infty(0,T\times\Omega)$

ainsi que les équations (3.2.3), (3.2.4), (3.2.5);

(iii) l'inégalité d'énergie

$$\begin{aligned} \frac{1}{2} \int_{\Omega} \rho(t) |u(t)|^2 + \mu_F \int_0^t \int_{\Omega} |\nabla u|^2(s) ds \\ \leqslant \frac{1}{2} \int_{\Omega} \rho_0 |u_0|^2 - \int_0^t \int_{\Omega} \rho(s) g \, e_d \, ds \end{aligned}$$

est vérifiée pour presque tout $t \in (0, T)$.

L'analogue du théorème de Leray pour Navier-Stokes est le :

Théorème 3.2.7. On suppose que le solide S(0) à l'instant initial vérifie $\overline{S(0)} \subset \Omega$, et que le champ de vitesses u_0 à l'instant initial est dans $H(\Omega)$. Alors, pour tout T > 0, il existe une solution turbulente sur (0,T).

La preuve du théorème, détaillée dans [5], repose, comme au paragraphe 2.3 du texte précédent [6], sur une méthode de compacité en temps et en espace. Deux sources de difficultés s'ajoutent à celles rencontrées dans le traitement des équations de Navier-Stokes classiques :

• la présence des densités variables ρ et ρ^S , qui ajoutent à la nonlinéarité du système. De ce point de vue, le système fluide-solide est très proche du système de Navier-Stokes inhomogène.

• la contrainte de rigidité dans le solide : c'est une contrainte nonlinéaire, qui rend l'espace test $\mathcal{D}_{\sigma,S}$ dépendant de la solution.

Pour contourner la première difficulté, une étape essentielle consiste à obtenir de la compacité forte sur une suite d'approximations (ρ_n) de la densité ρ . Cette compacité découle de résultats célèbres de DiPerna et Lions [4] sur les solutions de faible régularité de l'équation de transport. En particulier, si deux suites (ρ_n) et (u_n) , respectivement bornées dans $L^{\infty}(]0, T[\times \Omega)$ et $L^2(]0, T[; V(\Omega))$ satisfont (sous sa forme variationnelle) l'équation de transport

$$\partial_t \rho_n + \operatorname{div}(u_n \rho_n) = 0,$$

alors (ρ_n) est relativement compacte dans l'espace $C^0([0,T]; L^p(\Omega))$, pour tout p fini.

Pour traiter la contrainte non-linéaire, une approche possible est de la pénaliser, au sens où l'on remplace l'équation (3.2.5) par la suite d'équations approchées

$$\begin{split} \int_0^T \int_\Omega \Bigl(\rho_n u_n \cdot \partial_t \varphi + \rho_n u_n \otimes u_n : D(\varphi) \\ &- (\mu_F + n \rho_n^S D(u_n) : D(\varphi) - \rho(ge_d) \cdot \varphi \Bigr) dx ds \\ &+ \int_\Omega \rho_0 u_0 \cdot \varphi(0) = 0, \end{split}$$

pour tout champ φ dans $\mathcal{D}([0,T) \times \Omega)^d$ de divergence nulle. Pour chaque n, l'espace test qui intervient dans la formulation variationnelle est donc indépendant de la solution, ce qui permet d'appliquer les résultats classiques. Lorsque $n \to +\infty$, on récupère formellement la contrainte $\rho^S D(u) = 0$. Pour un raisonnement complet et rigoureux, nous renvoyons à [10].

Notons pour conclure ce paragraphe que les solutions turbulentes n'excluent pas les contacts entre le solide et la paroi de la cavité. Cependant, une solution turbulente ne peut pas être unique après contact, car la formulation variationnelle ne spécifie pas la loi de rebond du corps sur la paroi. Autrement dit, ces solutions ne sont réellement pertinentes qu'avant la première collision. Voir à ce sujet [5, 11].

