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Surgery equivalence relations for 3-manifolds

GWÉNAËL MASSUYEAU

Abstract

By classical results of Rochlin, Thom, Wallace and Lickorish, it is well-known that any two 3-
manifolds (with diffeomorphic boundaries) are related one to the other by surgery operations. Yet,
by restricting the type of the surgeries, one can define several families of non-trivial equivalence
relations on the sets of (diffeomorphism classes of) 3-manifolds. In this expository paper, which is
based on lectures given at the school “Winter Braids XI” (Dijon, December 2021), we explain how
certain filtrations of mapping class groups of surfaces enter into the definitions and the mutual
comparison of these surgery equivalence relations. We also survey the ways in which concrete
invariants of 3-manifolds (such as finite-type invariants) can be used to characterize such relations.
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Introduction

It is a classical result of Rochlin and Thom, dating back to the early 50’s, that any closed
oriented 3-manifold M is the boundary of a compact oriented 4-manifold W. By elementary
differential topology arguments (considering a handle decomposition of W), it follows that M
is obtained from the 3-sphere S3 by finitely many knot surgeries. Here a “knot surgery” in a
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3-manifold V merely consists in removing a regular neighborhood N(K) of a knot K in V and
gluing it back while exchanging the meridian with a parallel curve of K on ∂N(K).

Here is another (equivalent) way of viewing any closed oriented 3-manifold M as the result
of “modifying” S3 in some way. Consider a Heegaard splitting of M, i.e. the decomposition of
M = H ∪H′ into two handlebodies H,H′ of the same genus g such that H ∩H′ = ∂H = ∂H′: the
existence of such a decomposition arises again from elementary differential topology (con-
sidering, this time, a handle decomposition of M itself). Since there also exists a Heegaard
splitting of S3 of genus g, and since any two handlebodies of genus g are diffeomorphic,
one can find a compact oriented surface T in S3 and a self-diffeomorphism t of T such that
M is obtained from the 3-sphere S3 by cutting along T and gluing back with t. We call this
operation a twist along T by t.

Since “knot surgeries” and “twists” (as defined above) are thus too general to define in-
teresting relations between 3-manifolds, it is natural to impose some conditions on these
operations. For instance, if one desires a twist to preserve the homology type of 3-manifolds,
we should require the gluing diffeomorphism to act trivially in homology; similarly, one can
ensure that a knot surgery preserves the homology type by requiring the knot to be null-
homologous and by choosing the parallel in a convenient way. Stronger conditions on knot
surgeries or twists can guarantee preservation of stricter features of the 3-manifolds: for in-
stance, their “nilpotent homotopy types”, or, their invariance under certain families of topo-
logical invariants. It turns out that, in the past 40 years, several families of highly non-trivial
equivalence relations have been defined for 3-manifolds by restricting the type of the “knot
surgeries” or “twists.”

In this expository paper, we aim at surveying the study of such surgery equivalence re-
lations which, for some of them, have been introduced several times in the literature with
different descriptions. More specifically, via the above notion of “twists”, we shall review
how certain filtrations of mapping class groups of surfaces enter into the definitions and
the mutual comparison of these equivalence relations. Furthermore, we will survey the ways
in which concrete invariants of 3-manifolds (such as finite-type invariants) can be used to
characterize such relations.

This expository paper is based on lectures given at the school “Winter Braids XI”, which
was held at the IMB (Dijon) in December 2021. So, in §1, we start with preliminary con-
tents for readers who might not be so familiar with certain constructions of differential topol-
ogy (e.g. handle decompositions) or basic results of low-dimensional topology (including the
generation of the mapping class groups in relation with the above-mentioned theorem of
Rochlin [90] and Thom [98]). Next, in §2, we review the definitions of three families of surgery
equivalence relations: the k-equivalence relations defined by Cochran, Gerges & Orr [11], the
Yk-equivalence relations defined under different names by Goussarov [27] and Habiro [30],
and the Jk-equivalence relations which arise naturally from the study of the latter. It follows
from their definitions that all these relations are “hierarchized” as follows:

Y1-eq. ⇐= Y2-eq. ⇐= Y3-eq. ⇐= · · · Yk-eq. ⇐= Yk+1-eq. ⇐= · · ·
∥ ⇓ ⇓ ⇓ ⇓

J1-eq. ⇐= J2-eq. ⇐= J3-eq. ⇐= · · · Jk-eq. ⇐= Jk+1-eq. ⇐= · · ·
∥

2-eq. ⇐= 3-eq. ⇐= · · · k-eq. ⇐= (k + 1)-eq. ⇐= · · ·

For instance, Y1-equivalence (resp. 2-equivalence) is generated by the twists (resp. the knot
surgeries) of the above-mentioned kinds that preserve the homology type of 3-manifolds. We
give particular emphasis on the Yk-equivalence relations: indeed, their definition and their
study are closely tied to those of the lower central series of the subgroup of the mapping class
group acting trivially in homology, namely the Torelli group of a surface. The main advantage
of the Yk-equivalence, with respect to the Jk-equivalence and the k-equivalence, consists in
the existence of a kind of “surgery calculus” — known as clasper calculus — which is very
efficient to describe the associated quotient sets of 3-manifolds.
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The final section, §3, is devoted to the problem of characterizing all these equivalence
relations. We start by reviewing a result of Matveev [68] which classifies Y1-equivalence for
closed 3-manifolds, and we extract from the literature several results for the characterization
of the other equivalence relations in low degree k. We also consider the problem of character-
izing them in arbitrary degree k: in the case of the Yk-equivalence relations, such a problem
is connected to the theory of finite-type invariants which we briefly outline. In fact, the exact
connection between this theory and the family of Yk-equivalence relations can be viewed as
an instance of the so-called “Dimension Subgroup Problem” in group theory.

Our exposition will be mainly directed towards closed oriented 3-manifolds and homol-
ogy cylinders over a compact oriented surface . The latter constitute a particular, but
very important, class of compact oriented 3-manifolds with boundary parametrized by ∂(×
[−1,+1]): in fact, homology cylinders even constitute a monoid into which the Torelli group
of  naturally embeds via the mapping cylinder construction, and which is essentially the
monoid of Z-homology 3-spheres in the case  := D2. Since the works of Goussarov [27],
Habiro [30] and Garoufalidis & Levine [26], most of the study on surgery equivalence rela-
tions for 3-manifolds have been focused on monoids of homology cylinders in relation with
the theory of finite-type invariants and the algebraic structure of mapping class groups.

The case of 3-manifolds with arbitrary boundary is not so much developed in the literature,
although we should mention the notable exception of knots and (string-)links exteriors. In
the study of knots and (string-)links, the Yk-equivalence relations are replaced by the more
specific “Ck-equivalence relations” (which can be formulated in purely knot-diagrammatic
terms), and the role played by the lower central series of the Torelli group for 3-manifolds
is played by the lower central series of the pure braid group (which is much better under-
stood): then, the study in this case turns out to be rather particular, but it also shares many
similarities and connections with the general case. This study started in relation with the the-
ory of Vassiliev invariants through the works of Stanford [95] and Habiro [30], before being
developed and generalized in several directions (see [69] and references therein). Yet, for a
better delimitation of the problematics, the present survey will not consider the specific case
of knots and (string-)links.
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Comté and the project “AlMaRe” (ANR-19-CE40-0001-01). The IMB receives support from the
EIPHI Graduate School (ANR-17-EURE-0002). The author is grateful to the referee for the
careful reading of the manuscript.

1. Basics about 3-manifolds and mapping class groups

We start this expository paper by reviewing basic facts and constructions for 3-manifolds and
mapping class groups of surfaces.

Conventions. All manifolds are assumed to be smooth and, unless otherwise stated, they
are connected and oriented. For any integer n ≥ 0, Dn ⊂ Rn is the n-dimensional euclidean
disk and Sn := ∂Dn+1 is the n-dimensional sphere. ■

1.1. Surgeries and handle decompositions

We first recall the general definitions of surgeries and handle decompositions in any dimen-
sion m ≥ 1, before illustrating these constructions by specializing to the dimension m = 3.

Let M be a (possibly disconnected) m-manifold, let k ∈ {1,2, . . . ,m} and let  : Sk−1 ×
Dm+1−k ,→ int(M) be an embedding. The m-manifold

M′ :=
�

M \ int (Sk−1 × Dm+1−k)
�

∪′
�

Dk × Sm−k
�

where ′ := |Sk−1×Sm−k
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is said to be obtained from M by the surgery of index k along . Observe that, reversely, M is
obtained from M′ by a surgery of index (m + 1 − k).

Example 1.1. In dimension m := 3, we get the following operations M⇝M′:

(1) Index k = 1: we consider the disjoint union S0 × D3 of two balls in M and replace it by
D1 × S2; thus the two balls are deleted and their boundaries are identified one to the
other in an orientation-preserving way.

(2) Index k = 2: we consider a solid torus S1 × D2 in M and replace it by another one
D2 × S1; “meridians” and “parallels” of solid tori are exchanged during this process.

(3) Index k = 3: we consider a thickened sphere S2 × D1 in M and we fill each of the two
spheres S2 × S0 with a ball.

Thus, a surgery of index 1 can be of two types in dimension 3: if the two balls S0 × D3

belong to the same connected component of M, then M′ ∼= M♯(S1 × S2) which can also be
obtained by surgery of index 2 along a solid torus S1 × D2 ⊂ M such that S1 × {0} bounds a
disk; otherwise, M′ is obtained from M by taking the connected sum of two of its connected
components.

Similarly, a surgery of index 3 can be of two types: if the thickened sphere S2 × D1 is
separating, then M is reversely obtained from M′ by taking the connected sum of two of its
connected components; otherwise, we have M ∼= M′♯(S1 × S2).

We conclude that, in dimension 3, it is enough to consider surgeries of index 2. For later
use, we reformulate them in knot-theoretical terms. Let K ⊂ int(M) be a knot; a parallel of K
is a simple closed curve in the boundary ∂N(K) of the regular neighborhood N(K) of K, that
is isotopic to K inside N(K); the meridian of K is the simple closed curve μ(K) in ∂N(K) that
bounds a disk in N(K) but not in ∂N(K); up to isotopy in ∂N(K), the meridian is unique but
there are infinitely many possibilities for a parallel. See Figure 1.1.

Figure 1.1: A knot K (black) in its regular neighborhood N(K), together with
the meridian (red) and a parallel (blue)

We now assume that K is framed in the sense that a parallel ρ(K) has been specified; then
the 3-manifold obtained from M by surgery along K is

MK :=
�

M \ intN(K)
�

∪ϕ (D2 × S1)

where ϕ : S1 × S1 → ∂N(K) is a diffeomorphism mapping {1} × S1 to μ(K) and S1 × {1}
to ρ(K). The manifold MK is well-defined only up to orientation-preserving diffeomorphisms,
and the surgery M ⇝ MK is the same as a surgery M ⇝ M′ of index 2, where the embedding
 : S1 × D2 ,→ int(M) has image N(K) and maps S1 × {0} (resp. S1 × {1}) to K (resp. to ρ(K)).

Very often, a framed knot K in a 3-manifold M is given by drawing on the blackboard a
knot diagram, which represents the image of a generic projection of the knot on a planar
surface B ⊂ M onto which (part of) M deformation retracts: we keep track of the “over/under”
crossing information at each double point and the parallel of K is given by lifting the curve
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parallel to the projection of K in B. This is called the “blackboard framing convention”. For
instance, here are three diagrams of the trivial knot U ⊂ S3 showing three different framings:

then the resulting manifold S3
U

is S1 × S2, S3 and RP3, respectively. (To be specific, the
knots are given in R3 ⊂ S3 and the planar surface B onto which we project is an affine plane
of R3.) ■

A surgery of index k is only the tip of the iceberg of a higher-dimensional operation. Let
n ∈ N and k ∈ {0, . . . , n}. A k-handle in dimension n is a copy of Dk × Dn−k; its boundary can
be decomposed into two parts:

∂(Dk × Dn−k) =
�

Sk−1 × Dn−k� ∪
�

Dk × Sn−k−1
�

Let W be an n-manifold with boundary. Attaching a k-handle to W means to specify an em-
bedding  : Sk−1 × Dn−k ,→ ∂W to construct the new n-manifold

W′ =W ∪
�

Dk × Dn−k�.

Then ∂W′ is obtained from ∂W by a surgery of index k.

Remark 1.2. Technically speaking, the new manifold W′ has “corners” but there exists a
standard procedure to round those “corners”. Alternatively, one can give a smooth model of
the attachment of a k-handle that arises from Morse theory (see below). For instance, here
are schematic images (with or without corners) of a 1-handle attached in dimension 2:

corners

vs

■

Two closed m-manifolds M and M′ are cobordant if there exists a compact (m+1)-manifold
W such that ∂W ∼= (−M) ⊔ M′. Then, W is called a cobordism from M to M′. Of course, any
compact n-manifold W with boundary can be viewed as a cobordism from ∅ to ∂W and, in
particular, any closed n-manifold W can be viewed as a cobordism from ∅ to ∅.

Definition 1.3. The m-th cobordism group is the quotient set

Ωm :=
{closed m-manifolds}

cobordism

equipped with the disjoint union ⊔ operation. ■

Thom [100] studied those abelian groups for all integers m ≥ 1: he described them as
kinds of stable homotopy groups, he showed that they constitute the coefficient modules of
a generalized homology theory, he computed Ωm up to degree m = 7 and gave, among other
things, an explicit computation of the ring Ω∗⊗Q . . . For this pioneering work, Thom received
the Fields Medal in 1958.

Example 1.4. As soon as one knows the classification of closed k-manifolds for k ∈ {0,1,2},
it is pretty clear that

Ω0 ≃ Z, and Ω1 = Ω2 = {0}.

However, it is much less obvious that Ω3 = {0} as well: we shall prove it in §1.3. ■
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Let W be an n-dimensional cobordism from M to M′. A handle decomposition of W is an
increasing sequence

W−1 ⊂ W0 ⊂ W1 ⊂ · · · ⊂ Wn =W

where W−1 ∼= M × [−1 − ε,−1 + ε] and W is obtained from W−1 by attaching finitely many
-handles. Note that −W is a cobordism from M′ to M and has a dual handle decomposition,
consisting of one handle of index n −  for every handle of index  in W.

