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This talk is mostly devoted to problems which resemble greatly
questions about codes, namely to quite a classical problem of dense
packing of equal non-overlapping spheres in RN . It comes out that
both direct application of algebraic-geometric codes and use of intu-
ition developed while studying them are quite useful. Moreover, here
one can see even better the marvelous integrity of mathematics, two
more parts of which — number theory and that of packings — being
added to coding theory and algebraic geometry.

In the first chapter we give necessary definitions and produce some
beautiful examples. This chapter is quite classical and has nothing to
do with either algebraic geometry or number theory.

Publication originelle dans Journées X-UPS 1993. Codes géométriques algébriques
et arithmétique sur les corps finis. Prépublication du Centre de mathématique de
l’École polytechnique, 1993.
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The relations with the latter are discussed in the second chapter
devoted to algebraic geometry and number theory constructions of
lattices and packings.

Part I. Definitions and examples

How can one pack equal non-overlapping spheres in RN? What is
the density of such packing and how the density behaves for small val-
ues of N? For large values of N? How to put the asymptotic problem
for N → ∞?

In §1 we give some basic definitions and introduce different pa-
rameters of sphere packings. Then we show how to put the problem
rigorously. In §2 we give some examples of dense packings. Then, in
§3 we discuss the asymptotic setting. The striking similarity between
codes and packings is briefly discussed in §4.

1. Parameters

Packings. Let us consider the classical problem of packing equal non-
overlapping spheres in RN . Let P be the set of centers and let

d = d(P ) = inf
v,u∈L
v ̸=u

|u− v|,

d is the minimum distance of the packing, which equals the maximum
possible diameter of non-overlapping spheres centered in P .

The density of P is the part of RN covered by spheres; to be precise,
it can be defined as

∆(P ) = lim sup
u→∞

v(S ∩Bu)/v(Bu),

where

S =
{
x ∈ RN

∣∣ ∃y ∈ P, |x− y| < d

2

}
Bu =

{
x ∈ RN

∣∣ |x| ⩽ u
}

and v(·) is the standard volume in RN .
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Lattices. If P is an additive subgroup of RN , we call the packing P

a lattice packing (or just a lattice; in this case we use the letter L

rather than P ). Further on we suppose that the rank of L equals N

since otherwise ∆(L) = 0. If L is a lattice then any choice of a
basis e1, . . . , eN in L defines a map ZN → RN ; its matrix is called a
generator matrix of the lattice.

For lattices the definition of ∆(L) does not depend on the choice
of origin and does not change if we replace the ball Bu by a cube (or
by any homothetically increasing solid containing a neighbourhood
of the origin).

The volume of the fundamental domain

F =

{ N∑
i=1

xiei

∣∣∣ 0 ⩽ xi < 1

}
⊂ RN

equals the absolute value of the determinant of the generator matrix.
This volume is called the determinant of the lattice and is denoted by
det(L); we define the discriminant discr(L) of L as the determinant
of the matrix of inner products ∥(ei, ej)∥, i, j = 1, . . . , N . It is easy
to check that

discrL = (detL)2.

Let VN = πN/2/Γ(N/2 + 1) be the volume of unit ball in RN .
For a lattice there is exactly one sphere in each fundamental do-

main, or — to be more precise — the pieces of spheres in the funda-
mental domain, being shifted, form just one sphere. Therefore

∆(L) =
d(L)NVN

2N detL
.

Note that by the Stirling formula we have

log2 VN =
N

2
· log2

(
2πe

N

)
− log2

√
π ·N + o(1);

we write this as
1

N
· log2 VN ∼ 1

2
· log2 (2πe/N) .

Thus for N → ∞ we get

− 1

N
·log2∆(L) ∼ − log2

√
π · e
2

+log2
√
N−log2 d(L)+

1

N
·log2(detL).
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Other parameters. Let us define some other parameters of packings
(which are often more convenient than ∆) setting

δ(P ) = ∆(P )/VN ,

λ(P ) = −(log2∆(P ))/N,

ν(P ) = log2 δ(P );

we call δ(P ) the center density, and λ(P ) the density exponent.
Clearly,

∆(P ) = 2−λ(P )·N .

For root lattices it is convenient to use δ(P ); ν(P ) is useful to com-
pute the density of lattices obtained by some specific constructions.
The density exponent λ(P ) is especially important for asymptotic
problems.

Densest packings. Set

λ(N) = inf
P⊂RN

λ(P ), ∆(N) = sup
P⊂RN

∆(P ), . . .

A natural problem of finding the densest possible packing in a given
dimension can be decomposed into two problems:

(A) Find the precise value of λ(N) (or, what is the same, of ∆(N)

or of δ(N), . . . ).
(B) Find a packing P with λ(P ) = λ(N).
These problems are completely solved only for N = 1 and N = 2.
Since ∆(P ) ⩽ 1, we get

λ(P ) ⩾ 0

for any packing.
For N = 1 the answer is obvious: equal segments cover the whole

line, and hence for this packing L1 one has ∆(L1) = 1, i.e.,

∆(1) = 1, λ(1) = 0.

For N = 2 the problem is not so simple but one can prove that

∆(2) = π/2
√
3.
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It is easy to check that for the lattice L2 ⊂ R2 = C generated by 1
and (1 +

√
−3)/2 we have ∆(L2) = ∆(2);L2 is called the hexagonal

lattice.
Strangely enough, λ(N) is unknown for any N ⩾ 3.
The figures 1, 2, 3 show the densest known packings in dimensions

1, 2, and 3.

a a a

a aaa

a a a a

aaa

a

a

aaa
b b

c c c

b b b
c c c

b b b

c

b
c c c

bbb
c c

Figure 1. : dim = 1, ∆ = 1

a a a
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a a a a

aaa

a

a

aaa
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b b b
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b b b

c

b
c c c

bbb
c c

Figure 2. dim = 2, ∆ =
π√
12

= 0.9069 · · ·

In fact, the packing in dimension 2 is obtained by taking a line,
putting spheres of dimension two at the centers of the best packing
in dimension one along this line, then taking a similar row next to
it as close as possible, then another row, and so on. It can be shown
that it is essentially unique.

We can do the same in dimension three. Take a plane, put three-
dimensional spheres at the centers “a” of the best two-dimensional
packing. Then we have to choose the next layer. It can be centered
either over “b” points, or over “c” points. Continuing like this we
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Figure 3. dim = 3, ∆ =
π√
18

= 0.7405 · · ·

have continually many choices corresponding to binary sequences,
the density being the same. One of these choices gives the lattice
packing you see on the figure.