3.2.b. Solutions fortes. Sous des hypothèses supplémentaires de régularité sur le bord du domaine et sur le champ initial u_0 , le système fluide-solide admet des solutions plus régulières et uniques. Ces solutions sont locales en temps. En dimension d = 2, elles existent jusqu'au temps de première collision. Pour préciser ce résultat, nous introduisons la

Définition 3.2.8. Une solution forte sur (0, T), T > 0, est une solution turbulente avec la régularité additionnelle :

$$u \in L^{\infty}(0,T;V(\Omega)), \ \nabla u \in L^{2}(0,T;L^{4}(\Omega)), \ \partial_{t}u \in L^{2}(0,T;L^{2}(\Omega)),$$

Les dérivées temporelle et spatiales $\partial_t u$ et ∇u sont ici à entendre au sens faible. Le théorème relatif aux solutions fortes s'énonce alors comme suit :

Théorème 3.2.9. Sous les hypothèses :

(i) $u_0 \in H_0^1(\Omega)$, div $u_0 = 0$, $D(u_0) = 0$ dans S(0),

(ii) $\Omega \text{ et } S(0)$ de frontières $C^{1,1}$ (c'est-à-dire C^1 à dérivée lipschitzienne), $\overline{S(0)} \subset \Omega$,

il existe un T_* maximal et une unique solution forte sur (0,T) pour tout $T < T_*$.

De plus, en dimension d = 2, la solution forte existe jusqu'à collision, et pas au-delà :

(a) soit $T_* = +\infty$ et dist $(S(t), \partial \Omega) > 0$ pour tout t,

(b) soit $T_* < +\infty$ et dist $(S(t), \partial \Omega) > 0$ pour tout $t < T_*$, avec $\lim_{t \to T_*} \operatorname{dist}(S(t), \partial \Omega) = 0.$

L'existence de la solution a été établie par B. Desjardins et M. Esteban [3], son unicité par T. Takahashi [12]. Si l'ouvert et la donnée initiale sont infiniment dérivables, on peut montrer que la solution forte est infiniment dérivable de part et d'autre de l'interface, et satisfait le système fluide-solide au sens classique.

Là encore, nous nous contentons d'énoncer quelques éléments de démonstration. Une approche possible est de se ramener à un domaine fixe, par l'utilisation de coordonnées lagrangiennes y au lieu de coordonnées eulériennes x. Concrètement, $x = x(t, y) = \phi(t, y)$ pour un flot ϕ tel que $\phi(t, \cdot)$ coïncide au voisinage de S(0) avec l'isométrie affine envoyant S(0) sur S(t). On a bien sûr $\phi(0, y) = y$, de sorte qu'en temps court, on se ramène à un système très proche du système original, mais en domaine fixe. Ce système est alors résolu en temps petit par un argument de point fixe, voir [12]. Une des clés de la résolution est la grande régularité de ϕ en x, possible grâce au mouvement rigide du solide. Elle simplifie considérablement l'analyse, en comparaison d'autres problèmes d'EDP à frontière libre. Un autre ingrédient du point fixe est un résultat de régularité elliptique pour

le système de Stokes

(3.2.10)
$$\begin{cases} -\Delta u + \nabla p = \operatorname{div} F, \quad x \in \mathcal{O}, \\ \operatorname{div} u = g, \quad x \in \mathcal{O}, \\ u|_{\partial \mathcal{O}} = 0, \end{cases}$$

dans un ouvert borné \mathcal{O} . Si l'ouvert \mathcal{O} est de classe $C^{1,1}$, et si le champ (F,g) appartient à $H^1(\mathcal{O}) \times H^1(\mathcal{O})$, alors la solution variationnelle $u \in H^1(\mathcal{O})$ admet la régularité additionnelle :

(3.2.11)
$$\nabla u \in H^1(\mathcal{O}), \quad \|\nabla u\|_{H^1} \leq C (\|F\|_{H^1} + \|g\|_{H^1}).$$

Ce résultat est appliqué à t fixé avec $\mathcal{O} = F(t)$, ce qui explique l'hypothèse ii) du théorème. Dans le cas d = 2, il permet d'obtenir une estimation *a priori* du type

$$\|\nabla u(t)\|_{L^{2}(\Omega)} + \int_{0}^{t} \|\partial_{t} u(s)\|_{L^{2}(\Omega)}^{2} ds + \int_{0}^{t} \|\nabla u(s)\|_{H^{1}(F(s))}^{2} ds \leq C(t)$$

tant que le temps t est strictement inférieur au temps de collision. Cette estimation supplémentaire permet de passer par prolongements successifs de l'existence d'une solution en temps petit à l'existence d'une solution jusqu'à collision.

Mentionnons enfin que tous les résultats énoncés pour une cavité bornée Ω s'adaptent au cas du demi-espace $\Omega = \mathbb{R}^d_+$: cf. [9].