Fact. Morse theory tells us that any cobordism W has a handle decomposition. Specifically,
any Morse function ƒ :W→ [−1 − ε, n + ε] such that

⋄ for each  ∈ {0,1, . . . , n}, all critical points of ƒ of index  are in ƒ−1(),

⋄ (−1 − ε) and (n + ε) are regular values of ƒ ,

⋄ ƒ−1(−1 − ε) = M and ƒ−1(n + ε) = M′,

defines a handle decomposition of W by setting W := ƒ−1([−1− ε, + ε]). Furthermore, there
is one handle of index  for every critical point of ƒ of index . ■

We recommend Milnor’s textbooks [70, 71] for an introduction to Morse theory. As a com-
plement to this, Cerf theory can also tell us how any two handle decompositions of the same
cobordism are related one to the other by some operations (namely, creation/annihilation of
two handles of consecutive indices, and handle slidings). But we shall not need that in these
lectures.

It follows from the above fact that, in particular, any closed n-manifold W has a handle
decomposition W0 ⊂ W1 ⊂ · · · ⊂ Wn =W where W0 consists of 0-handles, W1 is obtained from
W0 by attaching 1-handles, and so on, to finish by gluing n-handles to get W. As is easily
checked, we can assume that

⋄ W0 consists of a single 0-handle D0 × Dn,

⋄ dually, Wn is obtained from Wn−1 by attaching a single n-handle Dn × D0.

Example 1.5. Let M be a closed 3-manifold. According to what has been recalled above, M
has a handle decomposition

M0 ⊂ M1 ⊂ M2 ⊂ M3 = M

with a single 0-handle and a single 3-handle. Thus, there is an integer g ≥ 0 such that M1 is
diffeomorphic to

Hg :=

1 g
· · ·

which is a called the standard handlebody of genus g, and whose boundary

g := ∂Hg

is the standard closed (oriented) surface of genus g. Dually, there is an integer g′ such
that M′1 := M \ int(M1) is diffeomorphic to Hg′ . Since M1 and M′1 share the same boundary,
we must have g = g′ : hence g = g′. We conclude that any closed 3-manifold M can be
decomposed as

M ∼= Hg ∪ƒ (−Hg)
where ƒ : g → g is an orientation-preserving diffeomorphism. Such a decomposition is
called a Heegaard splitting of M of genus g. ■

In the rest of these notes, we restrict our attention to 3-manifolds.
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1.2. Mapping class groups of surfaces

The Heegaard splittings, which have been described in Example 1.5, reveal that all closed 3-
manifolds can be efficiently presented in terms of diffeomorphisms of surfaces. The following
lemma adds that, being only interested in 3-manifolds up to diffeomorphisms, we only have
to consider diffeomorphisms of surfaces up to isotopy.

Lemma 1.6. Let g ∈ N. The (oriented) diffeomorphism type of Mƒ := Hg ∪ƒ (−Hg) only de-
pends on the isotopy class of ƒ .

Proof. For any orientation-preserving diffeomorphisms E : Hg → Hg and ƒ : g → g, we
clearly have

Mƒ◦E|g
∼= Mƒ

∼= ME|g ◦ƒ .

Assume that ƒ ′ : g → g is another orientation-preserving diffeomorphism which is isotopic
to ƒ . Then e = ƒ−1 ◦ ƒ ′ is isotopic to the identity, and we can use a collar neighborhood of
g in Hg to construct a diffeomorphism E : Hg → Hg such that E|g = e. We conclude that
Mƒ ′ = Mƒ◦e ∼= Mƒ . □

Thus we are led to consider the mapping class group of the surface g, which is defined
by

(1.1) M(g) :=
{orientation-preserving diffeomorphisms g → g}

isotopy
.

We refer to the textbooks [6, 19] for an exposition of mapping class groups. For the moment,
we just need to review the simplest examples and give explicit generating systems for those
groups.

Example 1.7. The group M(0) is trivial. Besides, through its action on the abelian group
H1(1;Z) ≃ Z2, the group M(1) is isomorphic to SL(2;Z). See the above-mentioned text-
books, or [64, §2] for a direct treatment of these examples. ■

Let α be a simple closed curve in g. We identify a regular neighborhood N(α) of α with
the annulus S1 × [0,1], in such a way that orientations are preserved. The Dehn twist along
α is the diffeomorphism Tα : g → g defined by

Tα() =
�

 if  /∈ N(α)
�

e2π(θ+r), r
�

if  =
�

e2πθ, r
�

∈ N(α) = S1 × [0,1].

Because of the choice of N(α) and its “parametrization” by S1× [0,1], the diffeomorphism Tα
is only defined up to isotopy. But the isotopy class [Tα] ∈M(g) only depends on the isotopy
class of the curve α. Here is the effect of Tα on a curve ρ which crosses transversely α in a
single point:

α

ρ

N(α)

Tα−→

Theorem 1.8 (Dehn 1938). In any genus g ≥ 1, the group M(g) is generated by finitely
many Dehn twists.
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Dehn’s generating system [13] can be written explicitly. It consists of 2 twists in genus
g = 1, and 5 twists in genus g = 2: see Figure 1.2. In genus g > 2, M(g) is generated by
the Dehn twists along the 2g(g − 1) curves shown in Figure 1.3: the curves α (blue, for all
 ∈ {1, . . . , g}), β (red, for all  ∈ {1, . . . , g}), δ (purple, for all  ∈ {1, . . . , g}), γj (green, for
any pair {, j} of two elements in {1, . . . ,2g} that are of distance at least three in the cyclic
order).

Figure 1.2: Dehn’s generators in genus 1 and 2

Figure 1.3: Dehn’s generators in genus g > 2

In the sequel, we shall only need the following information about Dehn’s generating sys-
tem of M(g):

(1.2)
In genus g > 1, the group M(g) is generated by Dehn twists along

simple closed curves, each avoiding a sub-handlebody of genus 1 of Hg.

Here g is regarded as the boundary of the standard handlebody Hg, and a sub-handlebody
of genus k of Hg is the image of Hk under some diffeomorphism Hk ♯∂Hg−k ∼= Hg.

Remark 1.9. In the sixties, Lickorish rediscovered and simplified Dehn’s generating system
of the mapping class group [57]. He proved that M(g) is actually generated by the Dehn
twists along the simple closed curves

α1, . . . , αg, β1, . . . , βg, γ1, . . . , γg−1

shown below:

α1

α2 αg−1

αg

β1 β2 βg−1 βgγ1 γg−1

. . .

Afterwards, Humphries [49] showed that 2g + 1 Dehn twists are enough to generate M(g):
specifically, those are the twists along β1, . . . , βg, γ1, . . . , γg−1, α1, α2. ■
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1.3. Triviality of Ω3

Let V(∅) be the set of diffeomorphism classes of closed 3-manifolds. (Recall that, unless
otherwise stated, 3-manifolds are always oriented.)

Theorem 1.10 (Rochlin 1951, Thom 1951, Wallace 1960, Lickorish 1964). The following four
statements are equivalent, and hold true:

(1 ) we have Ω3 = {0}, i.e. any two M,M′ ∈ V(∅) are cobordant;

(1’) any M ∈ V(∅) is the boundary of a compact 4-manifold W;

(2 ) for any M,M′ ∈ V(∅), there is a sequence of surgeries along framed knots M = M0 ⇝

M1 ⇝ · · ·⇝Mr = M′;

(2’) for any M ∈ V(∅), there is a framed link L ⊂ S3 such that S3
L
∼= M.

Proof(s). The equivalence between (1) and (1’) is clear. Assuming (1), let M ∈ V(∅): there is
a compact 4-manifold W◦ such that ∂W◦ ∼= (−S3) ⊔M; let W := W◦ ∪∂ D4 where D4 is glued
along the S3 boundary component of W◦; then ∂W ∼= M. Assuming (1’), let M,M′ ∈ V(∅): then
(−M) ⊔M′ ∈ V(∅) and there is a compact 4-manifold W with boundary (−M) ⊔M′.

The equivalence between (2) and (2’) is also easy. Assuming (2), let M ∈ V(∅); there is
a sequence of surgeries along framed knots S3 = M0 ⇝ · · · ⇝ Mr = M; for each , we can
assume that the framed knot K ⊂ M along which we do the surgery to get M+1 is disjoint
from the glued solid tori that correspond to the previous surgeries, hence we can view K
as a knot in the initial manifold S3; then the framed link L := K0 ⊔ · · · ⊔ Kr−1 is such that
S3
L
∼= M. Assuming (2’), let M,M′ ∈ V(∅); there is a framed link L ⊂ S3 such that S3

L
∼= M;

by doing the surgeries along the components of L stepwisely, we obtain a first sequence
of surgeries S3 = M0 ⇝ · · · ⇝ Mr = M; similarly, we find a second sequence of surgeries
S3 = M′0 ⇝ · · · ⇝ M′r′ = M′; thus, by reversing the first sequence, we get a sequence of
surgeries producing M′ from M.

The equivalence between (1) and (2) is a result of Wallace [106]. Indeed Wallace proved
that, in any dimension m ≥ 1, two closed m-manifolds M and M′ are cobordant if and only if
there is a sequence

M = M0 ⇝M1 ⇝ · · ·⇝Mr = M′

where M ⇝ M+1 stands for a surgery of index k and the sequence (k) is not decreasing.
(In [106], surgeries are called spherical modifications.) This equivalence follows from the
existence of handle decompositions for cobordisms and the relation between surgery and
attachement of handles. Observing that, in dimension m = 3, only surgeries of index 2 do
matter (see Example 1.1), Wallace assumes (1) to deduce (2’) thus answering a question of
Bing [3].

Indeed, statement (1) had been proved independently by Rochlin [90] and Thom [98, 99,
100]. Actually, Thom gave three proofs of very different natures: let us expose the proof that
came chronologically first and is sketched in [98]. It uses Heegaard splittings of 3-manifolds,
the key idea being that the subset

Bg :=
�

[ƒ ] ∈M(g) : Mƒ = Hg ∪ƒ (−Hg) bounds a compact 4-manifold
	

is a subgroup of the mapping class group, for every g ∈ N:

⋄ 1 ∈ Bg because Mid is diffeomorphic to ♯g(S1× S2) which, for instance, is the boundary
of ♯g∂ (D

2 × S2);

⋄ if ƒ ∈ Bg, then ƒ−1 ∈ Bg because Mƒ−1
∼= −Mƒ ;
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⋄ if ƒ , ƒ ′ ∈ Bg, then ƒ ′ƒ ∈ Bg because, given a compact 4-manifold W bounded by Mƒ and
a compact 4-manifold W′ bounded by Mƒ ′ , the 3-manifold Mƒ ′ƒ is the boundary of the
4-manifold obtained by gluing W and W′ along the “left side” handlebody Hg of Mƒ

and the “right side” handlebody −Hg of Mƒ ′ .

Since any 3-manifold has a Heegaard splitting, the triviality of Ω3 will follow from the fact that,
for any g ≥ 1, we have Bg =M(g) or, equivalently, that each of Dehn’s generators of M(g)
belongs to Bg. This is proved by induction on g. In genus g = 1, there are two generators τ
(see Figure 1.2): the corresponding 3-manifold Mτ is either S3 = ∂B4 or S1 × S2 = ∂(D2 × S2);
hence B1 =M(1). Assume that Bg−1 =M(g−1). According to (1.2), each Dehn generator
of M(g) is a Dehn twist τ along a simple closed curve avoiding a sub-handlebody of genus
1 of Hg; therefore Mτ is diffeomorphic to (S1 × S2)♯Mh for some h ∈M(g−1); hence Mτ is
related to Mh by a surgery of index 1, so that Mτ and Mh are cobordant; by the induction
hypothesis, Mh bounds, and so does Mτ; hence τ ∈ Bg.

Being not aware of Dehn’s work [13], Lickorish re-proves in [57] that M(g) is generated
by finitely many Dehn twists (see Remark 1.9), and he shows statement (2) in a direct way.
The key idea in his argument is the following:

Lickorish’s trick. Let U and V be compact 3-manifolds whose boundaries are
identified. Let γ ⊂ ∂V be a simple closed curve, and let K ⊂ int(V) be the knot
obtained by slightly “pushing” γ. Then we have

U ∪τ (−V) ∼= U ∪id (−VK )

where τ := Tγ is the Dehn twist along γ, and VK is obtained from V by surgery
along K framed with the parallel differing from γ by a meridian of K.

This trick is easily verified using the definitions of a surgery and a Dehn twist. Let g ∈ N
and ƒ ∈ M(g). Decomposing ƒ as a product of Dehn twists (or their inverses), Lickorish’s
trick implies that Mƒ = Hg ∪ƒ (−Hg) can be transformed into Mid = ♯g(S1 × S2) by finitely
many surgeries along framed knots. The same is true about S3, since we have S3 = Mι for
some ι ∈M(g) and whatever g is. Hence, Mƒ can be transformed into S3 by finitely many
surgeries. □

Remark 1.11. Rourke gave in [91] yet another proof of statement (2) of Theorem 1.10,
which is also based on the presentations of 3-manifolds by their Heegaard splittings. But, in
contrast with Thom’s and Lickorish’s arguments, his proof does not need knowledge about
the generation of the mapping class group. It is both tricky and elementary. ■

We can be more general and consider 3-manifolds with boundary. Let R be a closed sur-
face, which may be disconnected. A compact 3-manifold M has boundary parametrized by R,
if M comes with a map m : R→ M which is an orientation-preserving diffeomorphism onto ∂M.
Our convention will always be to denote the boundary parametrization with the lower-case
letter.

Two manifolds with parametrized boundary M and M′ are considered diffeomorphic if there
is an orientation-preserving diffeomorphism ƒ : M → M′ such that ƒ ◦m = m′. We denote by
V(R) the set of diffeomorphism classes of compact 3-manifolds with boundary parametrized
by the surface R.

Corollary 1.12. For any M,M′ ∈ V(R), there is a sequence of surgeries along framed knots
M = M0 ⇝M1 ⇝ · · ·⇝Mr = M′.

Proof. Denote by (R) the family of connected components of R and, for each , fix an iden-
tification of R with the standard surface g where g is the genus of R. Fix in S3 a copy
H of the disjoint union − ⊔ Hg of standard handlebodies. Then S3 \ int(H) with the obvious
boundary parametrization defines a “preferred” element of V(R).
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We shall prove that M can be transformed into S3 \ int(H) by surgery along a framed link
L. To this purpose, we consider the closed 3-manifold

M := M ∪m
�

− ⊔Hg
�

.