It is conjectured that this packing is the densest possible. Recently
a proof has been announced, but as yet the mathematical community
does not believe in it.

Densest lattices. For lattice packings we know slightly more. Let
λℓ(N) = inf

L⊂RN
λ(L), ∆ℓ(N) = sup

L⊂RN

∆(L), . . .

Clearly
λℓ(N) ⩾ λ(N), ∆ℓ(N) ⩽ ∆(N), . . .

A lattice L is called unimodular iff detL = 1. The dual lattice
L⊥ =

{
x ∈ RN

∣∣ (x, ℓ) ∈ Z for any ℓ ∈ L
}

is in this case also unimodular.
The inner product in RN induces on L a positively definite bilinear

form.
In fact, any integral positively definite bilinear form can be ob-

tained from a lattice.
Let now φ(x, y) be a positively definite bilinear form in N integral

variables, and let f(x) = φ(x, x) be the corresponding quadratic form.
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Suppose that φ is unimodular, i.e., discrφ = 1. Such forms are in
bijection with unimodular lattices L in RN . Set

γ(L) = γ(φ) = min
x∈ZN−{0}

f(x).

In lattice terms it is the squared length of the shortest non-zero
vector. It is easy to check that

∆(L) = VN · (γ(L)/4)N/2 ;

γ(L) = 4 · (∆(L)/VN )2/N = 4 · (δ(L))2/N .

One can naturally extend the definition of γ(φ) to non-unimodular
case:

γ(L) = γ(φ) = min
x∈ZN−{0}

(f(x)/discrφ)1/N .

Now let us put

γ(N) = max
φ

γ(φ),

where maximum is taken over all positively definite bilinear forms in
N variables; γ(N) and ∆ℓ(N) are related by formulas similar to those
given above.

Note that for N → ∞ we obtain

λ(N) ∼ log2

√
2N

π · e · γ(N)
,

log2(γ(N)) ∼ log2

(
(2N/πe) ·∆2/N

)
= −2 · λ(N) + log2 (2N/πe) .

Precise values of ∆ℓ(N) are known for 1 ⩽ N ⩽ 8; see the table
where we have collected the values of all the above parameters for
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these N .

N 1 2 3 4 5 6 7 8

∆ℓ(N) 1 0.907 0.740 0.617 0.465 0.373 0.295 0.254

δℓ(N) 0.5 0.229 0.177 0.125 0.088 0.072 0.063 0.063

λℓ(N) 0 0.070 0.144 0.174 0.221 0.237 0.251 0.247

νℓ(N) −1 −1.792 −2.5 −3 −3.5 3.792 −4 −4

γℓ(N) 1 1.155 1.260 1.414 1.516 1.665 1.811 2

δℓ(N)−2 4 12 32 64 128 192 256 256

Note that within the table ∆ℓ(N) increases and γℓ(N) decreases.
It is interesting to know whether it is the case for any N .

In the table the integrality of δℓ(N)−2 attracts attention. We do
not know whether δℓ(N)−2 is integral for any N ; note however that
the densest lattice of a given rank can be generated by a matrix with
rational entries and the rationality of δℓ(N)−2 follows.

2. Examples

Now we describe the densest lattices for N ⩽ 8 and introduce some
interesting lattice families.

We construct families L ⊂ RN and give the values of d(L) and
det(L). Other density parameters for these families are given in the
table above.

The simplest family is

ZN ⊂ RN ;
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for these lattices

d(ZN ) = 1, det(ZN ) = 1.

Root lattices. Let us consider in RN+1 the following lattice AN of
rank N :

AN =

{N+1∑
i=1

aiei

∣∣∣ ai ∈ Z,
∑

ai = 0

}
,

{ei} being the standard basis in RN+1.
The lattice AN is generated by vectors

α1 = e1 − e2, α2 = e2 − e3, . . . , αN = eN − eN+1;

its parameters are

d(AN ) =
√
2, det(AN ) =

√
N + 1.

The family DN ⊂ RN is defined by

DN =

{ N∑
i=1

aiei

∣∣∣ ai ∈ Z,
∑

ai ≡ 0 mod 2

}
.

The lattice DN is generated by α1 = e1 − e2, α2 = e2 − e3,. . . ,
αN−1 = eN−1 − eN , and αN = eN−1 + eN ; its parameters are

d(DN ) =
√
2, det(DN ) = 2.

The following important family does exist only for N = 4, 5, 6, 7, 8.
For such N define the lattice EN in R8 by its basis:

α1 =
1

2
(e1 + e8)−

1

2
· (e2 + · · ·+ e7),

α2 = e1 + e2,

αi = ei − ei−1 for i = 3, . . . , N.

The lattice E8 can be given by

E8 =

{ 8∑
i=1

ai · ei
∣∣∣ 2 · ai ∈ Z, ai − aj ∈ Z,

8∑
i=1

ai ∈ 2 · Z
}
;
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and the rest EN are intersections of E8 with planes of codimension
(8−N). In particular,

E7 =

{
x =

8∑
i=1

ai · ei
∣∣∣ x ∈ E8, a7 = −a8

}
,

E6 =

{
x =

8∑
i=1

ai · ei
∣∣∣ x ∈ E7, a6 = −a7

}
.

The parameters are d(EN ) =
√
2 and det(EN ) = 9−N .

Note that A1 = Z, D3 = A3, E4 = A4, E5 = D5. The lattice fam-
ilies A,D, and E are root lattices which arise in many questions: in
the theory of Lie groups and algebras, in the singularity theory, in
the theory of rational surfaces, etc.

Lattices Γ. Let now N ⩾ 8, N ≡ 0 mod 4. Set

ΓN =

{ N∑
i=1

ai · ei
∣∣∣ 2 · ai ∈ Z, ai − aj ∈ Z,

N∑
i=1

ai ∈ 2Z
}
.

The lattice ΓN is generated by vectors ei+ej and the vector 1
2

∑N
i=1 ei;

its parameters are

d(ΓN ) ⩾
√
2, det(ΓN ) = 1.

Note that Γ8 = E8.
The lattices A1 = Z, A2, A3 = D3, D4, D5, E6, E7, E8 = Γ8 have

the density coinciding with that from the table. They are the densest
lattices in their dimensions. A proof of this fact can be obtained by
the reduction theory of quadratic forms.