3.3. Poussée d'Archimède et paradoxe de Cox-Brenner

À l'aide des solutions décrites au paragraphe précédent, nous pouvons maintenant aborder les aspects qualitatifs du mouvement, en particulier ses aspects collisionnels. Pour fixer les idées, nous pouvons supposer que le solide se déplace verticalement sous l'effet de la gravité. Les cas d'école sont ceux d'une sphère (d = 3) et d'un cylindre (d = 2) chutant au-dessus d'un plan. Nous souhaitons par exemple déterminer si la sphère et le cylindre touchent le plan et, si oui, selon quelle loi.

À première vue, cette question est extrêmement naïve : elle semble avoir été résolue par Archimède il y a plus de deux mille ans ! Selon le raisonnement d'Archimède, largement corroboré par l'expérience,

les effets prépondérants dans la chute du corps solide sont la gravité et la pression hydrostatique. En particulier, on a

$$(\Sigma_S n)|_{\partial S(t)} \approx (-p_0 + \rho_F g x_d) n|_{\partial S(t)}$$

où n est la normale unitaire sortant du solide, et p_0 désigne la pression de référence à l'altitude $x_d = 0$. En injectant cette relation dans l'équation sur la quantité de mouvement linéaire, on obtient :

$$m_S \dot{U}_S(t) \approx \int_{\partial S(t)} (-p_0 + \rho_F g x_d) n \, d\sigma - m_S \, g \, e_2$$
$$= \int_{S(t)} \rho_F g d\sigma - m_S \, g \, e_2$$
$$\approx (\rho_F - \rho_S) \, vol(S(t)) \, e_d$$

On retrouve ainsi la loi bien connue : si le solide est plus dense que le liquide, il touche le fond.

Cependant, l'argument d'Archimède repose sur une approximation puisque le tenseur des contraintes à la surface du solide est assimilé à la pression hydrostatique. Les effets de viscosité et de pression moléculaire sont négligés. Dans l'optique d'obtenir une description plus précise, il est donc naturel de considérer le système fluide-solide (NS)-(S3D) ou (NS)-(S2D) dans sa totalité.

Mais, de manière très surprenante, ce modèle *a priori* plus précis prédit qu'aucune collision n'est possible, quelles que soient les densités respectives du fluide et de la sphère! Le même résultat de non-collision est valable pour le plan et le cylindre. Ces paradoxes sont connus des mécaniciens depuis les années 60, grâce à des travaux formels de Cox et Brenner. Ils ont été définitivement justifiés par Hillairet dans [7] (voir aussi [10] pour un résultat préliminaire). Nous reviendrons sur l'analyse sous-jacente au paragraphe suivant. Évidemment, cette dynamique collisionnelle est très irréaliste, et de nombreux articles de physique ont cherché à identifier l'origine du problème, c'est-à-dire le défaut du modèle couplé fluide-solide. Nous présentons dans le paragraphe suivant une résolution possible du paradoxe, qui s'appuie sur la présence de rugosités à la surface solide.

INTERACTION FLUIDE-SOLIDE

3.4. Rôle de l'irrégularité du solide

Parmi les explications avancées pour lever le paradoxe de Cox-Brenner, une des plus populaires est l'irrégularité du solide. L'idée est que rien n'est aussi lisse qu'une sphère ou un cylindre, de sorte que les calculs formels menés par les mécaniciens ne s'appliquent pas. En d'autres termes, la rugosité des surfaces est susceptible de provoquer la collision.

Ce scénario, jusque là largement empirique, a reçu une récente justification mathématique dans [8]. L'article traite du mouvement d'un solide dans une cavité, en deux dimensions d'espace (d = 2). Il peut être cependant adapté aux autres contextes, notamment aux exemples tridimensionnels (d = 3).

En bref, l'idée principale est de considérer le mouvement d'un solide de classe $C^{1,\alpha}$, $0 < \alpha \leq 1$ (on rappelle qu'une fonction est $C^{1,\alpha}$ si elle est C^1 et si sa dérivée est höldérienne d'exposant α). On montre alors que *le modèle fluide-solide prédit des collisions si et seulement* $si \alpha < 1/2$. Autrement dit, il existe un seuil de régularité höldérienne au-dessus duquel la collision est proscrite par le modèle, et au-dessous duquel elle est possible. Ce résultat confirme le rôle crucial des rugosités dans la dynamique collisionnelle.