By Theorem 1.10, there is a framed link L ⊂ M and an orientation-preserving diffeomorphism
ϕ : ML → S3; furthermore, we can assume that L is contained in M after an isotopy. The image
H′ ⊂ S3 of ⊔Hg ⊂ M by ϕ is a disjoint union of handlebodies. Of course, we have a priori H ̸=
H′. Then, we think of H and H′ as regular neighborhoods in S3 of some knotted framed graphs
G and G′, respectively, of the same topological type. After finitely many “crossing changes”
and “framing changes", G′ can be transformed to G since they have the same topological
type. Each of these “crossing changes” and “framing changes" can be realized by surgery
along a framed trivial knot and, after an isotopy, we can assume that each such knot does not
meet the part of S3 = ϕ(ML) where the surgery along L took place. Therefore, after addition
of some components to the framed link L, we can assume that H = H′ as subsets of S3. Hence
ϕ restricts to an orientation-preserving diffeomorphism ML → S3 \ int(H). This diffeomorphism
may not be compatible with the boundary parametrizations of M and S3 \ int(H). However,
since M(R) is generated by Dehn twists and since every Dehn twist can be realized by a
surgery along a knot (using Lickorish’s trick), we can assume this compatibility at the price of
adding to L yet other components. We conclude that ML and S3 \ int(H) represent the same
class in V(R). □

2. Surgery equivalence relations: definitions and first properties

We have seen in §1 that the surgery operations arising directly from differential topology are
too general in dimension three: any two compact 3-manifolds (with the same parametrized
boundary, if any) can be related one to the other by such operations. Thus, to relate 3-
manifolds in an interesting way, we need to consider more restrictive modifications and one
reasonable restriction is to require that they preserve the homology type of 3-manifolds.
So, we are led to consider the subgroup of the mapping class group that acts trivially in
homology.

2.1. Torelli groups of surfaces

Let S be a compact surface with, at most, one boundary component. As a generalization
of (1.1), the mapping class group of S is defined by

M(S) =











�

orientation-preserving diffeomorphisms S→ S
	

isotopy if ∂S = ∅,
�

diffeomorphisms S→ S that are the id on ∂S
	

isotopy rel ∂S if ∂S ̸= ∅.

Definition 2.1. The Torelli group of S is the subgroup I(S) of M(S) that acts trivially on
H := H1(S;Z). ■

The study of the Torelli group, from algebraic and topological viewpoints, was initiated by
Birman in her early works, in particular [4, 5]. Then it was developed considerably by Johnson
in the eighties: see his survey [41]. Here we shall simply review a generating system of I(S).

Remark 2.2. According to Example 1.7, the Torelli group is not interesting in genus 0 and 1:
hence we shall assume that the genus of S is at least 2. ■

First of all, let us determine the action of a Dehn twist in homology. For this, we need the
(homology) intersection form of the surface S

ω : H1(S;Z) × H1(S;Z) −→ Z
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which is defined as follows: if  = [α] ∈ H1(S;Z) and b = [β] ∈ H1(S;Z) are represented by
smooth oriented closed curves α and β, in transverse position, then

ω([α], [β]) :=
∑

∈α∩β

�

+1, if (α⃗, β⃗) is direct
−1, otherwise

�

.

Note that the pairing ω is bilinear, skew-symmetric and non-singular: thus, ω is a symplectic
form on H = H1(S;Z).

Lemma 2.3. Let α ⊂ S be a simple closed curve. The action of the Dehn twist Tα in homology
is given by the following formula:

(2.1) ∀ ∈ H, (Tα)∗() =  + ω([α], ) · [α].

In other words, (Tα)∗ is the transvection defined by the vector [α] and the linear form
ω([α],−). Formula (2.1) is easily deduced from the definition of a Dehn twist.

Here are two immediate consequences of the transvection formula (2.1):

(i) for a simple closed curve α ⊂ S, we have Tα ∈ I(S) if and only if we have [α] = 0 ∈ H
(i.e. α is separating in S);

(ii) for any simple closed curves α, β in S such that α∩β = ∅ and [α] = [β] ∈ H (i.e. α and
β cobound a subsurface of S) we have T−1

α
Tβ ∈ I(S).

Following Johnson, we call an element Tα of type (i) a BSCC map (for “Bounding Simple Closed
Curve”), and its genus is the genus of the subsurface of S bounded by α. (If ∂S = ∅, then
there are two such subsurfaces and we take the minimal genus of those two.). Besides, we
call an element T−1

α
Tβ of type (ii) a BP map (for “Bounding Pair”), and its genus is the genus

of the subsurface of S with boundary α ⊔ β. (If ∂S = ∅ and [α] ̸= 0, then there are two such
subsurfaces and we take the minimal genus of those two.).

The following is a combination of several works, namely [4, 88, 38].

Theorem 2.4 (Birman 1971, Powell 78, Johnson 1979). The Torelli group I(S) has the follow-
ing generating sets, whose nature depends on the genus g and the number n of boundary
component of S:

n = 0 n = 1
g = 2 BSCC maps of genus 1 BSCC maps of genus 1 & BP maps of genus 1
g ≥ 3 BP maps of genus 1 BP maps of genus 1

One of the major accomplishments from Johnson’s works in the 80’s is the fact that the
group I(S) is finitely generated in genus at least 3 [40], but we will not need this fact in these
lectures. Note that I(S) is not finitely generated in genus 2 [58].

2.2. Torelli twists in 3-manifolds

We fix a closed surface R, which may be disconnected.

Definition 2.5. Let M ∈ V(R), let S ⊂ int(M) be a compact surface with one boundary com-
ponent and let s ∈ I(S). The 3-manifold obtained from M by a Torelli twist along S with s is

(2.2) Ms :=
�

M \ intN(S)
�

∪s̃ N(S)

where N(S) is a regular neighborhood of S in M identified to S × [−1,1], and s̃ is the self-
diffeomorphism of ∂(S × [−1,1]) given by s on S × {1} and the identity elsewhere. With the
obvious boundary parametrization ms : R→ Ms induced by m, we get Ms ∈ V(R). ■
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Equivalently, Ms is obtained by cutting open M along S and gluing back with s:

M Ms

S

⇝ s

Definition 2.6. Let M,M′ ∈ V(R). We say that M and M′ are Torelli–equivalent if there is a
compact surface S ⊂ int(M) and an s ∈ I(S) such that Ms

∼= M′. ■

Lemma 2.7. The Torelli–equivalence is a non-trivial equivalence relation on V(R).

Proof. The Torelli-equivalence is clearly reflexive and symetric as a relation in V(R). We verify
the transivity by considering a first Torelli twist M ⇝ Ms = M′ along S ⊂ M and a second one
M′ ⇝ M′s′ along S′ ⊂ M′. Since S′ deformation retracts onto a 1-dimensional subcomplex and
since the part N(S) ⊂ Ms of the decomposition (2.2) is a handlebody which also retracts to a
1-dimensional subcomplex, we can isotope S′ in M′ so that it lies in the part M \ intN(S) ⊂ Ms

of the decomposition (2.2). Hence we can view S′ as a subsurface of M, disjoint from S. We
attach to S ⊔ S′ a 1-handle, inside M, to get a larger subsurface T := S♯∂S′ of M. We have
t := s♯∂s′ ∈ I(T) and M′′ ∼= Mt. Hence M′′ is Torelli-equivalent to M.

To prove that the Torelli–equivalence is a non-trivial relation, we observe that a Torelli
twist M ⇝ Ms induces a unique isomorphism in homology such that the following diagram is
commutative:

(2.3) H1(M;Z) ≃
ψs

// H1(Ms;Z)

H1
�

M \ intN(S);Z
�

incl∗

hhhh

incl∗

66 66

(The unicity follows from the surjectivity of the homomorphism incl∗ induced by the inclusion
M \ intN(S) ,→ M, and the existence is justified using the Mayer–Vietoris theorem.) Hence two
manifolds in V(R) with different homology types can not be Torelli–equivalent. □

We now give another description of the Torelli–equivalence. Let M ∈ V(R). A Y-graph in M
is a surface G ⊂ int(M) consisting of one “node”, three “edges” and three “leaves” as shown
on the left side of Figure 2.1. The regular neighborhood of G is a handlebody of genus 3,
inside which G can be replaced by the 6-component framed link shown on the right side
of Figure 2.1 (using the blackboard framing convention): to get this link, the node of G is
replaced by one copy of the borromean rings, and each leaf of G becomes a knot “clasping”
one of those three rings. We define MG to be the 3-manifold obtained from M by surgery
along this framed link, and we call the move

M⇝MG

a Y-surgery. This operation is equivalent to the “borromean surgery” move that Matveev
considered in [68]. Under this form, this operation was introduced by Goussarov [27] and
Habiro [30] as part of a much larger package which is now known as “clasper calculus”: see
§2.5 below.

Proposition 2.8. Two manifolds M,M′ ∈ V(R) are Torelli–equivalent if, and only if, there is a
sequence of Y-surgeries M = M0 ⇝M1 ⇝ · · ·⇝Mr = M′.

Sketch of the proof. In the definition of a Torelli twist M ⇝ Ms along S ⊂ M, we can assume
that the genus of S is arbitrary high: indeed, we can always take the boundary-connected
sum of S with another subsurface U of M (with ∂U ∼= S1) and extend s by the identity to a
diffeomorphism of S♯∂U. Besides, we know from Theorem 2.4 that I(S) is generated by BP
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−→node

edge

leaf

Figure 2.1: A Y-graph and the associated framed link

maps of genus 1 if the genus of S is at least 3. Hence it is enough to show that a Y-surgery
is equivalent to a Torelli twist M⇝Ms defined by a BP map s of genus 1.

Using Lickorish’s twist, we see that Ms
∼= MA⊔B where A ⊔ B is the 2-component link in M

given by the two curves α ⊔ β ⊂ S that define the BP map s, with the appropriate framings.
Then the rest of the argument consists in showing that surgery along A ⊔ B is equivalent to
the surgery along a 6-component framed link defining a Y-surgery: this is explained in [22,
Lemma 5.1] or [63, Fig. 6.2]. □

Remark 2.9. A blink of genus h in a compact 3-manifold M is a compact surface B ⊂ int(M)
of genus h with two boundary components ∂B = B+ ⊔ (−B−): the knot B± is framed with
the parallel given by the curve ∂N(B±) ∩ B and corrected by the meridian ±μ(B±). Surgeries
along blinks have been considered in [35, 68] and [23], where the term “blink” was coined.
As in the proof of Proposition 2.8, we deduce from Lickorish’s trick that surgery along a
blink is equivalent to a Torelli twist with a BP map of the same genus. Thus two manifolds
M,M′ ∈ V(R) are Torelli–equivalent if, and only if, one can find a disjoint union B =

⊔

 B of
blinks in M such that MB

∼= M′. ■

Finally, we give another description of the Torelli–equivalence in terms of Heegaard split-
tings. However, we only formulate this description for the two instances of a surface R that
we shall consider later:

(i) R = ∅: then V(R) consists of closed 3-manifolds;

(ii) R = ∂( × [−1,1]) where  is a compact surface with ∂ ∼= S1: then V(R) consists of
cobordisms (with “vertical” boundary) from  to .

The notion of “Heegaard splitting” in the case (i) has been seen in Example 1.5, and it
can be reformulated as follows. A Heegaard splitting of genus g of a closed 3-manifold M is
a decomposition M = M− ∪M+ where M− and M+ are two copies of the handlebody Hg in M
such that M− ∩M+ = ∂M± (which is called the Heegaard surface).

Likely, the notion of “Heegaard splitting” in the case (ii) is defined as follows. Let M be a
cobordism from  to . We set ∂±M := m( × {±1}), and we denote a collar neighborhood
of ∂−M (resp. ∂+M) simply by ∂−M × [−1,0] (resp. ∂+M × [0,1]). A Heegaard splitting of M
of genus g is a decomposition M = M− ∪ M+ , where M− is obtained from ∂−M × [−1,0] by
adding g 1-handles along ∂−M× {0}, M+ is obtained from ∂+M× [0,1] by adding g 1-handles
along ∂+M× {0}, and we have M− ∩M+ = ∂M− ∩ ∂M+ (which is called the Heegaard surface).
The existence of Heegaard splittings in this situation (cobordisms with “vertical” boundary)
is again an application of Morse theory.

Proposition 2.10. Assume that R is of one of the above types (i) and (ii). Two manifolds
M,M′ ∈ V(R) are Torelli–equivalent if, and only if, there is a Heegaard splitting M = M− ∪M+
with Heegaard surface S and an s ∈ I(S) such that M′ ∼= M− ∪s M+ .

Proof. We only prove the proposition in the case (i), the case (ii) being similar and a little
bit more technical (see [67, Lemma 2.1] for instance). It is enough to show that, given a
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closed 3-manifold M and a surface E ⊂ M with one boundary component, we can always find
a Heegaard splitting M = M− ∪ M+ whose Heegaard surface contains a subsurface that is
isotopic to E in M.

Let N(E) be a regular neighborhood of E in M and set M̃ := M \ intN(E). Viewing M̃ as a
cobordism from ∅ to ∂N(E), we can find a handle decomposition

M̃0 ⊂ M̃1 ⊂ M̃2 = M̃

where M̃0 consists of a single 0-handle, M̃1 is obtained from M̃0 by attaching 1-handles and
M̃2 is obtained from M̃1 by attaching 2-handles. The latter can be viewed, dually, as 1-handles
attached to N(E) inside M. Hence there is a Heegaard splitting M = M− ∪M+ where

M− := M̃1 and M+ :=
�

M̃2 \ int(M̃1)
�

∪N(E).

Observe that E can be isotoped in N(E) onto ∂N(E); furthermore, since E deformation retracts
onto a 1-dimensional subcomplex, we can next isotope it in ∂N(E) to make it disjoint from the
attaching locus of the 1-handles attached to N(E). Thus we have isotoped E to a subsurface
of the Heegaard surface. □

2.3. Filtrations on the Torelli groups

We will define surgery equivalence relations for 3-manifolds which are much stronger than
the Torelli–equivalence and arise from certain filtrations of the Torelli group.

To define these filtrations, we first recall that the lower central series of a group G is the
decreasing sequence of subgroups

(2.4) G = 1G ⊃ 2G ⊃ 3G ⊃ · · ·

that are defined inductively by +1G := [G,G] for all  ≥ 1. Let S be a compact surface with
one boundary component, and fix a base-point ⋆ ∈ ∂S. The canonical action of I(S) on the
fundamental group π := π1(S, ⋆) induces, for every integer k ≥ 1, a group homomomorphism

(2.5) ρk : I(S) −→ At(π/k+1π)

since k+1π is a characteristic subgroup of π. Defining JkI(S) := ker(ρk) for every k ≥ 1, we
get a filtration of the Torelli group

I(S) = J1I(S) ⊃ J2I(S) ⊃ J3I(S) ⊃ · · ·

which is nowdays refered to as the Johnson filtration of I(S). The study of the Johnson filtra-
tion on its whole started in Morita’s seminal work [75], and it is still an active field of research.
(See [92] for a survey.)