Note that for all the described families

λ(LN ) ∼ log2
√
N −→ ∞ for N −→ ∞.

We shall see that there are lattices which asymptotically behave
significantly better.

For N ⩾ 9 we do not know the precise value of λℓ(N) and only
some bounds are known. As in the case of codes it is natural to call
upper bounds for ∆(N) and ∆ℓ(N) possibility bounds and lower ones
existence bounds (note however that for λ(N) possibility bounds are
lower ones, and existence bounds are upper ones).
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We do not describe here various methods of constructing dense
packings in dimensions from 9 up to 100000. We need here only the
Leech lattice which is a very beautiful object arising in many ques-
tions.

Leech lattice. There exists a unique integral even unimodular lattice
of dimension 24 which has no vector of length

√
2 (recall that a lat-

tice is called even iff the scalar square of any of its vectors is even).
This lattice is called Leech lattice and is denoted by Λ24; it is closely
connected with Golay [24, 12, 8]2-code C24. It can be constructed in
many ways. Here is one of the simplest.

The lattice Λ24 is generated by vectors

Vi,c =
1√
8
· ui,c, 1 ⩽ i ⩽ 24, c ∈ C24,

where ui,c has ∓3 in i-th position and ±1 in all other positions, and
the upper sign is chosen for a position where the codeword c has 1.

The parameters of the Leech lattice are

det(Λ24) = 1, d(Λ24) = 2;

therefore,

δ(Λ24) = 1, ν(Λ24) = 0, γ(Λ24) = 4,

∆(Λ24) ≈ 0.00193 and λ(Λ24) ≈ 0.376.

The covering radius of the Leech lattice equals 2
√
2, i.e., balls of ra-

dius 2
√
2 centered at lattice points cover the whole space R24. One

can describe “deep holes” of the Leech lattice, i.e., points with dis-
tance 2

√
2 from the nearest lattice point.

The automorphism group Co0 of the Leech lattice is enormous:

|Co0| = 8315553613086720000.

The maximal sporadic simple group, the Fischer-Gries group (the
Monster), can be realized as the automorphism group of an algebra
closely connected to the Leech lattice.
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Kissing number. There is another nice problem concerning sphere
packings, of slightly a different nature (local). How many spheres can
touch the given sphere in an N -dimensional space (all spheres being
equal)? This number is called the kissing number.

The answer is known only in dimensions 1, 2, 3, 8, and 24, the kiss-
ing numbers being respectively 2, 6, 12, 240, and 196560. The exam-
ples are given by local arrangements in the lattices A1, A2, A3, D4, E8,
and Λ24.

3. Asymptotic problems

For asymptotic problems it is convenient to consider

λ̃ = lim inf
N→∞

λ(N).

To compute λ̃, i.e., to understand what is the maximum asymptotic
density ∆̃ = 2−λ̃N of a high-dimensional packing, is most likely a
very hard problem. We are interested in bounds for this value. The
situation here is similar to that in coding theory, and λ̃ is an analogue
of αq(δ).

A family of packings is a set {PN} of packings, PN ⊂ RN where N

runs over an infinite subset of N.
Let

λ({PN}) = lim inf λ(PN ).

We call families with λ({PN}) < ∞ good families (they are ana-
logues of good families of codes, i.e., those with k/n → R > 0 and
d/n → δ > 0).

One can show that inf
{PN}

λ({PN}) = λ̃.

Similarly for lattices we set

λ̃ℓ = lim inf
N→∞

λℓ(N) = inf
{LN}

λ({LN}).

Bounds. Here are the best known estimates of λ̃ :

Theorem. 1 ⩾ λ̃ℓ ⩾ λ ⩾ 0.599.
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The upper bound which is an existence bound is called the
Minkowski bound, the lower one (a possibility bound) the Kabatyan-
sky-Levenstein bound.

The Kabatyansky-Levenstein bound can be obtained by technique
similar to that of the Mc Eliece-Rodemich-Ramsey-Welch bound in
coding theory. The proof of the former consists of two parts : the first
is the linear programing bound for packing of spheres on SN ⊂ RN+1

and the second provides a way to pass from SN to RN , which is
based on the following simple construction. Let ΛN be a packing
in RN and let us embed RN into RN+1 in the natural way (i.e.,
assuming that vectors from RN have zero for the last coordinate).
Thus RN ∩ SN = SN−1 ; let us consider those balls from ΛN which
are contained in the unit (N − 1)-ball. Lifting their centers to SN we
obtain a packing of SN and its parameters can be estimated through
the parameters of ΛN .

Here is another bound (Rogers):

Proposition. ∆(N) ⩽ σN , where σN is the ratio of the volume of
the intersection

(⋃N+1
i=1 Bi ∩ ΣN

)
to the volume of ΣN , where ΣN is

the perfect simplex of edge length 2 and B1, . . . , BN+1 are unit balls
centered at the vertices of ΣN .

The Rogers bound gives λ̃ ⩾ 0.5 but it is quite useful for moderate
values of N .

The Minkowski bound (which is an analogue of the Gilbert-
Varshamov bound) can be obtained by a technique similar to the
code-theoretic one. As in the case of codes almost all linear codes
asymptotically lie on the Gilbert-Varshamov bound, here almost all
lattice families have λ({LN}) = 1.

Thus it is known that there exists lattices of density ∆ ∼ 2−N but
we do not know how to construct them explicitly. The problem of
explicit construction of dense packings naturally arises.

4. Codes and packings

Between codes and packings there exists a system of beautiful
analogies. Indeed, one can consider an [n, k, d]q-code C ⊆ Fn

q as the
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set of centers of a sphere packing (of radius t = [(d− 1)/2]) in the
Hamming metric. Minimum distance of a code corresponds to the
diameter d(L) of a sphere packing.

Linear codes correspond to lattice packings. Indeed, a linear code
is a subset in Fn

q which is closed under addition and under multi-
plication by elements of Fq, and lattice is closed under addition and
multiplication by integers. Strictly speaking, we can consider “quasi-
linear” codes, i.e., subsets which are closed under addition and under
multiplication by elements of Fp (rather than Fq) as an analogue of
lattices, but we do not pursue this idea here.

Let C be a linear [n, k, d]q-code. Then the volume (the cardinality)
of the factor-space Fn

q /C equals qn−k. For a lattice L ⊂ RN the
volume of the factor-space RN/L equals det(L), i.e., log(detL) is an
analogue of the code codimension (n − k). To be definite we shall
assume that in the expression log(detL) the log symbol corresponds
to the binary logarithm.