De façon moins succincte, deux problèmes sont abordés dans [8]. Le premier est la construction de solutions fortes pour des frontières $C^{1,\alpha}$. Celle-ci prolonge les constructions antérieures, relatives aux frontières $C^{1,1}$. Elle donne le

Théorème 3.4.1 ([8]). En dimension d = 2, le théorème 3.2.9 reste vrai en remplaçant l'hypothèse de régularité $C^{1,1}$ par l'hypothèse $C^{1,\alpha}$, pour tout $0 < \alpha < 1$. En particulier, le temps maximal d'existence T_* est le temps de la première collision ($T_* = +\infty$ en l'absence de collision).

Le deuxième problème traité dans [8] est l'existence de collision en temps fini, en fonction de l'indice de régularité α . On fait les hypothèses suivantes :

(1) le solide bouge le long de l'axe $\{x_1 = 0\}$;

(2) les seuls points de collision possibles sont le long de $\{x_1 = 0\}$;

(3) près de $\{x_1 = 0\}, \partial \Omega$ est plat horizontal;

(4) près de $\{x_1 = 0\}$, les parties haute et basse de $\partial S(t)$ sont données par

 $x_2 - x_-(t) = |x_1|^{1+\alpha}, \quad x_2 - x_+(t) = -|x_1|^2, \quad 0 < t < T_*;$

(5) le solide est plus lourd que le fluide, c'est-à-dire $\rho_{|_{S(t)}} > \rho_{|_{F(t)}}$.

On peut noter que si la configuration (Ω, S_0, v_0) est symétrique par rapport à $\{x_1 = 0\}$, alors l'unique solution forte a la même symétrie pour $0 < t < T_*$. De ce fait, les contraintes ci-dessus sont vérifiées dans de nombreuses configurations. Le résultat principal de [8] est le

Théorème 3.4.2. Pour toute solution forte satisfaisant (1)-(6), on a $T_* < \infty$ si et seulement si $\alpha < 1/2$.

Le reste du paragraphe fournit des éléments de preuve pour les deux théorèmes. La difficulté du théorème 3.4.1 réside dans la perte de l'estimation de régularité (3.2.11). Le palliatif à cette perte est la

Proposition 3.4.3. Soit \mathcal{O} ouvert borné, de frontière $C^{1,\alpha}$, $0 < \alpha < 1$. Soit

$$F \in L^2(\mathcal{O}) \cap BMO(\mathcal{O}), \quad g \in L^2(\mathcal{O}) \cap BMO(\mathcal{O}).$$

Alors toute solution faible (u, p) de (3.2.10) satisfait

 $(3.4.4) \quad \|(\nabla u, p)\|_{\text{BMO}(\mathcal{O})} \leq C \left(\|(F, g)\|_{\text{BMO}(\mathcal{O})} + \|(F, g)\|_{L^2(O)} \right).$

On rappelle que BMO(\mathcal{O}) est l'ensemble des $f \in L^1(\mathcal{O})$ tels que

$$\sup_{B} \frac{1}{|B|} \int_{B} |f(x) - \overline{f}_{B}| \, dx < +\infty, \quad \text{avec } \overline{f}_{B} = \frac{1}{|B|} \int_{B} f(x) dx,$$

où le supremum est pris sur toutes les boules ouvertes B de \mathcal{O} . On note

$$||f||_{BMO(\mathcal{O})} \stackrel{\text{def.}}{=} \sup_{B} \frac{1}{|B|} \int_{B} |f(x) - \overline{f}_{B}| dx$$

Ainsi, une borne BMO sur ∇u se substitue à la borne H^1 utilisée dans les études précédentes. Une telle borne s'avère suffisante pour établir le théorème 3.4.1.

INTERACTION FLUIDE-SOLIDE

Concernant le théorème 3.4.2, une explication heuristique de ce seuil de régularité est la suivante. Considérons le cas simplifié où l'équation (NS) est remplacée par l'équation de Stokes :

$$(3.4.5) \qquad -\mu\Delta u = -\nabla p - \rho_F g e_2, \quad x \in F(t),$$

et les autres équations sont préservées. Cette approximation est dite quasi-stationnaire. Dans notre configuration simplifiée, le domaine à frontière libre $F(t) = F_{h(t)}$ est déterminé par la distance h(t) entre l'extrémité basse du solide et la partie basse de $\partial\Omega$. De plus,