Example 2.11. Johnson made a deep study of the second term of the filtration

K(S) := J2I(S)

in [42, 43], so much that this group is called the Johnson subgroup (or the Johnson kernel).
In particular, Johnson proved that K(S) is generated by BSCC maps. ■

One of the main reasons to be interested in this filtration is that it has a trivial intersection
⋂

k≥1
JkI(S) = {1}

as can be easily checked from the following two classical facts:

(i) (Baer 1928) the canonical action of I(S) on π is faithful [2];

(ii) (Magnus 1937) the lower central series of π has a trivial intersection, because π is
free [59].
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Thus, one of the main objectives of the study of the Johnson filtration is to fully understand
its associated graded, namely

GrJ I(S) =
⊕

k≥1

JkI(S)

Jk+1I(S)
.

Another interesting feature of the Johnson filtration is that it is strongly central in the sense
that

(2.6) ∀k,  ∈ N∗,
�

JkI(S), JI(S)
�

⊂ Jk+I(S)

(see [75, Prop. 4.1]). Consequently, the commutator operation in the group I(S) induces a
Lie ring structure on GrJI(S), which opens the door to Lie-theoretical methods in the study of
I(S). (Again, see [92] for a survey.)

The Johnson filtration has also been much studied in relation with the lower central series
I(S) = 1I(S) ⊃ 2I(S) ⊃ 3I(S) ⊃ · · · of the Torelli group. Indeed, (2.6) implies that the latter
is contained in the former:

(2.7) ∀k ∈ N∗, kI(S) ⊂ JkI(S).

The associated graded of the lower central series of the Torelli group

(2.8) Gr I(S) =
⊕

k≥1

kI(S)

k+1I(S)

has been determined with rational coefficients by Hain [34], as part of the stronger result
of identifying the Malcev Lie algebra of I(S). For a comparison between Gr I(S) ⊗ Q and
GrJ I(S) ⊗ Q in low degrees, see [76, 77].

Remark 2.12. Hain also obtained in [34] that the inclusion reciprocal to (2.7) is not true:
specifically, there is no d ∈ N∗ such that JdI(S) ⊂ 3I(S). ■

The above paragraphs only give a brief and limited overview of what is known about the
Johnson filtration and the lower central series of the Torelli group. We conclude this subsection
with an informal “comparison table” between those two filtrations:

lower central series
�

kI(S)
�

k Johnson filtration
�

JkI(S)
�

k
trivial intersection? yes yes
testing elements ? given h ∈ I(S) and k ∈ N∗, given h ∈ I(S) and k ∈ N∗,

it is hard to decide it is easy to decide
whether h ∈ kI(S) whether h ∈ JkI(S)

unless k is small (say k ≤ 3) using “Johnson homomorph.”
explicit generators ? it is easy to deduce an explicit it seems difficult to construct

generating syst. in any degree k an explicit generating syst.
from a generating syst. of I(S) in a given degree k

finitely generated? yes, in any degree k: yes, in any degree k:
if g ≥ 3 for k = 1 [40] if g ≥ 3 for k = 1 [40]

if g ≥ 4 for k = 2 [16, 10] if g ≥ 4 for k = 2 [16, 10]
if g ≥ 2k − 1 for k ≥ 3 [10] if g ≥ 2k − 1 for k ≥ 3 [10]

2.4. Stronger surgeries in 3-manifolds

We are now in position to introduce two families of surgery equivalence relations that refine
the Torelli–equivalence. We fix a closed surface R, which may be disconnected.

Definition 2.13. Let k ∈ N∗. Two 3-manifolds M,M′ ∈ V(R) are Jk-equivalent (resp. Yk-
equivalent) if M′ can be obtained from M by a Torelli twist M⇝ Ms along a surface S ⊂ int(M)
with an s ∈ JkI(S) (resp. an s ∈ kI(S)). ■

Of course, the J1-equivalence and Y1-equivalence are just the same as the Torelli-equiv-
alence.
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Lemma 2.14. For every k ∈ N∗, the Jk-equivalence (resp. the Yk-equivalence) is an equiva-
lence relation in V(R).

Proof. We come back to the proof of Lemma 2.7, using the same notations.
If we have s ∈ JkI(S) and s′ ∈ JkI(S′), then s♯∂s′ belongs to JkI(S♯∂S′) as can be checked

from the fact that π1(S♯∂S′) is the free product of π1(S) and π1(S′). This proves the transitivity
of the Jk-equivalence.

If we have s ∈ kI(S) and s′ ∈ kI(S′), then s♯∂s′ belongs to kI(S♯∂S′) as follows from
the fact that s♯∂s′ = (s♯∂ id) ◦ (id ♯∂s′). This proves the transitivity of the Yk-equivalence. □

Remark 2.15. Proposition 2.10 can also be refined to reformulate the Jk-equivalence (resp.
the Yk-equivalence) in terms of Heegaard splittings. ■

We deduce from (2.7) the following “ladder” of equivalence relations:

Y1 ⇐= Y2 ⇐= Y3 ⇐= · · · Yk ⇐= Yk+1 ⇐= · · ·
∥ ⇓ ⇓ ⇓ ⇓
J1 ⇐= J2 ⇐= J3 ⇐= · · · Jk ⇐= Jk+1 ⇐= · · ·

Note that the converse of the implication “Yk ⇒ Jk” is not true. Specifically, there is no d ∈ N∗

such that “Jd ⇒ Y3”: this can be easily deduced from Hain’s result mentioned in Remark 2.12.
After Y1 = J1, the next equivalence relation to consider is the J2-equivalence. Let us give

an alternative description in terms of surgeries along knots. Given M ∈ V(R) and a null-
homologous knot K ⊂ int(M), there is a unique parallel ρ0(K) ⊂ ∂N(K) that is null-homologous
in M \ K: for any n ∈ Z, the knot K is said to be n-framed if it is equipped with the unique
parallel ρn(K) that represents the homology class n[μ(K)] + [ρ0(K)] ∈ H1

�

∂N(K);Z
�

. (Here,
we fix an orientation of K, we orient ρ0(K) compatibly with K and orient μ(K) with the right-
hand rule using the orientation of M.) Following Cochran, Gerges and Orr [11], we say that
an M ∈ V(R) is 2-surgery equivalent to an M′ ∈ V(R) if there is a finite sequence

M = M0 ⇝M1 ⇝ · · ·⇝Mr = M′

of surgeries along null-homologous (±1)-framed knots.

Proposition 2.16. The J2-equivalence is the same as the 2-surgery equivalence. In particu-
lar, the 2-surgery equivalence is an equivalence relation in V(R).

Proof. Assume that M,M′ are J2-equivalent: then there is a surface S ⊂ int(M) and an s ∈
J2I(S) such that M′ ∼= Ms. According to what has been mentioned in Example 2.11, s decom-
poses as a product of BSCC maps (or their inverses). Thus, by considering parallel copies of
S, we find a finite sequence

M = M0 ⇝M1 ⇝ · · ·⇝Mr = M′

where each move M ⇝ M+1 is a Torelli twist defined by a BSCC map (or its inverse). By
Lickorish’s trick, such a move can be interpreted as a surgery along a null-homologous (±1)-
framed knot. So M is 2-surgery equivalent to M′.

Assume now that M is 2-surgery equivalent to M′. We wish to prove that M and M′ are
J2-equivalent. By transitivity of J2, we can assume that M′ is obtained from M by a single
surgery along a null-homologous (±1)-framed knot K ⊂ M. There is a Seifert surface for K in
M, i.e. a compact surface  such that ∂ = K. The regular neighborhood N() is a handlebody,
in which K can be viewed as a push-off of a bouding simple closed curve γ ⊂ ∂N(). Then, by
Lickorish’s trick, M′ = MK is diffeomorphic to

�

M \ intN()
�

∪τ N() where τ := Tγ. Hence M′

is the result of the Torelli twist M⇝ Ms along the surface S obtained from ∂N() by cutting a
small open disk, with s := Tγ ∈ J2I(S). □

Remark 2.17. A boundary link in a compact 3-manifold M is a framed link L = ⊔L for which
there exists a compact surface S = ⊔S ⊂ int(M) with as many connected components as L,
such that ∂S = L and the parallel of L differs from the curve ∂N(L) ∩ S by ±μ(L). Surgeries
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along boundary links have been considered in [68, 23, 11], for instance. The argument used
in the proof of Proposition 2.16 shows that surgery along a boundary link is equivalent to the
simultaneous realization of Torelli twists by BSCC maps on pairwise-disjoint surfaces. Thus
two manifolds M,M′ ∈ V(R) are J2-equivalent if, and only if, one can find a boundary link L in
M such that ML

∼= M′. ■

In general, Cochran, Gerges and Orr make in [11] the following definition for any integer
k ≥ 2.

Definition 2.18. A manifold M ∈ V(R) is k-surgery equivalent to an M′ ∈ V(R) if there is a
finite sequence

M = M0 ⇝M1 ⇝ · · ·⇝Mr = M′

where each move M ⇝ M+1 is the surgery along a (±1)-framed knot K that is trivial in
kπ1(M). ■

It turns out that the k-surgery equivalence is indeed an equivalence relation [11, Cor. 2.2
& Prop. 2.3]. But k-surgery equivalence is very different from Jk-equivalence in higher degree
k: while the former is rather well understood, the latter still remains unexplored (see §3.5). In
fact, since one does not know explicit generating systems for the Johnson filtration, it seems
that one does not know generators for the Jk-equivalence relation for k > 2.

2.5. Clasper calculus

In contrast with the Jk-equivalence, explicit generators are known for the Yk-equivalence:
these are defined in terms of “surgeries” along certain framed graphs, and generalize in
degree k > 1 the Y-surgeries that have been recalled in §2.2. These surgery techniques were
developed independently by Goussarov [27, 28] and Habiro [30].

We give a very brief overview of those techniques, using Habiro’s terminology and con-
ventions. Let M ∈ V(R). A graph clasper in M is a (possibly disconnected) compact surface
G ⊂ int(M), which is decomposed into leaves, nodes and edges. Leaves are copies of the an-
nulus S1×D1 and nodes are copies of the disc D2. Edges are 1-handles (i.e. copies of D1×D1)
connecting those leaves and nodes; the ends of an edge constitute the attaching locus of the
1-handle (i.e. S0 × D1). There are two rules to respect in the attachment: each leaf receives
exactly one end of an edge, and each node receives exactly three ends of edges. The degree
of G is the number of its nodes. The shape of G is the abstract graph, whose vertices have
valency 1 or 3, onto which G deformation retracts after deletion of all of its leaves.

Example 2.19. Graph claspers of degree 0 (and shape I) are called basic claspers and
consist of only one edge and two leaves:

A connected graph clasper of degree 1 (and shape Y) is a Y-graph, as shown in Figure 2.1.
Here is an example of a connected graph clasper of degree 3:

■

Surgery along a graph clasper G ⊂ int(M) is defined as follows. We first replace each node
with three leaves in a “Borromean rings” fashion:
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−→

This results in a disjoint union of basic claspers, which we replace by 2-component framed
links as follows:

−→

(For instance, if we start from a Y-graph G, then we recover the 6-component framed link
shown in Figure 2.1.) Then, the surgery M⇝ MG along G is defined as the surgery along the
resulting framed link in M, and we have the following generalization of Proposition 2.8:

Proposition 2.20 (Habiro 2000). For any integer k ≥ 1, the Yk-equivalence relation is gen-
erated by surgeries along connected graph claspers of degree k.

See [30], and the appendix of [63] for a proof. Note that the Yk-equivalence appears in
the works of Goussarov and Habiro under different names: it is named “(k − 1)-equivalence”
in [27] and “Ak-equivalence” in [30].

There exists a clasper calculus, which has been developed in [28, 30, 22]. This calculus
can be regarded as a braided version of the commutator calculus in groups or, to be more
accurate, an instance of the braided Hopf-algebraic calculus. In the setting of [30], there is
a notion of “clasper”, which is more general than the above notion of “graph clasper”, and
there are 12 “moves” which can be applied to claspers without changing the diffeomorphism
types of the resulting manifolds.

Thanks to Proposition 2.20, this clasper calculus can be used to show that certain op-
erations G ⇝ G′ on graph claspers will not change the Yℓ-equivalence class of the resulting
manifold, for ℓ large enough depending on the degrees of the components of G and the nature
of the operation. Thus, these operations are very useful tools to study sets of Yk-equivalence
classes up to Yℓ-equivalence for some ℓ > k.

Here are some instances of such operations on graph claspers, taking place in a manifold
M ∈ V(R) which we fix from now on:

(O0) Cutting an edge. Any graph clasper G can be transformed to a graph clasper G′ (of
the same degree, but not the same shape) by insertion of a Hopf link of two leaves at
the middle of an edge:

G G′
∼=

(In fact, this operation is Habiro’s “Move 2” [30].)

(O1) Developing a node. Any graph clasper G of degree k+ 1, showing one node incident
to two leaves, can be transformed to a graph clasper G′ of degree k by the following
transformation:
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G G′

∼=

(In fact, this operation is essentially Habiro’s “Move 9” [30].)

(O2) Sliding an edge. If G is a connected graph clasper of degree k in M and if G′ is
obtained from G by sliding one of its edges along a disjoint framed knot K, then we
have MG ∼Yk+1 MG′ :

G

K

G′

∼Yk+1

(O3) Cutting a leaf. If G is a connected graph clasper of degree k in M with a leaf L
decomposed as L = L1♯L2, then we have MG ∼Yk+1 MG1⊔G2 where G is G with the leaf
L replaced by the “half-leaf” L and G1 ⊔G2 is a disjoint union of G1 and G2:

G

L

G1 G2

L1 L2

∼Yk+1

(O4) Crossing a leaf with a leaf. If G1 ⊔ G2 is the disjoint union of two connected graph
claspers in M of degrees k1 and k2, respectively, and if G′1⊔G

′
2 is obtained from G1⊔G2

by crossing a leaf of G1 with a leaf of G2, then we have MG1⊔G2 ∼Yk1+k2 MG′1⊔G
′
2
.

(O5) Half-twisting an edge. If G is a connected graph clasper of degree k in M and if G−

is obtained from G by adding a half-twist to an edge, then there is a disjoint union
G ⊔G− of G and G− in M such that MG⊔G− ∼Yk+1 M.

Remark 2.21. References for the above operations on graph claspers include [30] (in the
case of links instead of 3-manifolds), [28], [22], [21], [85, §E] and [62]. ■

In the rest of this subsection, we outline the general strategy to study the Yℓ-equivalence
relations using the above techniques of clasper calculus. So, let us assume that we have
been able to classify the Yk-equivalence relation on V(R) for some k ≥ 1, and that we now
wish to classify the Yk+1-equivalence on a specific Yk-equivalence class

V0 ⊂ V(R).