There are two possible analogues of the dimension N of a lattice
(which equals its rank): the length n and the dimension k of a code.
We use the first one; nevertheless we think that the second can be
also of some use.

The density of a packing corresponds to the density of a packing
in the Hamming metric. Note that the density of a lattice packing
equals the volume of the ball of radius d divided by detL. For the
density of a packing in the Hamming metric the analogous statement
is also true if we assume the ball volume to be normalized:

the ball volume = (number of points in the ball)/qn.

An analogy between code and lattice parameters is not complete.
Indeed, the density of packing does not change under a homothety
L 7→ a · L. Hence one can assume that d(L) = 1 (or detL = 1)
and thus a packing has two essential parameters N and ∆, whence
a code has three essential parameters n, k, and d. Thus the unique
asymptotic parameter λ is an analogue of the pair of code asymptotic
parameters (δ,R).
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An asymptotic by good packing family (i.e., with λ<∞ for N→∞)
is an analogue of an asymptotically good code family (i.e., with
R · δ > 0 for n → ∞).

The Gilbert-Varshamov bound corresponds to the Minkowski
bound; and the Hamming bound to the condition λ ⩾ 0. It is no
clear which is a reasonable analogue of the Plotkin bound in coding
theory (this is an interesting question). The Kabatyansky-Levenstein
bound corresponds to the Mc Elice-Rodemich-Ramsey-Welch bound.

Packings on a sphere correspond to constant-weight codes.
An interesting question about analogies between concrete code

families and lattice families is mostly open. For instance, parity check
codes correspond either to lattices AN , or to DN .

The θ-function of a lattice corresponds to the code enumerator;
this analogy is quite useful.

Unimodular lattices correspond to self-dual codes.
We are interested in analogues of algebraic-geometric codes. Below

we shall describe some of them. These analogies are closely connected
to a very deep analogy between algebraic curves over finite fields and
algebraic number fields.

Part II. Curves, number fields and packings

To construct sphere packing starting from curves over finite fields
or from algebraic number fields one should first recall the main no-
tions of these two domains. That of curves was already recalled in
the previous talks, §1 is devoted to algebraic number theory. We also
stress the parallelism between number fields and curves over finite
fields.

Then we can give some sphere packing constructions, choosing only
those that look both simple, natural and beautiful. Each of then can
be used to produce many interesting examples of lattice packing. To
show that they are really good we study these packing for N tending
to infinity.

1. Algebraic number fields

A finite extension k of Q is called an algebraic number field. Its
degree n = [k : Q] equals the dimension of k as a Q-vector space.

Algebraic integers. If x ∈ k satisfies the relation

xm + am−1 · xm−1 + · · ·+ a1 · x+ a0 = 0, ai ∈ Z

then x is called an algebraic integer or an integral element of k.
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Proposition. The sum and the product of algebraic integers are also
algebraic integers.

Corollary. The subset of integers of k is a ring.

This ring Ok is called the ring of integers of k or its maximal order.
Any subring O ⊆ Ok of finite index [Ok : O] is called an order.

Proposition. For any z ∈ k there exists c ∈ Z such that c · z is an
algebraic integer.

Therefore we have

Ok = Zw1 + · · ·+ Zwn

for some basis {w1, . . . , wn} of k over Q: such a basis is called a
fundamental basis of k.

Trace and norm. Let now Σ = {σ1, . . . , σn} be the set of distinct
embeddings of k into C. Since for any embedding σi such that σi(k)

does not lie in R the embedding σi does not coincide with σi, these
embeddings are present in the set Σ in pairs (σi, σi). Thus if s is the
number of embeddings σi : k ↪→ C with σi(k) ⊂ R (such embeddings
are called real) and t is the number of pairs (σi, σi) where σi ̸= σi

(such embeddings are called complex) then s+ 2t = n.
Let us set

Tr(x) = Trk/Q(x) =

n∑
i=1

σi(x), N(x) = Nk/Q(x) =

n∏
i=1

σi(x).

Tr(x) is called the (k/Q)-trace of x, and N(x) the (k/Q)-norm of x.
If am · xm + · · ·+ a0 = 0 is the minimal equation of x over Q then

m|n, moreover

Tr(x) = −nam−1/(mam) and N(x) = (−1)n(a0/am)n/m.

The bilinear form Tr(x · y) is non-degenerate; N(x) ∈ Z if and only
if x ∈ Ok.
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Discriminant. Let k be an algebraic number field of degree n and let
{w1, . . . , wn} be its fundamental basis. The integer

Dk = det(Tr(wi · wj))

is called the (absolute) discriminant of k.
It can be checked that this definition does not depend on the choice

of {w1, . . . , wn}.

Theorem. If n > 1, i.e., k ̸= Q, then |Dk| > 1.

One can give another definition of Dk which follows. Let s be the
number of real embeddings σi and t be the number of conjugate
pairs (σj , σj) of complex embeddings of k. Let A = Rs × Ct be a
commutative R-algebra of rank n = s+2t, and let σ be the following
ring embedding

k
σ−−→ Rs × Ct,

a 7−→ (σ1(a), . . . , σs(a);σs+1(a), . . . , σs+t(a)).

The image σ(k) generates A (over R); check also that σ(Ok) is a
lattice in A ≃ Rn.

The following proposition will be used later.

Proposition. |detσ(Ok)| = 2−t ·
√

|Dk|.

Proof. Let {w1, . . . wn} be a fundamental basis of k, let σj(wi) =

xji ∈ R for any i, j = 1, . . . , s, and let σs+j(wi) = yji +
√
−1 · zji for

any i, j = 1, . . . , t, where yji and zji ∈ R. Then

d = detσ(Ok) = det


x11 · · · xs1 y11 z11 · · · yt1 zt1

...
...

...
...

...
...

x1n · · · xsn y1n z1n · · · ytn ztn
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It is clear that d = d∗/(−2
√
−1)t, where

d∗ = det


x11 · · · xs1 y11 +

√
−1 · z11 y11 −

√
−1 · z11 · · ·

...
...