(3.4.6)
$$u|_{\partial S(t)} = \dot{h}(t) e_2, \quad u|_{\partial \Omega} = 0$$

Soit u_{qs} la solution de (3.4.5)-(3.4.6). Par la remarque précédente, u_{qs} est de la forme

$$u_{qs}(t,x) = h w_{h(t)}(x).$$

On a alors, par une estimation d'énergie

$$\mu_F \int_{F(t)} \nabla u_{qs} \nabla w_{h(t)} = \int_{\partial F(t)} (\mu_F \partial_n u_{qs} - p_{qs} n) w_{h(t)} - \int_{F(t)} \rho_F g e_2 w_h$$
$$= -m_S \ddot{h}(t) + (\rho_F - \rho_S) |S_0|.$$

Ainsi, dans l'approximation quasi-stationnaire, la dynamique collisionnelle est décrite par une EDO de la forme

$$\ddot{h}(t) = -\dot{h}(t)n(h(t)) + \frac{\left(\rho_F - \rho_S\right)|S_0|}{m_S}, \quad \text{avec } n(h) \stackrel{\text{def.}}{=} \int_{F_h} |\nabla w_h|^2.$$

Grosso modo, l'idée est que si le solide est $C^{1,\alpha}$, alors, pour $h \ll 1$,

$$n(h) \sim C \, h^{-3\alpha/(1+\alpha)}.$$

ce qui donne collision si et seulement si $\alpha < 1/2$.

La preuve consiste à justifier rigoureusement ces idées. Il faut

• remplacer u_{qs} par la vraie solution u de (NS).

• remplacer la fonction quasi-stationnaire w_h , sur laquelle on n'a pas de contrôle, par une fonction explicite ayant à peu près le même comportement quand $h \to 0$.

Nous renvoyons le lecteur intéressé à [8].

Références

- H. BRENNER & R. G. COX « The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers », J. Fluid Mech. 17 (1963), p. 561– 595.
- [2] J.-Y. CHEMIN « Équations d'Euler d'un fluide incompressible », in Facettes mathématiques de la mécanique des fluides, Journées X-UPS, Les Éditions de l'École polytechnique, Palaiseau, 2010, ce volume.
- [3] B. DESJARDINS & M. J. ESTEBAN « Existence of weak solutions for the motion of rigid bodies in a viscous fluid », Arch. Rational Mech. Anal. 146 (1999), no. 1, p. 59–71.
- [4] R. J. DIPERNA & P.-L. LIONS « Ordinary differential equations, transport theory and Sobolev spaces », *Invent. Math.* 98 (1989), no. 3, p. 511–547.
- [5] E. FEIREISL « On the motion of rigid bodies in a viscous incompressible fluid », J. Evol. Equ. 3 (2003), no. 3, p. 419–441.
- [6] I. GALLAGHER « Le problème de Cauchy pour les équations de navier-stokes », in Facettes mathématiques de la mécanique des fluides, Journées X-UPS, Les Éditions de l'École polytechnique, Palaiseau, 2010, ce volume.
- [7] M. HILLAIRET « Lack of collision between solid bodies in a 2D incompressible viscous flow », Comm. Partial Differential Equations 32 (2007), no. 7-9, p. 1345– 1371.
- [8] M. HILLAIRET & D. GÉRARD-VARET « Regularity issues in fluid structure interaction », Arch. Rational Mech. Anal. 195 (2010), no. 2, p. 375–407.
- M. HILLAIRET & T. TAKAHASHI « Collisions in three-dimensional fluid structure interaction problems », SIAM J. Math. Anal. 40 (2009), no. 6, p. 2451–2477.
- [10] J. A. SAN MARTÍN, V. STAROVOITOV & M. TUCSNAK « Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid », Arch. Rational Mech. Anal. 161 (2002), no. 2, p. 113–147.
- [11] V. N. STAROVOITOV « Behavior of a rigid body in an incompressible viscous fluid near a boundary », in *Free boundary problems (Trento, 2002)*, Internat. Ser. Numer. Math., vol. 147, Birkhäuser, Basel, 2004, p. 313–327.
- [12] T. TAKAHASHI « Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain », Adv. Differential Equations 8 (2003), no. 12, p. 1499–1532.

David Gérard-Varet, Institut de Mathématiques de Jussieu, Université Paris Diderot, 75251 Paris Cedex 05, France *E-mail* : david.gerard-varet@imj-prg.fr