For this, we fix a 3-manifold V ∈ V0 and we consider the free abelian group Z·Ck generated
by the set

Ck :=
�

connected graph claspers in V of degree k
	�

isotopy.
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Then we consider the map

ψk : Z·Ck −→
V0
Yk+1

,
∑



ϵG 7−→
�

V(⊔G
ϵ
 )

�

.

where, for a family (G) of connected graph claspers of degree k in V weighted by a family
of signs (ϵ), we choose an arbitrary disjoint union ⊔G

ϵ
 of the graph claspers Gϵ

 using the
convention that G− := (G with an half-twist on a edge) and G+ := G. That ψk is well-defined
follows from the operations (O2), (O4), (O5).

Let us show that ψk is surjective. Any M ∈ V0 is Yk-equivalent to V and, so, by Proposi-
tion 2.20, there is a sequence V = M0 ⇝ M1 ⇝ · · · ⇝ Mr = M where each move M ⇝ M+1

is either a surgery along a connected graph clasper of degree k, or the inverse of such a
surgery; furthermore, thanks to (O0), we can assume that each graph clasper involved in the
sequence is tree-shaped. Now, any surgery W ⇝WT along a tree-shaped graph clasper T in
a 3-manifold W has the following properties:

⋄ it is reversible, in the sense that there is a graph clasper  (of the same shape as T) in
WT , such that (WT ) ∼=W;

⋄ there is a t ∈M(∂N(T)) such that WT
∼= (W \ intN(T))∪t N(T), hence any graph clasper

in WT can be isotoped into the subset W \ intN(T) of WT .

It follows that there exists a disjoint union G = ⊔G of (tree-shaped) connected graph claspers
of degree k in V such that VG ∼= M. We deduce that ψk(

∑

G) = M.
Thus, we would like to understand the equivalence relation ∼ on Z·Ck such that the map

ψk factorizes to a bijection on the quotient set:

Z·Ck

����

ψk
// //

V0
Yk+1

Z·Ck
∼

ψk

≃

99 99

For instance, it follows from (O2) that we must have G′ ∼ G± for any graph claspers G and G′

in M which have the same shape and the same leaves. Besides, there are other instances of
the relation ∼ that deal with leaves and result from (O0), (O1) and (O3). Finally, using other
operations on graph claspers (not in the above list), we obtain other instances of the relation
∼ that do not affect the leaves but change the shape: one such example is the so-called
“IHX relation”. Once we have a candidate for the relation ∼, the difficulty is then to show the
injectivity of the resulting map ψk : Z·Ck /∼ → V0/Yk+1. This is proved by finding sufficiently
enough topological invariants on V(R) — or, at least, on its subset V0 — that are unchanged
by Yk+1-surgery and constitute a left-inverse Zk to ψk when they are conveniently assembled
all together:

Z·Ck
∼

ψk
// //

id
99

V0
Yk+1

Zk //
Z·Ck
∼

At the end of this process, we conclude that ψk is injective and, so, bijective, thus obtaining
a combinatorial description of the quotient set V0/Yk+1, and concluding that the invariant Zk
classifies the Yk+1-equivalence relation on V0.

Remark 2.22. In all the few situations that the author knows, the relation ∼ on Z·Ck happens
to be always defined by a subgroup of Z·Ck: hence V0/Yk+1 has a structure of abelian group,
although V0 may not have (a priori) a natural operation. If V0 does have a natural operation
compatible with the Yk+1-equivalence and if we know that V0/Yk+1 inherits a structure of
abelian group, it is often much easier to carry on the above process with rational coefficents
in order to get a combinatorial description of the vector space

�

V0/Yk+1
�

⊗ Q. ■

I–21



Gwénaël Massuyeau

The above “general strategy”, to study inductively the Yℓ-equivalence relations by clasper
calculus, will be mentioned in the next sections in a few examples.

2.6. Other kinds of surgeries

To conclude this section, we mention yet other surgery equivalence relations. Some of them
are just alternative descriptions of the relations that have been introduced in the previous
subsections, but other ones are quite different. We fix a closed surface R, which may be
disconnected.

(1) LP surgeries. A homology handlebody of genus g is a compact 3-manifold C′ with
the same homology type as Hg; the Lagrangian of C′ is the kernel LC′ of the homomor-
phism H1(∂C′;Z) → H1(C′;Z) induced by the inclusion ∂C′ ,→ C′: this is a Lagrangian
subgroup of H1(∂C′;Z) with respect to the intersection form. Following Auclair and Le-
scop [1], we call LP-pair a couple C = (C′, C′′) of two homology handlebodies whose
boundaries are identified ∂C′ = ∂C′′ in such a way that LC′ = LC′′ . (The acronym “LP” is
for “Lagrangian-Preserving”.) Given an M ∈ V(R) and an LP pair C = (C′, C′′) such that
C′ ⊂ M, one can replace in M the submanifold C′ by C′′ to obtain a new 3-manifold

MC :=
�

M \ int(C′)
�

∪∂ C′′.

The move M⇝MC in V(R) is called an LP-surgery.

A Torelli twist M ⇝ Ms can be interpreted as an LP-surgery since a regular neighbor-
hood of the surface S ⊂ M is a handlebody. Conversely, an LP-surgery can be realized
by finitely many Y-surgeries because, for any LP pair C, the homology handlebod-
ies C′ and C′′ are Torelli–equivalent. (See Remark 3.9 below.) Therefore, LP-surgery
equivalence is the same as Torelli–equivalence.

There is also a rational version of the LP-surgery using H1(−;Q) instead of H1(−;Z),
which has been considered by Moussard [78]. However, rational LP-surgery equiva-
lence is coarser than Torelli–equivalence as a relation.

(2) Torelli surgeries. Let M ∈ V(R), let C ⊂ M be a handlebody and let c ∈ I(∂C). Follow-
ing Kuperberg and Thurston [50], we say that

Mc :=
�

M \ int(C)
�

∪c C

is obtained from M by a Torelli surgery along C. Clearly, a Torelli surgery can be realized
by a Torelli twist (by choosing a small open disk D ⊂ ∂C and isotoping c so that it fixes
D pointwisely); conversely, a Torelli twist can be realized by a Torelli surgery (because
a regular neighborhood of a surface with non-empty boundary is a handlebody). Thus,
the Yk-equivalence and Jk-equivalence relations can be reformulated in terms of Torelli
surgeries.

(3) Lagrangian Torelli surgeries. Let C be a handlebody. The Lagrangian Torelli group
of S := ∂C \ (small open disk) is defined by

IL(S) :=
¦

ƒ ∈M(S) : ƒ∗(LC) ⊂ LC and ƒ∗ is the id on H1(S;Z)
LC

©

where LC is the Lagrangian of C. A Lagrangian Torelli surgery is defined in a way
similar to a Torelli surgery using the Lagrangian Torelli group instead of the Torelli
group. Clearly, a Lagrangian Torelli surgery is a special case of an LP surgery: therefore,
the equivalence relation defined by Lagrangian Torelli surgeries is again the Torelli–
equivalence.

Nevertheless, following Faes [17, §A], we can define a new family of equivalence re-
lations on V(R) by considering the following filtration on the Lagrangian Torelli group
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of a handlebody C. Let LC denote the kernel of the homomorphism p : π1(S) → π1(C)
induced by the inclusion S ,→ C and consider, for any integer k ≥ 1, the subset

LkIL(S) :=
�

ƒ ∈ IL(S) : pƒ∗(LC) ⊂ k+1π1(C)
	

of the mapping class group of S. According to Levine [55, 56], the filtration

IL(S) = L1IL(S) ⊃ L2IL(S) ⊃ L3IL(S) ⊃ · · ·

is a decreasing sequence of subgroups of the Lagrangian Torelli group, which contains
the Johnson filtration of the Torelli group I(S). But, in contrast with the latter, the inter-
section of the former is not trivial: its intersection is the subgroup of IL(S) consisting
of all diffeomorphisms that extend to the full handlebody C; hence this intersection is
irrelevant for Lagrangian Torelli surgeries.

Thus, it is interesting to consider the following relation for any k ∈ N∗: we say that
M,M′ ∈ V(R) are Lk-equivalent if M′ can be obtained from M by a Lagrangian Torelli
surgery M ⇝ Mc along a handlebody C ⊂ int(M) with a c ∈ LkI(S). Clearly, we have
“Jk ⇒ Lk” for any k ≥ 1. We have already mentioned the equality of relations L1 =
J1, and it follows essentially from Levine’s results that L2 = J2. However, the L3-
equivalence is strictly weaker than the J3-equivalence as a relation [17, §A].

3. Surgery equivalence relations: their characterization

In this section, we review several results from the middle 1970’s to nowadays, which provide
characterizations of the Jk-equivalence, the Yk-equivalence, and the k-surgery equivalence
relations in terms of topological invariants (for some or all values of k ∈ N∗).

3.1. Two case studies to consider

Let R be a compact surface. The problem of characterizing surgery equivalence relations in
V(R) is very much dependent on the choice of R. So we shall restrict ourselves to the two
cases that we have already mentioned on page 14:

(i) R = ∅; (ii) R = ∂( × [−1,1]) where  is a compact surface with ∂ ∼= S1.

Actually, in case (i), our interest in the set of closed 3-manifolds V(∅) will quickly specialize
to the class

S :=
�

M ∈ V(∅) : H∗(M;Z) ≃ H∗(S3;Z)
	

of homology 3-spheres. Of course, this is a strong restriction but, as we shall see, S is still a
very rich set-up for studying surgery equivalence relations.

Remark 3.1. The set S with the connected sum operation ♯ is a monoid, whose neutral
element is S3. ■

Similarly, in case (ii), our interest in the set V
�

∂(×[−1,1])
�

of cobordisms will be restricted
to the subset IC() of homology cylinders over . Those are cobordisms (C, c) from  to 
such that the boundary parametrizations

c+ := c|×{+1} :  −→ C and c− := c|×{−1} :  −→ C

induce isomorphisms in homology and satisfy c+,∗ = c−,∗ : H1(;Z)→ H1(C;Z):

C

c+

c−




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Two cobordisms (C, c) and (D,d) from  to  can be multiplied by gluing D “on the top of” C,
using the boundary parametrizations d− and c+ to identify d−() with c+():

C

c+

c−





◦ D

d+

d−





:=





D

C

c−

d+

It is easily checked that C ◦D ∈ IC() if C,D ∈ IC(). Hence the set IC() with this operation
◦ is a monoid, whose neutral element is the trivial cylinder U := × [−1,1] (with the obvious
boundary parametrization).

Proposition 3.2. The “mapping cylinder” construction defines a monoid homomorphism
cyl : I()→ IC(), which is injective and surjective onto the group of units of IC().

About the proof. A diffeomorphism ƒ :  →  defines a cobordism cyl(ƒ ) from  to  whose
underlying 3-manifold is the trivial cylinder U and whose boundary parametrization
∂( × [−1,1]) → ∂U is given by ƒ on the top surface  × {+1} and by the identity else-
where. Clearly, the diffeomorphism class of cyl(ƒ ) only depends on the isotopy class of ƒ and,
obviously, cyl(ƒ ) is a homology cylinder if ƒ induces the identity in homology.

Thus we obtain a map cyl : I() → IC(). Clearly it is multiplicative, and it is injective
for the following reason: two diffeomorphisms  →  are isotopic rel ∂ if and only if they
are homotopic rel ∂, by the classical result of Baer [2] that we have already alluded to at
page 15. The image of cyl is determined in [32, Prop. 2.4], for instance. □

The following is easily checked.

Proposition 3.3. The map ι : S → IC() defined by ι(M) := M♯U is an injection of monoids,
and it is an isomorphism for  = D2.

Thus, the monoid of homology cylinders IC() can be viewed as a simultaneous general-
ization of the Torelli group I() and the monoid S.

3.2. Characterization of the Torelli–equivalence

The most fundamental result is the characterization of the Torelli–equivalence, which has
been obtained for closed 3-manifolds by Matveev [68]. To state his result, we recall that the
linking number

(3.1) Lk(K, L) ∈ Q

of two disjoint oriented knots K, L in a closed 3-manifold M is defined when K and L are
rationally null-homologous: let n ∈ N∗ be such that n[K] = 0 ∈ H1(M;Z) and let  ⊂ M be a
surface transverse to L such that ∂ consists of n parallel copies of the knot K; then

(3.2) Lk(K, L) :=
1

n
 • L

where  • L ∈ Z denotes the algebraic intersection number. It can be verified that the class of
Lk(K, L) modulo 1 only depends on the integral homology classes of K and L. Hence we get
a map

λM : TorsH1(M;Z) × TorsH1(M;Z) −→ Q/Z, ([K], [L]) 7−→
�

Lk(K, L) mod 1
�

which is called the (torsion) linking pairing of M and is one of the eldest invariants of closed
3-manifolds [94, §77]. The map λM is bilinear, symmetric and non-singular (see [64, Lem-
ma 6.7], for instance).
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Theorem 3.4 (Matveev 1987). Two manifolds M,M′ ∈ V(∅) are Torelli–equivalent if, and
only if, there is an isomorphism ψ : H1(M;Z) → H1(M′;Z) such that the following diagram is
commutative:

(3.3) Tors H1(M;Z) × Tors H1(M;Z)
λM //

ψ×ψ ≃
��

Q/Z

Tors H1(M′;Z) × Tors H1(M′;Z)

λM′

44

Sketch of proof. Assume that M and M′ are Torelli–equivalent. Hence there is a Torelli twist
M ⇝ Ms along a surface S ⊂ M such that Ms

∼= M′. This surgery induces an isomorphism
ψ := ψs in homology, as described by (2.3). Using the notations of (3.2) and setting  := [K]
and y := [L], we have

λM(, y) =
1

n
 • L mod 1.

Since the handlebody N(S) = S × [−1,1] deformation retracts onto a 1-dimensional sub-
complex, we can isotope K and L in M to make them disjoint from N(S): hence, as subsets
of M \ intN(S), K and L can also be regarded as knots in Ms = M′; so we have ψ() = [K]
and ψ(y) = [L] in H1(M′;Z). Furthermore, we can isotope  so that it cuts the handlebody
N(S) tranversely along meridional disks of N(S): in particular, the boundary ∂◦ ⊂ ∂N(S) of
◦ := ∩
�

M \ intN(S)
�

is null-homologous in N(S). Recall that M′ is obtained from M \ intN(S)
by re-gluing N(S) using a diffeomorphism s̃ : ∂N(S) → ∂N(S) that acts trivially in homology:
hence ∂◦ is still null-homologous in the re-glued handlebody of M′, so that ◦ ⊂ M \ intN(S)
can be completed inside the re-glued handlebody to get a surface ′ ⊂ M′ satisfying ∂′ = nK.
We conclude that

λM′ (ψ(), ψ(y)) =
�1

n
′ • L mod 1
�

=
�1

n
 • L mod 1
�

= λM(, y).