...
...

x1n · · · xsn y1n +
√
−1 · z1n y1n −

√
−1 · z1n · · ·


i.e., D∗ = det(σi(wj)), where {σ1, . . . , σn} is the full set of embed-
dings of k into C. Since by the definition of the trace

Tr(wi · wj) =

n∑
ℓ=1

σℓ(wi) · σℓ(wj)

for 1 ⩽ i, j ⩽ n, one has a matrix equality

(Tr(wi · wj)) =
trans(σℓ(wi)) · (σℓ(wj))

where trans denotes transposition, whence

Dk = det(Tr(wi · wj)) = (d∗)2

and we are done. □

Units. An element a ∈ Ok is called a unit if and only if a−1 ∈ Ok.
Clearly all the units form a group which is denoted O∗

k. Torsion ele-
ments of O∗

k are roots of unity. One easily checks that a ∈ O∗
k if and

only if Nk/Q(a) = ±1.
The structure of the group O∗

k is rather simple, it is described by
the famous Dirichlet theorem:

Theorem. O∗
k is the product of its finite torsion subgroup by a free

abelian group of rank r = s+ t− 1.

Sketch of proof. Let us consider the map

O∗
k

log−−−→ Rs+t

a 7−→ (log |σ1(a)|, . . . , log |σs(a)| ; log |σs+1(a)|2, . . . )

Its kernel is the torsion subgroup of O∗
k, and its image log(O∗

k) is
contained in the hyperplane H ⊂ Rs+t defined by x1+ · · ·+xs+t = 0.
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Indeed,

|σ1(a)| · · · |σs(a)| · |σs+1(a)|2 · · · |σs+t(a)|2 = |N(a)| = 1.

One can show that log(O∗
k) is a lattice in H (of full rank) which

gives the theorem.
The determinant of this lattice

R = Rk = det


log |σ1(u1)| · · · log |σ1(us+t−1)|

...
...

log |σs+t−1(u1)| · · · log |σs+t−1(us+t−1)|


where {u1, . . . , us+t−1} is a basis of O∗

k modulo torsion, is called the
regulator of k.

Places. A map ∥·∥ : k → R is called an absolute value if the following
conditions hold :

• ∥0∥ = 0, ∥x∥ > 0 if x ̸= 0;
• there exist x, y ∈ k∗ such that ∥x∥ ≠ ∥y∥;
• ∥x · y∥ = ∥x∥ · ∥y∥;
• there exists a positive real λ such that ∥x+ y∥ ⩽ λ · (∥x∥+ ∥y∥).
Two absolute values ∥ · ∥1 and ∥ · ∥2 are equivalent if there exists a

positive real θ such that ∥·∥1 = ∥·∥θ2. An equivalence class of absolute
values is called a place of k.

There is a beautiful description of all places of a number field.
Let σ : k ↪→ C be an embedding of fields. Let us put ∥x∥σ = |σ(x)|

if σ is a real embedding (i.e., Imσ ⊂ R), and ∥x∥σ = |σ(x)|2 if σ is a
complex embedding. These are absolute values. One can check that
two such absolute values ∥ · ∥σ and ∥ · ∥σ′ are equivalent if and only if
either σ′ = σ, or σ′ = σ. Thus we obtain s real and t complex places
of k. These places are called infinite or archimedean, the set of infinite
places is denoted by S∞.

Let then p be a maximal ideal of Ok. For x ∈ k∗ let

ordp(x) = max{n | x ∈ pn}.
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One easily checks that

ordp(x · y) = ordp(x) + ordp(y)

for any x, y ∈ k∗, and if also x+ y ∈ k∗ then

ordp(x+ y) ⩾ min{ordp(x), ordp(y)}.

Let us define the corresponding absolute value: for x ∈ k∗ let

∥x∥p = N(p)−ordp(x),

where N(p) = |Ok/p|. For such an absolute value (and for any one
equivalent to it) a stronger condition holds:

∥x+ y∥ ⩽ λ ·max{∥x∥, ∥y∥}

(which is wrong for archimedean absolute values). Such absolute val-
ues are called non-archimedean. If p ̸= p′ then the corresponding ab-
solute values are not equivalent, i.e., each maximal ideal (each closed
point of SpecOk) corresponds to a place of k. Such places are called
finite or non-archimedean.

It comes out that each place of a number field is either infinite or
finite. If v is a place of k then the absolute values defined above are
called normalized and denoted ∥ · ∥v.

Let us recall that if there are no complex places, the number field
is called totally real, if there are no real places, it is called totally
complex.

Class group. Let a be an ideal of Ok, and let a ∈ k∗. The set c = a−1a

is called a fractional ideal. The set of non-zero fractional ideals is a
group with the composition defined by

a · b = {x · y | x ∈ a, y ∈ b}.

Note that the inverse element is given by

a−1 = {x | x−1 ∈ a− {0}} ∪ {0}.

We call fractional ideals c and c1 equivalent if c1 = ac for some a ∈ k∗.
Equivalence classes of non-zero fractional ideals form a group Clk
which is called the (ideal) class group of k.

Theorem. The group Clk is finite for any algebraic number field k.
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The order of the class group h = hk = |Clk | is called the class
number of k.

Extensions. Sometimes it is necessary to consider field extensions
K/k,K and k being algebraic number fields. Let [K : k] = dimkK =

n and let OK and Ok be the rings of integers in K and k, respectively.
Any x ∈ K is a root of an irreducible over k equation of the form

am · xm + · · ·+ a0 = 0

where ai ∈ Ok for i = 0, . . . ,m.
Let us define the (relative) trace and norm as

TrK/k(x) = −am−1/am,

NK/k(x) = (−1)ma0/am.

Different. Let us consider the following subset in k:

BK/k = {x ∈ K | TrK/k(x · y) ∈ Ok for any y ∈ Ok}.

One can easily check that BK/k is a OK-submodule in K which con-
tains OK . Hence there exist a unique ideal DK/k in Ok such that
DK/k · BK/k = OK . The ideal DK/k is called the different of the
extensions K/k. The ideal

DK/k = {NK/k(x) | x ∈ DK/k}

in Ok is called the (relative) discriminant of the extension K/k.
The relative discriminant DK/Q equals the ideal in Z generated by

the absolute discriminant Dk. Thus Dk is defined by Dk/Q up to a
sign.

Let L ⊃ K ⊃ k be algebraic number fields. Then DL/k = DL/k ·
DK/k.

Proposition. Let the degree of the extension L/K be equal to m. Then

DL/k = Dm
K/k ·NK/k(DL/K).
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Unramified extensions. An algebraic field extension is called unram-
ified if DK/k = (1). We have just seen that Q has no unramified
extensions.

The rule a 7→ a · OK defines a group homomorphism Clk → ClK ;
the norm map defines a homomorphism ClK → Clk. If an extension
K/k is unramified and abelian (i.e., normal with an abelian Galois
group Gal(K/k)) then the (global) class field theory gives

Theorem. Gal(K/k) is isomorphic to the factor-group Clk/NK/k(Clk).

Moreover there exists a maximal unramified abelian extension K1

which is called the Hilbert or absolute class-field of k; Gal(K1/k) is
isomorphic to Clk.

Theorem. Let K1 be the absolute class field of an algebraic number
field k. Then the canonical homomorphism Clk → ClK1 is trivial,
i.e., all the ideals of Ok become principal in OK1.

Class field towers. As we have seen above Q has no unramified ex-
tensions. There exist many algebraic number fields k with hk > 1;
for these fields the absolute class field K1 is an unramified extension
of degree hK . If hk1 > 1 we get the field K2 = (K1)1 which is an
unramified extension K2/k (note that the extension K2/k cannot be
abelian). Iterating this construction we get either

(a) hKn = 1 for some n; hence we cannot obtain a larger unramified
extension of k by our construction; or

(b) hKn > 1 for any n and hence we obtain an infinite unramified
tower k ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊂ · · · .

An algebraic number field which satisfies the last condition is called
a field with an infinite class field tower.

Theorem. There exists a function f : N → N such that if k is an
algebraic number field of degree n and Dk has at least f(n) distinct
prime divisors then k has an infinite class field tower.

On can give a precise formula for f(n) but we do not need it here.
The discriminant Dk of a field satisfying the conditions of this

theorem cannot be small. One can ask how to construct fields with
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infinite class field towers and small discriminants. To compare fields of
various degrees one should use the parameter |Dk|1/n (note that it is
constant in unramified towers). Here are the best examples discovered
by J. Martinet.

Theorem. The field

k = Q
(
cos(2π/11),

√
−46

)
of degree 10 over Q has an infinite class field tower;

|Dk| = 215 · 118 · 235 and |Dk|1/n ≈ 92.37.

The field
k = Q

(√
2,
√
3 · 5 · 7 · 23 · 29

)
of degree 4 has an infinite class field tower of totally real fields;

|Dk| = 28 · 32 · 52 · 72 · 232 · 292 and |Dk|1/n ≈ 1058.57.

On the other hand using so-called “explicit formulas” one can ob-
tain a lower bound for |Dk|1/n:

Theorem. let ki be algebraic number fields and let ni = [ki : Q] → ∞.
Let si be the number of real embeddings and ti the number of pairs of
complex embeddings of ki. Suppose that the limits σ = lim si/ni and
τ = lim ti/ni do exist. Then

lim inf |Dki |
1/ni ⩾ (4πeγ+1)σ · (4πeγ)2τ ,

γ being the Euler constant. If the generalized Riemann hypothesis is
valid then

lim inf |Dki |
1/ni ⩾ (8πeγ+π/2)σ · (8πeγ)2τ .

Curves and number fields. Algebraic number fields and fields of ra-
tional functions on curves over finite fields are called global fields.
They have many features in common. Here we briefly describe some
of them.

Let k be an algebraic number field and let Ok be its ring of integers.
Let X be a curve over Fq, K = Fq(X), let F be a finite set of closed
points of X, U = X − F , and let OF = Fq[U ] be the ring of rational
functions which are regular on U .

For both rings Ok and OF any factor over a maximal ideal is a
finite field.



34 MICHAEL A. TSFASMAN

For OF all these fields contain Fq (the so-called “case of equal char-
acteristics”), in the number field case among these fields there is an
extension of Fp for any prime p (the “case of different characteris-
tics”).

The notion of a place is in fact good for any global field. One can
show that any place of K = Fq(X) is finite and corresponds to a
closed point of X.

We can choose various finite sets F and get various rings OF . In
the number case we can choose a finite set S of maximal ideals of Ok

and consider the ring OS which is obtained from Ok by inverting
non-zero elements of ideals from S; note that SpecOS = SpecOk −S

and Oϕ = Ok. Rings of the form OS or OF can be characterized
as those having one-dimensional irreducible regular spectra of finite
type over Z.

The number field case is mostly more difficult than the function
field case. Indeed, SpecOF can be embedded into a proper scheme X

and SpecOk has no “good” embedding into a proper scheme. The
last fact makes it indispensable to study infinite places of SpecOk.

The field Fq(T ), T being a variable, is an analogue of Q since
k = Fq(X) (where X is a curve over Fq) is a finite extension of
Fq(T ); the ring Fq[T ] is an analogue of Z. Note however, that there
is no canonical embedding of Fq(T ) into Fq(X) and hence we cannot
say that [Fq(X) : Fq(T )] is an analogue of the degree of an algebraic
number field.

One can suggest another analogue of the degree, namely, the num-
ber of Fq-points of X. Indeed, if |X(Fq)| = N , then the degree of a
map f : X → P1 (i.e., the degree of an extension [F(X) : Fq(T )])
can not be too small: deg f ⩾ N/(q + 1), since any Fq-point of X

is mapped to an Fq-point of P1 and any fiber of f contains at most
deg f Fq-rational points.

Let a map f : X → P1 be fixed, and let us fix an Fq-point ∞ on
P1. Then we have P1 −{∞} = A1, Fq[A1] = Fq[T ] and we can regard
the integral closure of Fq[T ] in Fq(X) as an analogue of Ok. Note that
this closure coincides with OF∞ = Fq[X −F∞] where F∞ = f−1(∞).
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The ramification divisor Bf of the map f is an analogue of the
different. The discriminant corresponds to the divisor D =

∑
epp

where ep is the ramification index of P ∈ P1. The value log
√
|Dk| is

an analogue of the genus of a curve.
A fractional ideal a =

∏
p p

np , where p runs over prime ideals of Ok,
corresponds to a divisor on X, a−1 corresponds to L(D) and the group
PicX is an analogue of Clk.

Note also that Fq(T ) has no unramified extensions (just as Q).
The value lim inf(g/N) is an analogue of lim inf log |Dk|/n. The

“explicit formulas” technique gives estimates for both these values.
The question about an adequate analogue of the number of rational

points on the Jacobian is rather delicate. One can suggest that its
“genuine” analogue is the product hkRk rather than hk.

Units O∗
S of the ring OS correspond to units O∗

F of OF ; the group µk

is an analogue of F∗
q . Moreover, just as in the number field case, O∗

F /F∗
q

is a free abelian group of rank |F |−1 (note that O∗
S/µk ≃ Zs+t+|S|−1).