Assume now that there is an isomorphism ψ in homology satisfying (3.3). According to
Theorem 1.10, M has a surgery presentation in S3: i.e., there is an n-component framed link
L ⊂ S3 such that M = S3

L
. We now recall the way of computing λM from the linking matrix of

L, which is the n × n matrix
Lk(L) :=
�

Lk(L, Lj)
�

,j.

(Here we have choosen an orientation for each component L of L, and the linking number
Lk(L, Lj) is an integer because H1(S3;Z) is trivial; by convention, Lk(L, L) := Lk(L, ρ(L)) is
the linking number of L and its parallel ρ(L).)

Let H := Zn, let ƒ : H× H→ Z be the symmetric bilinear map whose matrix in the canonical
basis (e) is Lk(L), and let bƒ : H→ Hom(H,Z) be the adjoint of ƒ . We consider the symmetric
bilinear form

λƒ : Gƒ × Gƒ −→ Q/Z

defined on the finite abelian group Gƒ := Tors
�

Cokerbƒ
�

by

∀{},{} ∈ Gƒ ⊂
Hom(H,Z)
bƒ (H)

, λƒ ({},{}) :=
�

ƒQ
�

b, b
�

mod 1
�

where ƒQ is the extension of ƒ to rational coefficients and where b, b are antecedents of
Q, Q : H ⊗ Q → Q by the adjoint bƒQ : H ⊗ Q → Hom(H ⊗ Q,Q). It is easily verified that λƒ is
non-singular.

This algebraic construction from the matrix Lk(L) has the following topological interpreta-
tion in terms of the 4-manifold WL obtained from D4 by attaching 2-handles along L:

⋄ H ≃ H2(WL;Z) and −ƒ then corresponds to the intersection form of WL;

⋄ hence Cokerbƒ ≃ H1(M;Z) and −λƒ then corresponds to λM.

I–25



Gwénaël Massuyeau

We proceed similarly with M′ to get a symmetric bilinear form ƒ ′ on a finitely-generated free
abelian group H′. By assumption, we have (Gƒ , λƒ ) ≃ (Gƒ ′ , λƒ ′ ) and it follows from early works
in knot theory [46, 48] and algebra [105, 15] that the pairs (H, ƒ ) and (H′, ƒ ′) are stably
equivalent, meaning that there exist integers n± , n′± ≥ 0 such that

(H, ƒ ) ⊕ (Z,+1)⊕n+ ⊕ (Z,−1)⊕n− ≃ (H′, ƒ ′) ⊕ (Z,+1)⊕n
′
+ ⊕ (Z,−1)⊕n

′
− .

The direct sum with (Z,±1) can be realized, at the level of surgery presentations, by the
disjoint union with the (±1)-framed unknot, and this does not change the 3-manifold after
surgery. Besides, an automorphism of H can be decomposed into finitely many “elementary”
automorphisms which, in terms of the basis (e) of H, are given by the operations e ↔ ej,
e 7→ −e or (e, ej) 7→ (e + ej, ej); these “elementary” automorphisms can be realized, at the
level of surgery presentations, by the renumbering ↔ j of the components of L, the change
of orientation L 7→ −L or the operation (L, Lj) 7→ (L♯Lj, Lj), respectively. All these elementary
operations on links (which constitute the so-called “Kirby calculus” [45]) do not affect the 3-
manifold after surgery : it is obvious for the first two operations and, for the third operation,
it is justified by sliding the attaching locus of a 2-handle of WL along another 2-handle.

Therefore, we can assume without restriction of generality that M and M′ are presented by
surgery in S3 along framed links with the same linking matrix:

Lk(L) = Lk(L′).

Then a result of Murakami & Nakanishi [80] asserts that L and L′ are related one to the other,
by isotopies and finitely many local moves of the following type:

(3.4) ←→

Such a local move (called a Δ-move in [80]) can be realized by surgery along a Y-graph:
see [30, Fig. 34 (b)], for instance. We conclude that, up to diffeomorphisms, M and M′ are
related one to the other by finitely many Y-surgeries. Hence they are Torelli–equivalent. □

Remark 3.5. The proof of Theorem 3.4 given in [68] is not detailed, and the knot-theoretical
ingredient in terms of linking matrices [80] is actually posterior to [68]. By refining this proof,
[60] and [14] extend Theorem 3.4 to the setting of 3-manifolds with spin and complex spin
structures, respectively: these extensions involve quadratic forms which refine the linking
pairing and depend on the (complex) spin structures. See also [79] for a detailed proof of
Matveev’s theorem and additional contents. ■

As an immediate consequence of Theorem 3.4, we obtain the following result about S
which dates back to [5] and is proved there with Heegaard splittings. The formulation in
terms of blinks (see Remark 2.9) appears in [35].

Corollary 3.6 (Birman 1974). Any homology 3-sphere is Torelli–equivalent to S3.

By refining the proof of Theorem 3.4, we can also prove the following refinement of Corol-
lary 3.6 which generalizes [80].

Corollary 3.7. Let M,M′ ∈ S and let L ⊂ M,L′ ⊂ M′ be framed oriented n-component links.
The pairs (M,L) and (M′, L′) are Torelli–equivalent if, and only if, we have Lk(L) = Lk(L′).

Let  be a compact surface with ∂ ∼= S1. We now turn to homology cylinders over 
(whose definition has been given in §3.1). The following, which appears in [30], states that
IC() constitutes a Torelli–equivalence class.

I–26



Course no I— Surgery equivalence relations for 3-manifolds

Proposition 3.8 (Habiro 2000). Any homology cylinder over  is Torelli–equivalent to the
trivial cylinder U =  × [−1,1].

Sketch of the proof. Fix a system of meridians and parallels in the surface , i.e. a system of
simple oriented closed curves (α1, . . . , αg, β1, . . . , βg) having the following intersection pat-
tern:

α1

αg
β1 βg

⟲

Let (C, c) ∈ IC(): recall that C is viewed as a cobordism from the “top” surface ∂+C := c+()
to the “bottom” surface ∂−C := c−(). By gluing one 2-handle along each curve c−(α) on ∂−C
and one 2-handle along each curve c+(βj) on ∂+C, the homology cylinder C is turned into a
homology 3-ball C′. Next, by adding a 3-handle to C′, we get a homology 3-sphere õC′. Each 2-
handle D2×D1 has a co-core, which is the image of {0}×D1 after attachment of the 2-handle:
hence the above procedure has also produced a framed oriented (2g)-component tangle
(γ+1 , . . . , γ

+
g
, γ−1 , . . . , γ

−
g
) in C′, which is called a bottom-top tangle. Now, we can connect the

two extremities of each component γ+j (resp. γ− ) by a small arc on the “top” (resp. “bottom”)

boundary of C′ to get an oriented framed knot G+j (resp. G− ) in õC′. It can be deduced from
the equality c+,∗ = c−,∗ : H1(;Z) → H1(C;Z) that the linking matrix of the framed oriented
link G := (G+1 , . . . , G

+
g
, G−1 , . . . , G

−
g
) is

Lk(G) =
�

0g g
g 0g

�

so that, in particular, it does not depend on C ∈ IC().
If we apply the above constructions to the trivial cylinder U instead of C, we obtain U′ ∼= D3

and, inside õU′ ∼= S3, we obtain a link T with Lk(T) = Lk(G). It follows then from Corollary 3.7
that the pair (õC′, G) is Torelli–equivalent to (õU′, T) and, therefore, C is Torelli–equivalent to U.
We refer to [9, Cor. 7.7] for a more general result and more detailed arguments. □

Remark 3.9. Recall that Hk is the standard handlebody of genus k, with boundary k. A
manifold C ∈ V(k) is a homology handlebody of genus k if it has the same homology type
as Hk. Using the same method of proof as for Proposition 3.8, we can show the following
characterization due to Habegger [29]: two homology handlebodies C′, C′′ of genus k are
Torelli–equivalent if, and only if, they have the same Lagrangians:

ker
�

c′∗ : H1(k ;Z) −→ H1(C′;Z)
�

= ker
�

c′′∗ : H1(k ;Z) −→ H1(C′′;Z)
�

See also Auclair & Lescop [1, Lemma 4.11]. ■

3.3. Characterization of Jk and Yk at low k for closed manifolds

The J1-equivalence on V(∅) being perfectly understood thanks to Theorem 3.4, we now turn
to the J2-equivalence. Recall from Proposition 2.16 that the J2-equivalence coincides with the
2-surgery equivalence. The latter has been characterized in [11].

In addition to the linking pairing λM of a closed 3-manifold M, the characterization of the 2-
surgery equivalence involves the cohomology ring of M. It follows from Poincaré duality that
all the (co)homology groups of M are determined by H1(M;Z). Furthermore, the cohomology
ring H∗(M;Zr) is determined for any r ∈ N by the triple-cup product form


(r)
M : H1(M;Zr) × H1(M;Zr) × H1(M;Zr) −→ Zr ,
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which is the trilinear and skew-symmetric form defined by

∀, y, z ∈ H1(M;Zr), 
(r)
M (, y, z) :=




 ∪ y ∪ z, [M]
�

∈ Zr .

It turns out that all these forms can be encoded by a single invariant: the abelian (oriented)
homotopy type of M, which is defined as the homology class

(3.5) μ1(M) := ƒ∗([M]) ∈ H3
�

H1(M)
�

.

Here, homology groups are taken with Z-coefficients, ƒ : M→ K(H1(M),1) is a continuous map
in an Eilenberg–MacLane space that induces the canonical homomorphism π1(M)→ H1(M) at
the level of π1, and the homology of the space K(H1(M),1) is identified to the homology of
the (abelian) group H1(M).

Theorem 3.10 (Cochran–Gerges–Orr 2001). Let M,M′ ∈ V(∅). The following three state-
ments are equivalent:

(1) M and M′ are J2-equivalent;

(2) there is an isomorphism ψ : H1(M;Z) → H1(M′;Z) such that λM corresponds to λM′

through ψ, and 
(r)
M′ corresponds to 

(r)
M through Hom(ψ,Zr) for all r ∈ N;

(3) there is an isomorphism ψ : H1(M;Z) → H1(M′;Z) such that the induced map ψ∗ :
H3
�

H1(M;Z)
�

→ H3
�

H1(M′;Z)
�

maps μ1(M) to μ1(M′).

About the proof. In fact, the results of [11] give a fourth, equivalent condition:

(4) there is a cobordism W from M to M′ such that the maps incl∗ : H1(M;Z)→ H1(W;Z)
and incl∗ : H1(M′;Z)→ H1(W;Z) induced by the inclusions are isomorphisms.

Some of the implications are not too difficult to prove, like

⋄ (1)⇒ (4) and (4)⇒ (1) working with the formulation of the J2-equivalence in terms of
2-surgeries;

⋄ (4)⇒ (3) using the canonical map Ω3
�

K(H1(M),1)
�

→ H3
�

H1(M)
�

defined on the third
cobordism group relative to K(H1(M),1);

⋄ (3) ⇒ (2) using that the forms λM and 
(r)
M are defined by (co)homology operations,

which also exist in the category of groups.

Some other implications like (2)⇒ (3) and (3)⇒ (4) are much more involved. We recommend
the reading of [11] where techniques of low-dimensional topology, differential topology and
algebraic topology intertwine in a rich manner. □

As an immediate consequence of Theorem 3.10, we obtain the following result about S. It
appeared priorly in [68], in its formulation with boundary links (see Remark 2.17).

Corollary 3.11 (Matveev 1987). Any homology 3-sphere is J2-equivalent to S3.

Although the first publication of Corollary 3.11 seems to be [68], it appears that the result
was known from Johnson as early as 1977 [37]. It has been reproved (in its formulation with
2-surgeries) by Casson in order to give a surgery description of his invariant [8].

Morita [73] gave yet another proof of Corollary 3.11 using Heegaard splittings. By extend-
ing Morita’s techniques and after long computations, Pitsch obtained the following in [87]:

Theorem 3.12 (Pitsch 2008). Any homology 3-sphere is J3-equivalent to S3.

In a very recent paper [18], Faes proved the next step for S. But, in contrast with Pitsch’s
proof of Theorem 3.12, his arguments require the classification of the Yk-equivalence on S
for k ∈ {2,3,4}, which was obtained by Habiro [30].
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Theorem 3.13 (Faes 2022). Any homology 3-sphere is J4-equivalent to S3.

Hence we now return to the family of Yk-equivalence relations and, for this purpose, we
review a few 3-manifold invariants whose nature is very different from the linking pairing or
the cohomology ring. Recall that the set of spin structures on an n-manifold V (with n ≥ 2) is

defined in terms of its bundle FV of oriented frames GL+(R;n),→ E(FV)
p
−→ V by

Spin(V) :=
�

σ ∈ H1(E(FV);Z2) : σ|fiber ̸= 0 ∈ H1(GL+(R;n);Z2)
	

.

When it is non-empty (i.e. when the second Stiefel–Whitney class 2(V) ∈ H2(V;Z2) van-
ishes), the set Spin(V) is an affine space over H1(M;Z2), the action being given by  · σ =
σ + p∗() for any  ∈ H1(M;Z2) and σ ∈ Spin(M).

Any closed 3-manifold M has a trivial tangent bundle and, so, it admits spin structures.
Given σ ∈ Spin(M), the Rochlin invariant of (M,σ) is defined by

RM(σ) := sgn(W) mod 16

where W is a compact 4-manifold bounded by M to which σ extends, and sgn(W) denotes
the signature of its intersection form on H2(W;Z). That RM(σ) is well-defined follows from
the vanishing of ΩSpin

3 (a refinement of Theorem 1.10), the fact (due to Rochlin) that the
signature of a spinable closed 4-manifold is divisible by 16, and the fact (due to Novikov)
that the signature is additive under full-boundary gluing. (See [45] for these classical results
on 4-dimensional topology.) Hence there is a map RM : Spin(M)→ Z16 attached to any closed
3-manifold M.

Besides, according to [51, 72], we can associate to any σ ∈ Spin(M) a quadratic form over
the linking pairing λM, which means a map qM,σ : TorsH1(M;Z)→ Q/Z satisfying

∀, y ∈ TorsH1(M;Z), qM,σ( + y) = qM,σ() + qM,σ(y) + λM(, y).