There are some other analogies which are less clear but also useful,
and we use them in the next section.

2. Number field and function field lattices

We are ready to present several constructions of lattices in the
context of number theory and algebraic geometry and to calculate or
estimate their parameters.

These results are quite recent and their discovery was stimulated
by the theory of algebraic-geometric codes.

Additive lattices. Let k an be algebraic number field, of degree N =

s+ 2t, let Ok be its ring of integers, and let

σ : k ↪−→ Rs × Ct

be the standard embedding. The image L = σ(Ok) is a lattice of
rank N .

Parameters. Let us compute the density of L. We have already seen
above that

detL = 2−t
√

|Dk|.
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Proposition.
√
s+ t ⩾ d(L) ⩾

√
s/2 + t

and if t = 0 then
d(L) =

√
N.

Proof. Let

x = σ(f) = (x1, . . . , xs; y1 +
√
−1 · z1, . . . , yt +

√
−1 · zt).

We have

|σ(f)| =

√√√√ s∑
j=1

x2j +
t∑

j=1

(y2j + z2j ).

For f = 1, |σ(1)| =
√
s+ t.

The arithmetic mean geometric mean inequality yields√√√√ s∑
j=1

x2j +

t∑
j=1

(y2j + z2j ) ⩾
1√
2
·

√√√√ s∑
j=1

x2j + 2 ·
t∑

j=1

(y2j + z2j )

⩾

√
s+ 2t

2
·
[ s∏
j=1

x2j ·
t∏

j=1

(y2j + z2j )
2

]1/2N
=

√
s

2
+ t · |NK/Q(f)|1/N

⩾

√
s

2
+ t,

since NK/Q(f) ∈ Z. In the totally real case√√√√ N∑
j=1

x2j ⩾
√
N ·

[ N∏
j=1

x2j

]1/2N
=

√
N · |NK/Q(f)|1/N ⩾

√
N,

and we get the required result. □

Unramified towers. Now let the field K vary so that N → ∞, and K

is either totally real, or totally complex. Then

λ(L) ∼ − log2

√
πe

2
+

1

N
· log2

√
|DK |.
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If we want to construct good lattices the last term should be
bounded. It is definitely so if K runs over an unramified tower of
fields over some K0, in which case it is just constant. We get

Theorem. If a number field K0 of degree N0 has an infinite unramified
tower of fields K ⊃ K0which are either totally real, or totally complex,
then it yields an asymptotically good family of lattices {LN ⊂ RN}
with

λ({LN}) ∼ − log2
√

πe/2 +
1

N0
· log2

√
|DK0 |.

For K0 = Q
(
cos(2π/11),

√
−46

)
we get λ ∼ 2.2218 (recall that K0

has an infinite class field tower).
On the other hand, the above “explicit formulas” theorem shows

that for any family of fields K we cannot get asymptotically less than
1.193 · · · (and 1.694 · · · assuming the generalized Riemann hypothe-
sis).

Multiplicative number field lattices. Up to this moment we have used
the additive groups of global fields. Now we are going to exploit their
multiplicative structure.

Construction. We start with a number field K of degree N = s+ 2t

and a finite number of its places S = S∞ ∪ Sf which includes all
archimedean ones, let n = |S|. Let O∗

S be the set of S-units, i.e.,
a ∈ O∗

S if and only if all the prime divisors of its numerator and
denominator belong to Sf .

There is a natural map

O∗
S

φS−−−→ Rn,

f 7−−−→ {log ∥f∥v},

where v ∈ S, and ∥ · ∥v is the normalized absolute value, i.e., ∥f∥v =

|σv(f)| for real places, ∥f∥v = |σv(f)|2 for complex ones, and ∥f∥v =

N(v)−ordv(f) for v ∈ Sf . It is clear that

KerφS = µK

is the group of roots of 1 in K, and that

ImφS ⊂ H =
{
x ∈ Rn

∣∣∣ ∑xi = 0
}
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because of the product formula.

Parameters. Let R be the regulator of K and let h = hK be its
class number. Set h(f) =

∑
v | log ∥f∥v| for f ∈ K∗, this is the height

function (sorry that it is denoted by the same letter as the class
number); h(f) = 0 if and only if f ∈ µK . We set

h(K) = min
f∈K∗−µK

h(a)

and call it the height of the field K.

Proposition. Let LS = φS(O
∗
S). Then

d(LS) ⩾
1√
n
· h(K),(a)

rkLS = n− 1 and detLS ⩽
√
n ·R · h ·

∏
v∈Sf

logN(v).(b)

We do not prove it here because the function field case that follows
is much simpler and gives better results.

Asymptotic behaviour. To obtain asymptotically good families of lat-
tices we are going to consider unramified towers of fields. In such
towers 1

N · log
√
|DK | is constant. Let us for simplicity assume that

all the fields in the tower are totally real.

Theorem. If a number field K0 of degree n0 has an infinite unramified
tower of totally real fields then the above construction with S = S∞
yields a family of asymptotically good multiplicative lattices {LN =

LS ⊂ RN} with N → ∞ and

λ({LN}) ⩽ − log2
√
π3e/2− log2 loge

[
(1 +

√
5)/2

]
+

1

n0
· log2 |DK0 |.

For K0 = Q
(√

2,
√
3 · 5 · 7 · 23 · 29

)
we get λ<∼ 8.41.

Function field lattices. Here is a direct function field analogue of the
previous construction.
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Construction. Let
O∗

P = {f ∈ K∗|Supp(f) ⊆ P}.

Recall that P ⊆ X(Fq) for a curve X over Fq and K = Fq(X).
Let DivP(X) denote the group of divisors supported in P, Div0(X)

of those of degree 0, PP(X) the subgroup of principal divisors. Let
JX = Div0(X)/P (X) be the Jacobian of X.

There is a natural map
O∗

P
φP−−−→ DivP(X) ≃ Zn,

f 7−→ (f).

It is clear that kerφP = F∗
q is again the group of roots of 1 in K, and

that
ImφP ⊆ Div0P(X) ≃ An−1 =

{
x ∈ Zn

∣∣ ∑xi = 0
}
.

We set
LP = φP(O

∗
P) ⊆ An−1 ⊗ R ≃ Rn−1.

Parameters. Let us estimate the parameters of LP .