Hence there is also a map qM : Spin(M)→ Quad(λM) whose target is the set of quadratic forms
over λM. (This is the refinement of the linking pairing that has been evoked in Remark 3.5.)

We can now state the characterization of Y2 on V(∅) given in [61].

Theorem 3.14 (Massuyeau 2003). Two manifolds M,M′ ∈ V(∅) are Y2-equivalent if, and only
if, there is an isomorphism ψ : H1(M;Z) → H1(M′;Z) and a bijection Ψ : Spin(M′) → Spin(M)
satisfying the following:

(1) λM corresponds to λM′ through ψ, and 
(r)
M′ corresponds to 

(r)
M through Hom(ψ,Zr) for

any r ∈ N;

(2) RM′ corresponds to RM through Ψ;

(3) ψ and Ψ are compatible in the sense that Ψ is affine over Hom(ψ,Z2) and we have the
commutative diagram:

Spin(M)
qM
// Qd (λM)

Spin(M′)

Ψ ≃

OO

qM′
// Qd (λM′ ) .

ψ∗≃

OO

About the proof. Assume a Torelli twist M⇝Ms along a surface S ⊂ M such that Ms
∼= M′. This

surgery induces an isomorphism ψs in homology as we have seen at (2.3). Furthermore, as
shown in [60], the surgery M ⇝ Ms induces a canonical bijection Ψs : Spin(Ms) → Spin(M),
which is affine over

Hom(Ψs,Z2) : Hom(H1(Ms),Z2) ≃ H1(Ms;Z2)→ H1(M;Z2) ≃ Hom(H1(M),Z2)
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Specifically, it is the unique map that fits into the following commutative diagram:

Spin(M)
++ incl∗

++

Spin
�

M \ intN(S)
�

Spin(Ms)
33 incl∗

33
Ψs ≃

OO

We have seen in the proof of Theorem 3.4 that the linking pairing is preserved by the Torelli
twist M⇝ Ms, but this is not true anymore neither for the cohomology ring or for the Rochlin
function. Nonetheless, we can explicitly compute how those two invariants change after a
single Y-surgery, and thus observe that there is no variation if the Y-graph has a 0-framed
null-homologous leaf: hence, using the operation (O1) at page 19, we see that there is no
variation by surgery along a connected graph clasper of degree 2. Using Proposition 2.20, we
deduce that the isomorphism class of the triplet (linking pairing, cohomology rings, Rochlin
function) is invariant under Y2-equivalence.

To prove the converse, we apply the “general strategy” by clasper calculus, which has been
sketched on page 21 (with k := 1). Thus, although Theorem 3.10 and Theorem 3.14 show
similarities in their statements, their proofs are very different and logically independent. □

As an immediate consequence of Theorem 3.14, we obtain the following result for homol-
ogy 3-spheres which appeared priorly in [30]. Note that an M ∈ S has a unique spin structure
σ0, and it turns out that R(M,σ0) can only be 0 or 8 modulo 16: in this case, the Rochlin
invariant of M refers to R(M,σ0)/8 ∈ Z2.

Corollary 3.15 (Habiro 2000). Two homology 3-spheres are Y2-equivalent if, and only if,
they have the same Rochlin invariant.

The paper [30] also contains the characterization of Y3 and Y4. To state this, let us recall
that the Casson invariant

λ(M) ∈ Z
of an M ∈ S is an integral lift of the Rochlin invariant R(M,σ0)/8 ∈ Z2. In some sense, λ(M)
is defined to count the number of conjugacy classes of irreducible representations of π1(M)
in the Lie group SU(2) using a Heegaard splitting of M [8]. Casson also provided a surgery
formula for λ in terms of the Alexander polynomial of knots, which makes this invariant very
computable: see, for instance, the textbook [93]. By means of this surgery formula, Morita
could prove that λ behaves like a “quadratic” function on the Torelli group [73, 74], and
Lescop generalized Morita’s result in a broader situation [54] (namely, Walker’s extension of
the Casson invariant to rational homology 3-spheres). This quadraticity of λ is an expression
of its property to be a finite-type invariant of degree 2 (see §3.5 below), and this is precisely
the property of λ that is needed for the following result.

Theorem 3.16 (Habiro 2000). Two homology 3-spheres are Y3-equivalent (resp., Y4-equiv-
alent) if, and only if, they have the same Casson invariant.

The characterization of Y3 (and, a fortiori, Y4) in the general case of closed 3-manifolds
does not seem to appear in the literature. Neither is the characterization of J3 (and, a for-
tiori, J4).

Remark 3.17. At this point of our discussion, it is important to focus on the nature of the
results that we have presented so far for closed 3-manifolds. Each of them is concerned with
a certain surgery equivalence relation ∼ and states that

∀M,M′ ∈ V(∅), M ∼ M′ ⇐⇒ (M) ≃ (M′)

where  : V(∅) → A is a certain “package” of algebraic invariants with values in an appropr-
iately-defined set where there is a notion of isomorphism ≃. But such a characterization of ∼
is not yet a classification result, since it continues with two other problems:
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⋄ Realization: Does one know what is the image of  in A?

⋄ Isomorphism: Is the isomorphism problem solved in A?

So, let us reconsider the above characterizations of surgery equivalence relations under this
new angle:

Torelli–equivalence J2-equivalence Y2-equivalence
Characterization Theorem 3.4 Theorem 3.10 Theorem 3.14

Realization problem solved [104] solved [96, 102] solved [102]
Isomorphism problem solved [104, 44] unknown? unknown?

Wall showed that any non-singular bilinear pairing on a finite abelian group can be realized
as the linking pairing of a closed 3-manifold [104]. He also gave a partial description (by
generators and relations) of the abelian monoid of isomorphism classes of such pairings
(where the operation is the direct sum ⊕). His work has been completed later on by Kawauchi
& Kojima [44].

Sullivan proved in [96] that any trilinear alternate form on a finitely-generated free abelian
group can be realized as the triple-cup product form of a closed 3-manifold: it is interesting
to note that, in the middle of the 70’s and in order to prove this result, Sullivan was already
using a surgery operation equivalent to the Y-surgery.

There exist several kinds of relations between the linking pairing, the triple-cup prod-
uct forms and the Rochlin function. For instance, the triple-cup product forms 

(r)
M and 

(s)
M

with coefficients in Zr and Zs, respectively, are related in an obvious way if r divides s. But
there are also other, more delicate, relations: for instance, the third “discrete” differential
of the Rochlin function RM is given by 

(2)
M . In fact, Turaev described in [102] all such pos-

sible relations, and he thus solved the realization problem for the triplet (linking pairing,
cohomology rings, Rochlin function). However, since the isomorphism problem for trilinear
skew-symmetric forms does not seem to be solved (even for coefficients in Q), there is cur-
rently no procedure to decide (in general) whether two closed 3-manifolds are J2-equivalent.
Consequently, the same applies to the Y2-equivalence relation. ■

3.4. Characterization of Jk and Yk at low k for homology cylinders

We now consider the case of homology cylinders over a compact surface  (with one bound-
ary component).

We start with some generalities about the structure added by the sequence of Yk-equiv-
alence relations on the monoid IC(). For every k ∈ N∗, denote by YkIC() the subset of
homology cylinders that are Yk-equivalent to the trivial cylinder U. Hence, we get a decreas-
ing sequence

IC() = Y1IC() ⊃ Y2IC() ⊃ Y3IC() ⊃ · · ·
of submonoids, which is called the Y-filtration. Goussarov [28] and Habiro [30] proved that,
for any integer k ≥ 0, the quotient monoid

IC()

Yk+1

is a group and, that, for any integers , j ≥ 1, the inclusion
�

YIC()

Yk+1
,
YjIC()

Yk+1

�

⊂
Y+jIC()

Yk+1

holds true in that group. In particular, YkIC()/Yk+1 is an abelian group for all k ≥ 1, and the
direct sum of abelian groups

GrYIC() :=
⊕

k≥1

YkIC()

Yk+1

has the structure of a graded Lie ring. The following is easily checked.
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Proposition 3.18. The “mapping cylinder” construction cyl : I() → IC() induces a mor-
phism of graded Lie rings Gr(cyl) : Gr I()→ GrY IC().

Thus the “Lie algebra of homology cylinders” GrYIC() is highly related to the “Torelli Lie
algebra” Gr I(), which has been reviewed at (2.8). We refer to the works [30, 26, 29, 9, 31,
67, 81, 82]; see also the end of §3.5 in this connection.

In this subsection, we only deal with the low-degree parts of GrY IC(). We start with the
characterization of the Y2-equivalence, which needs two invariants of homology cylinders.
The first invariant is the action of IC() on the second nilpotent quotient π/3π of π = π1(, ⋆).
Indeed, as observed in [26], the group homomorphism (2.5) can be extended (for any k ∈ N∗)
to a monoid homomorphism:

I()

cyl

��

ρk
// At
�

π/k+1π
�

IC()
ρk

88

The second invariant of homology cylinders that we need is the Birman–Craggs homomor-
phism, which originates from constructions of Birman & Craggs [7] on the Torelli group and
was studied by Johnson [39]. In our setting, the most efficient way to define it is as follows:

β : IC() −→ Mp(Spin(),Z2), M 7−→
1

8
R
óM

Here, we associate to any M ∈ IC() the closed 3-manifold

(3.6) óM := M ∪m (− × [−1,1]),

we identify Spin() to Spin( óM) via the map m± :  → M ,→ óM, and we use the fact that the
Rochlin function R

óM takes values in {0,8} (because H1( óM;Z) is torsion-free). The following is
a generalization of Corollary 3.15 in genus g > 0.

Theorem 3.19 (Habiro 2000, Massuyeau–Meilhan 2002). Two homology cylinders M,M′ are
Y2-equivalent if, and only if, β(M) = β(M′) and ρ2(M) = ρ2(M′).

About the proof. This characterization is announced in [30] and proved in [66]. It preceded
Theorem 3.14 and uses the same techniques for its proof. Note that the situation of homology
cylinders is simpler than the situation of closed manifolds for two reasons: the first homol-
ogy groups of homology cylinders are torsion-free (hence there is no linking pairing to deal
with), and they come with a natural parametrization by an abelian group independent of the
manifold (namely H1(;Z)). □

Remark 3.20. Actually, the results in [66] give an explicit computation of the abelian group
IC()/Y2 and, thanks to Johnson’s computation of the abelianized Torelli group [43], this
implies that the degree 1 part

Gr1(cyl) : I()/[I(),I()] → IC()/Y2

of the “mapping cylinder” construction is an isomorphism. ■

To state now the characterization of the Y3-equivalence, we need still more invariants.
On the one hand, we fix an embedding j :  → S3 such that j() is a Heegaard surface of
S3 (deprived of a small open disk), and we identify N(j()) with  × [−1,1] via j. Then the
Casson invariant induces a map

λj : IC() −→ Z, M 7−→ λ
�

(S3 \ int( × [−1,1])) ∪m M
�

,

which constitutes an invariant of homology cylinders. It depends on the choice of j, of course,
but this dependency can be managed as Morita did in the case of the Torelli group [74]. On
the other hand, we can consider the homology H1(M, ∂−M;Z[H]) of M relative to its “bottom”
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boundary” ∂−M = m−(), with coefficients twisted by m−1±,∗ : H1(M;Z) → H := H1(;Z); the
order of this Z[H]-module

Δ(M, ∂−M) := ord H1(M, ∂−M;Z[H]) ∈ Z[H]

is a relative version of the Alexander polynomial. With this definition, Δ(M, ∂−M) is only de-
fined up to multiplication by a unit of the ring Z[H], i.e. an element of ±H; however, by using
Turaev’s refinement of the Reidemeister torsion, this indeterminacy can be fixed. Next, it is
possible to “expand” Δ(M, ∂−M) as an element of (the degree completion of) the symmetric
algebra S(H), and to keep only the degree 2 part of that expansion:

α(M) ∈ S2(H).

The following is a generalization of Theorem 3.16 in genus g > 0.

Theorem 3.21 (Massuyeau–Meilhan 2013). Two homology cylinders M,M′ are Y3-equivalent
if, and only if, we have λj(M) = λj(M′), ρ3(M) = ρ3(M′) and α(M) = α(M′).

About the proof. This theorem is proved in [67]. An important step in the proof consists in
identifying the abelian group Y2IC()/Y3 and, for this, the “general strategy” by clasper
calculus (see page 21) is applied (with k := 2). But, the difficulty is to assemble all three in-
variants that are expected to characterize the Y3-equivalence (namely λj, ρ3, α) into a single
homomorphism Z2 defined on Y2IC()/Y3. This role of “unifying invariant” is played by the
degree 2 part of the LMO homomorphism Z [9, 31], whose behaviour under Y2-surgery is
well-understood. (See also the end of §3.5 in this connection.) □

It is also explained in [67] how to deduce from Theorem 3.19 and Theorem 3.21 character-
izations of the J2-equivalence and J3-equivalence, respectively. Specifically, J2 is classified by
ρ2 and J3 is classified by the couple (ρ3, α). In genus g = 0, Theorem 3.12 is thus recovered
with a completely different proof than [87]. Besides, the same strategy of proof (i.e., use Yk
to understand Jk) is used in [18] for proving Theorem 3.13.

Remark 3.22. Nozaki, Sato and Suzuki [81] have determined the abelian group Y3IC()/Y4.
Their description too involves a “clasper surgery” map ψk of the type described on page 21
(with k := 3), and their arguments involve some (reductions of) higher-degree parts of the
LMO homomorphism Z. It still remains to deduce from their result a characterization of the
Y4-equivalence relation on the full monoid IC(). ■

Remark 3.23. In contrast with the case of closed 3-manifolds, the above characterizations
of Yk-equivalence and Jk-equivalence relations for homology cylinders do not lead to “iso-
morphism problems” of the type mentioned in Remark 3.17. ■

3.5. Characterization in higher degrees

To conclude, we now survey what is known about the characterization in arbitrary high de-
grees of the three main families of relations that have been considered in these notes: namely
the k-surgery equivalence, the Jk-equivalence and the Yk-equivalence.

First of all, we consider the family of k-surgery equivalence relations on V(∅). We start
with an easy observation.

Proposition 3.24. Any homology 3-sphere M is k-surgery equivalent to S3, for every k ≥ 1.

Proof. By Corollary 3.11, there is a sequence

S3 = M0 ⇝M1 ⇝ · · ·⇝Mr = M

where each move M ⇝M+1 is a (±1)-framed surgery along a knot K in a homology 3-sphere
M. Since π1(M) has trivial abelianization, we have π1(M) = kπ1(M) for all k ≥ 1: hence the
move M ⇝M+1 can be viewed as a k-surgery for every k ≥ 1. □
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Nevertheless, as was shown in [11], the family of k-surgery relations is very interesting
for 3-manifolds that are homologically non-trivial. Following Turaev [103], we define the k-th
nilpotent (oriented) homotopy type of a closed 3-manifold M as

μk(M) := ƒ∗([M]) ∈ H3

�

π1(M)

k+1π1(M)
;Z
�

where ƒ : M→ K
�

π1(M)/k+1π1(M),1
�

is a continuous map in an Eilenberg–MacLane space in-
ducing the canonical homomorphism π1(M)→ π1(M)/k+1π1(M) at the level of π1. (Of course,
for k := 1, we recover what we called in (3.5) the “abelian homotopy type” of M.)

One can view μk(M) as an approximation of the (oriented) homotopy type of M since,
according to [101, 97], the latter is encoded by π1(M) and the image of the fundamental
class [M] in H3

�

π1(M);Z
�

. Then we have the following generalization of the equivalence
(1)⇔(3) in Theorem 3.10.

Theorem 3.25 (Cochran–Gerges–Orr 2001). Let k ∈ N∗. Two closed 3-manifolds M and M′

are (k + 1)-surgery equivalent if, and only if, there is an isomorphism

ψ : π1(M)/k+1π1(M) −→ π1(M′)/k+1π1(M′)

mapping μk(M) to μk(M′).

Although the realization problem for nilpotent homotopy types of 3-manifolds has been
(formally) solved in [103], it seems to be really difficult to classify the k-surgery equivalence
relations, especially because the third homology groups of finitely-generated nilpotent groups
do not seem to be well understood. Yet, Cochran, Gerges & Orr have been able to apply
Theorem 3.25 in one particular case: using a good knowledge [36] of the third homology
group of finitely-generated free-nilpotent groups, they prove that a closed 3-manifold M is
k-surgery equivalent to ♯m(S1 × S2) if, and only if, we have H1(M;Z) ≃ Zm and all Massey
products of M of length ≤ 2k − 1 vanish. (For k := 2, this is an instance of the equivalence
“(1)⇔(2)” in Theorem 3.10.)

Here is another consequence of Theorem 3.25, which does not seem to have been ob-
served before.

Corollary 3.26. Let M,M′ ∈ V(∅) and let k ≥ 2 be an integer. If M and M′ are J2k−2-
equivalent, then they are k-equivalent.

Proof. Let j ∈ N∗ and assume a Torelli twist M⇝ Ms along a surface S ⊂ M with an s ∈ JjI(S).
The Seifert–Van Kampen theorem shows the existence of a unique isomorphism

ψs : π1(M)/j+1π1(M)
≃−→ π1(Ms)/j+1π1(Ms)

that fits into the commutative diagram:

π1(M\intN(S))
j+1π1(M\intN(S))

xxxx && &&

π1(M)
j+1π1(M) ≃

ψs
// π1(Ms)
j+1π1(Ms)

.

In order to compare μj(M) and μj(Ms) via ψs, we consider the mapping torus of s which, with
the notation (3.6), can be defined as

tor(s) :=ýcyl(s)

where cyl(s) ∈ IC(S) denotes the mapping cylinder of s. This is a closed 3-manifold whose
j-th nilpotent fundamental group can be identified to that of S by the isomorphism

φs : π1(S)/j+1π1(S)
≃−→ π1(tor(s))/j+1π1(tor(s))
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that is induced by the inclusion S = S × 1 ,→ tor(s). Besides, the inclusion S ,→ M induces a
homomorphism

ι : π1(S)/j+1π1(S) −→ π1(M)/j+1π1(M).

Then, a simple homological computation in a singular 3-manifold that contains the three of
M, Ms and tor(s) shows that

(3.7) ψ−1
s,∗

�

μj(Ms)
�

= μj(M) + ι∗φ−1s,∗
�

μj
�

tor(s)
��

.

This variation formula for the j-th nilpotent homotopy type is established in the introduction
of [65], generalizing [26, Theorem 2] and [33, Theorem 5.2].

The same formula shows that, given a compact surface  with ∂ ∼= S1, the following map
is a group homomorphism:

Mj : JjI() −→ H3

�

π1()

j+1π1()
;Z
�

, ƒ 7−→ μj
�

tor(ƒ )
�

.

This is essentially the j-th Morita homomorphism, introduced in [75] as a refinement of the “j-
th Johnson homomorphism”. As shown by Heap in [33], the kernel of Mj is J2jI(). Therefore,
if M′ is the result of a Torelli twist M ⇝ Ms with an s ∈ J2(k−1)I(S), we have μk−1

�

tor(s)
�

= 0.
So, we conclude thanks to (3.7) that M and M′ are k-surgery equivalent. □

Remark 3.27. It would be interesting to have a direct proof of Corollary 3.26, which would
apply to V(R) for any compact surface R. Indeed, surgery along a connected graph clasper of
degree 2k − 2 can always be realized as a sequence of three k-surgeries (see [66, Fig. 3] for
k = 2): therefore, by Proposition 2.20, the Y2k−2-equivalence is stronger than the k-surgery
equivalence [30]. Given that “Y2k−2 ⇒ J2k−2”, it is likely that Corollary 3.26 is true in V(R) for
any R. ■

The following question now arises for the family of Jk-equivalence relations: can we expect
a result analogous to Theorem 3.25? This seems to be currently out of reach, as revealed
already by the case of homology 3-spheres. Indeed, the methods for proving the triviality of
the J3-equivalence (resp., J4-equivalence) in [87] (resp., in [18]) seem to be hard to adapt to
arbitrary high degrees.

Remark 3.28. So, in view of Proposition 3.24, we can hardly imagine a kind of converse to
Corollary 3.26. ■

In contrast with the Jk-equivalence, we know (at least, theoretically) how to characterize
the Yk-equivalence relation in any degree k ≥ 1 by means of a certain family of topological
invariants of 3-manifolds. In the sequel, we fix a compact surface R and a Y1-equivalence
class V0 in V(R).

Definition 3.29. Let A be an abelian group. A map F : V0 → A is a finite-type invariant of
degree at most d if, for any M ∈ V0, for any pairwise-disjoint compact surfaces S0, S1, . . . , Sd ⊂
int(M) with ∂S ∼= S1, and for all s0 ∈ I(S0), s1 ∈ I(S1), . . . , sd ∈ I(Sd), we have

∑

J⊂{0,1,...,d}
(−1)|J| · F(MJ) = 0 ∈ A

where MJ ∈ V0 is obtained from M by twist along ⊔j∈JSj with ⊔j∈Jsj. ■

Remark 3.30. The notion of “finite-type invariants” for homology 3-spheres has been in-
troduced by Ohtsuki in [84], as an analogue of the notion of “Vassiliev invariants” for knots
and links in S3. This notion has been extended and studied by Cochran & Melvin [12], who
considered arbitrary 3-manifolds. In this Ohtsuki–Cochran–Melvin theory, the basic operation
is the 2-surgery instead of the Torelli twist.

The rich interplay between the theory of finite-type invariants and the study of mapping
class groups was firstly considered by Garoufalidis & Levine [20, 23, 24, 25]. Next, came
the “clasper calculus” of Goussarov and Habiro [28, 30], which offered very efficient tools to
study and enumerate finite-type invariants. Their works also revealed that the Torelli twist
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(or any equivalent type of modification, like the Y-surgery or the borromean surgery) is the
appropriate operation to define finite-type invariants as we did in Definition 3.29.

We refer to [22, 30] for a comparison of the various notions of finite-type invariants: they
happen to be all equivalent one to the other for homology 3-spheres (up to some degree
rescalings), but they are not equivalent for arbitrary 3-manifolds. ■

In order to explain the relationship between finite-type invariants and the Yk-equivalence
relations, we need a little bit of algebraic context. Let G be an arbitrary group, and denote
its group ring by Z[G], which is the abelian group freely generated by the set G and has the
multiplication inherited from the group operation of G. The augmentation ideal of G is

 := G = ker
�

ϵ : Z[G] −→ Z
�

where the augmentation ϵ is the ring homomorphism mapping any g ∈ G to 1 ∈ Z. The -adic
filtration of Z[G] is the sequence Z[G] = 0 ⊃  = 1 ⊃ 2 ⊃ · · · defined by the powers of . The
following classical fact relates this to the lower central series (2.4) of G.

Lemma 3.31. Let k ∈ N∗. For any g ∈ kG, we have (g − 1) ∈ k.

Proof. The statement is obviously true for k = 1. Next, for any k ∈ N∗, an element of k+1G is
(by definition) a product of commutators of the form [, y] or [y, ] where  ∈ G and y ∈ kG.
Besides, we have the following identities in Z[G], for any g, h ∈ G:

gh − 1 =
�

(g − 1) − (h−1 − 1)
�

· h

[g, h] − 1 = ((g − 1)(h − 1) − (h − 1)(g − 1))g−1h−1.

Hence the statement is justified by an induction on k ≥ 1. □

We can now prove the following.

Proposition 3.32. Let M,M′ ∈ V0 and let d ∈ N. If M and M′ are Yd+1-equivalent, then
F(M) = F(M′) for any finite-type invariant F : V0 → A of degree at most d.

Proof. Assume that M ⇝ Ms
∼= M′ by a Torelli twist along S ⊂ int(M) with s ∈ d+1I(S). Con-

sider the map ƒ : I(S)→ A defined by ƒ () := F(M) and extend it by additivity to

ƒ : Z
�

I(S)
�

−→ A.

The fact that F is of finite type of degree at most d implies that ƒ vanishes on all elements
of the form (s0 − 1)(s1 − 1) · · · (sd − 1) with s0, s1, . . . , sd ∈ I(S). Since those elements gen-
erate d+1 addivitely, we have ƒ (d+1) = 0. We conclude using the fact that (s − 1) ∈ d+1 by
Lemma 3.31. □

If Proposition 3.32 had a converse, then we would get (at least, theoretically) a character-
ization of the Yk-equivalence relation. Indeed, the converse is true for the class V0 := S.

Theorem 3.33 (Habiro 2000). Any two homology 3-spheres are Yd+1-equivalent if, and only
if, they are not distinguished by finite-type invariants of degrees at most d.

Thus, Corollary 3.15 and Theorem 3.16 are proved by identifying all (the few) finite-type
invariants of homology 3-spheres of degrees 1, 2 and 3.

About the proof of Theorem 3.33. The theorem is announced in [30] and it is proved there in
the analogous case of knots in S3. See [62] for a proof, which involves clasper calculus. □

Let  be a compact surface with one boundary component, and consider now the class
V0 := IC() of homology cylinders over . Except in the case  = D2, it is not known whether
the converse to Proposition 3.32 holds true for IC().

Goussarov–Habiro Conjecture (GHC). Let d ∈ N∗. Any two homology cylinders over  are
Yd+1-equivalent if, and only if, they are not distinguished by finite-type invariants of degree
at most d.
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Currently, the GHC is only known to be true up to degree d = 4, the most recent result in
this direction being obtained in [82]. By comparing Lemma 3.31 to Proposition 3.32, we see
that the GHC is an analogue of the following problem in group theory, which can be stated
for any group G.

Dimension Subgroup Problem (DSP). Let k ∈ N∗. Determine the gap between kG and
(1 + k) ∩G in Z[G].

It had been conjectured during a long time that the inclusion kG ⊂ (1 + k) ∩G should be
an equality, until Rips found the first counter-example for k = 4 and a finite 2-group G [89].

In fact, the DSP can be generalized replacing the lower central series of G by any series
G = N1G ⊃ N2G ⊃ N3G ⊃ · · · of subgroups which is strongly central (i.e. [NG,NjG] ⊂ N+jG
for all , j ∈ N∗), and by replacing the -adic filtration by an appropriate filtration of Z[G].
Furthermore, some versions of the DSP can be formulated in the group algebra F[G] for any
commutative field F, rather than in the group ring Z[G], and these versions of the problem
have an explicit solution whose nature depends on the characteristic of F. (See, for instance,
the monograph [86].)

It is observed in [63] that some results of Goussarov [28] and Habiro [30] about the Y-
filtration on IC() can be interpreted as follows: the GHC in degree d is an instance of the
DSP for the group G := IC()/Yd+1. Thus, analogues of the GHC for finite-type invariants with
values in commutative fields are obtained in [63], and the following weak version of the GHC
is then derived:

Theorem 3.34 (Massuyeau 2007). Let d ∈ N∗. There exists an integer D, depending on d
and the topological type of , with the following property: if two homology cylinders are not
distinguished by finite-type invariants of degree at most D, then they are Yd+1-equivalent.

We mention the following corollary: two homology cylinders are not distinguished by finite-
type invariants if, and only if, they are Yk-equivalent for any integer k ≥ 1. Actually, it is con-
jectured that finite-type invariants classify homology cylinders (and, in particular, homology
3-spheres).

We conclude with two questions which naturally arise from our discussion on Theorem 3.33
and its expected generalization, namely the GHC.

⋄ Does one know well enough all finite-type invariants of a given degree d? For ho-
mology 3-spheres, one can construct infinite series of finite-type invariants following
Ohtsuki’s original idea [83], by appropriate expansions of quantum invariants. Fur-
thermore, there is a very powerful invariant of homology 3-spheres: the LMO invari-
ant [53], which is known to be universal among Q-valued finite-type invariants [52]
and to dominate large families of quantum invariants [47]. For homology cylinders
too, there is a universal Q-valued finite-type invariant: the LMO homomorphism de-
fined on the monoid IC(), which allows for an explicit diagrammatic description of
the Lie algebra GrYIC() with rational coefficients [9, 31]. (See [32] for a survey.)
But computing those universal invariants is a challenge in high degrees (despite their
combinatorial construction) and, moreover, it is not known whether they dominate all
finite-type invariants (including those with values in torsion abelian groups). Neverthe-
less, recent works of Nozaki, Sato & Suzuki provide encouraging perspectives [81, 82].

⋄ Can we hope an analogue of Theorem 3.33 for arbitrary closed 3-manifolds? The an-
swer is trivially “yes” in degree 0, but it is certainly “no” in higher degrees: for in-
stance, ♯4(S1 × S2) and (S1 × S1 × S1)♯(S1 × S2) are not Y2-equivalent (because their
cohomology rings are not isomorphic), although they are not distinguished by finite-
type invariants of degree at most one [63, Ex. 3.4]. Yet, this negative answer is not
necessarily disappointing. It rather suggests that the notion of finite-type invariant (as
given in Definition 3.29) is not appropriate for homologically non-trivial 3-manifolds:
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the notion probably needs to be refined, by adding a kind of homological structures to
3-manifolds, like a (complex) spin structure or a parametrization of its first homology
group.
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