Theorem. Let LP = φP(O
∗
P). Then

d(LP) ⩾ min
f∈O∗

P−F∗
q

√
2 · deg f ⩾

√
2 · |X(Fq)|

q + 1
,(a)

rkLP = n− 1 and(b)

detLP ⩽
√
n · |JX(Fq)| ⩽

√
n ·

[
1 + q +

|X(Fq)| − q − 1

g

]g
.

Proof
(a) Let f ∈ O∗

P , f ̸∈ F∗
q ,

φP(f) = (x1, . . . , xn) ∈ Zn.

Then
|φP(f)| =

√∑
x2i ⩾

√∑
|xi| =

√
2 · deg f,

since xi ∈ Z,
∑

xi = 0, deg f =
∑

xi>0 xi. Any f ∈ K maps Fq-points
to Fq-points of P1. Therefore

|X(Fq)| ⩽ (q + 1) · deg f

and we get the second inequality.
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(b) We know that detAn−1 =
√
n and

detLP = [An−1 : LP ] · detAn−1.

Then
An−1 ≃ Div0P(X) ⊂ Div0(X),

and
LP ≃ PP(X) = P (X) ∩Div0P(X).

Therefore

[An−1 : LP ] ⩽ [Div0(X) : P (X)] = |JX(Fq)|.

To prove the second inequality it is sufficient to establish the fol-
lowing bound for the number of points on the Jacobian:

|JX(Fq)| ⩽
[
1 + q +

|X(Fq)| − q − q

g

]g
.

Indeed, |JX(Fq)| =
2g∏
i=1

(1−ωi), ωi being the Frobenius roots, |ωi| =
√
q, ωg+i = ωi. The arithmetic mean geometric mean inequality yields
2g∏
i=1

(1− ωi) =

g∏
i=1

(q + 1− ωi − ωi) ⩽

[∑g
i=1(q + 1− ωi − ωi)

g

]g
,

and the estimate for |JX(Fq)| follows from

−
g∑

i=1

(ωi + ωi) = |X(Fq)| − q − 1. □

Asymptotic behaviour. We consider families of curves of growing
genus with

|X(Fq)|
g

−→ A,

and set P = X(Fq). We get

Theorem. A family of curves X over Fq of growing genus g such that
|X(Fq)|

g
−→ A > 0

yields an asymptotically good family of lattices {LN ⊂ RN} with

λ({LN}) ⩽ − log2
√
πe+ log2

√
q + 1 +A−1 log2(1 + q +A).
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We are again interested to take the largest possible A. Let q = p2m,
then we can consider curves with A =

√
q − 1. For such curves we

can in fact do better than for an arbitrary family.

Proposition. For a family of curves X over Fq with

|X(Fq)|
g

−→ √
q − 1

there is an asymptotic equality
1

g
· log2 |JX(Fq)| ∼ log2 q + (

√
q − 1) · log2 (q/(q − 1)) .

Using this result we get

Theorem. A family of curves X over Fq of growing genus g such that

|X(Fq)|
g

−→ √
q − 1

yields an asymptotically good family of lattices {LN ⊂ RN} with

λ({LN}) ⩽ − log2
√
πe+ log2

√
q + 1

q − 1
+

√
q

√
q − 1

· log2 q.

For q = 9 we get λ<∼ 1.8687 · · · .

Congruence constructions. Now we shall discuss some constructions
depending on a divisor.

Multiplicative congruence sublattices. The construction of multiplica-
tive lattices can be slightly elaborated. We consider some specific
sublattices of LP . Let D be a positive divisor on X, D =

∑
aiPi,

ri = degPi, N(Pi) = qri ,

a = degD =
∑

airi.

We write f ≡ 1 mod D if ordPi(f − 1) ⩾ ai for any Pi ∈ SuppD.
Suppose that P ∩ SuppD = ∅. Let

O∗
P,D = {f ∈ O∗

P | f ≡ 1 mod D},

and consider the lattice LP,D = φP(O
∗
P,D) ⊆ LP .
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Parameters. Here are the estimates.

Proposition. Let LP,D = φP(O
∗
P,D). Then

(a) d(LP,D) ⩾
√
2a,

(b) rkLP,D = n− 1 and

detLP,D ⩽
√
n · |JX(Fq)| ·

qa

q − 1
·
∏(

1− q−ri
)
.

Proof
(a) As above we have

d(LP,D) ⩾ min
f∈O∗

P,D−{1}

√
2 · deg f,

and we notice that deg f = deg(f − 1) ⩾ degD = a.
(b) We have already estimated detLP , and we only need to esti-

mate [LP : LP,D]. Look at the embedding O∗
P ↪→

∏
Ô∗

Pi
is the group

of units in the completion of the local ring at Pi. Let

Ô∗
Pi,ai = {x ∈ Ô∗

Pi
| x ≡ 1 mod aiPi}.

We have O∗
P,D = O∗

P ∩ (
∏

Ô∗
Pi,ai

) and

[O∗
P : O∗

P,D] ⩽
[∏

Ô∗
Pi

:
∏

Ô∗
Pi,ai

]
=

∏[
(qri − 1)ri(ai−1)

]
.

Then kerφP = F∗
q and 0∗P,D ∩ kerφP = {1}, therefore

[O∗
P : O∗

P,D] = (q − 1) · [LP : LP,D]. □

Asymptotic behaviour. Consider the same family of curves as above,
let P = X(Fq) and let D be such that

lim
degD

|X(Fq)|
= (2 · loge q)−1

(this choice appears to be optimal). We get

Theorem. A family of curves X over Fq of growing genus g such that
|X(Fq)|

g
−→ √

q − 1

with the appropriate choice of divisors yields an asymptotically good
family of lattices {LN ⊂ RN} with

λ({LN}) ⩽ − log2

√
π

2
+

1

2
· log2(loge q)+

√
q

√
q − 1

· log2 q− log2(q−1).
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For q = 2209 = 472 we get λ<∼ 1.3888 · · · .

Number field case. We can now return to number fields and give a
parallel theory, which is as usual more difficult.

For the totally complex field Q(cos(2π/11),
√
−46) and S0 = S∞

we get λ<∼ 11.1512 . . . For the totally real field Q(
√
2,
√
3·5·7·23·29)

and S0 = S∞ we get λ<∼ 8.80. These are not best choices but what
we get is always much worse than for the function field case.

Another approach. Algebraic curves can also be used to construct
lattices indirectly, that is we construct lattices using algebraic geo-
metric codes. The construction is less elegant and we come to families
of lattices with λ<∼ 2.30 · · · and families of non-lattice packings with
λ<∼ 1.31 · · · .
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