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A topological introduction to Lipschitz geometry of complex
singularities

ANNE PICHON

Abstract

These are the notes of the three lectures I gave during the IXth Winterbraids School which took
place in Reims from 4 to 7th March 2019. The aim of this course was to introduce researchers work-
ing in low-dimensional topology to Lipschitz geometry of complex singularities. In these lectures,
I focussed on topological points of view on the objects, avoiding as much as possible technical
material from algebraic geometry and singularity theory such as resolution of singularities, Nash
transform, generic projections of curves and surfaces, etc.

It starts with an introduction to Lipschitz geometry of singular spaces. It then gives the complete
classification of Lipschitz geometry of complex curves and covers the result of [17]. The last part is
an introduction to Lipschitz geometry of complex surfaces and states the thick-thin decomposition
Theorem of a normal complex surface proved in [6].

1. Introduction to Lipschitz geometry of singular spaces

In the sequel, K will denote either R or C.
Let (X,0) be a germ of analytic space in Kn which contains the origin. So X is defined by

X = {(1, . . . , n) ∈ Kn | ƒj(1, . . . , n) = 0, j = 1, . . . , r},

where the ƒj’s are r convergent power series ƒj ∈ K{1, . . . , n} with ƒj(0) = 0.

Question 1: how does X look in a small neighbourhood of the origin?

So we are interested in the geometry of the germ (X,0). There are multiple answers to
this vague question depending on the category we work in, i.e., on the chosen equivalence
relation between germs.

First, we can consider the topological equivalence relation:

Definition 1.1. Two analytic germs (X,0) and (X′,0) are topologically equivalent if there
exists a germ of homeomorphism ψ : (X,0) → (X′,0). The topological type of (X,0) is the
equivalence class of (X,0) for this equivalence relation.

Two analytic germs (X,0) ⊂ (Kn,0) and (X′,0) ⊂ (Kn,0) are topologically equisingular if
there exists a germ of homeomorphism ψ : (Kn,0)→ (Kn,0) such that ψ(X) = X′. We call em-
bedded topological type of (X,0) the equivalence class of (X,0) for this equivalence relation.

The embedded topological type of (X,0) ⊂ (Rn,0) is completely determined by the em-
bedded topology of its link as stated in the following famous Conical Structure Theorem:

Theorem 1.2. (Conical Structure Theorem). Let Bnε be the sphere with radius ε > 0 centered
at the origin of Rn and let Sn−1ε be its boundary.
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Let (X,0) ⊂ (Rn,0) be an analytic germ. For ε > 0, set X(ε) = Sn−1ε ∩ X. There exists ε0 > 0
such that for every ε > 0 with 0 < ε ≤ ε0, the pair (Bnε, X ∩ B

n
ε) is homeomorphic to the pair

(Bnε, Cone(X
(ε))), where Cone(X(ε)) means the cone over X(ε), i.e., the union of the half-lines

[0, ) joining the origin to a point  ∈ X(ε).

In other words, the homeomorphism class of the pair (Sn−1ε , X(ε)) does not depend on ε
when ε > 0 is sufficiently small and it determines completely the embedded topological type
of (X,0).

Definition 1.3. When 0 < ε ≤ ε0, the intersection X(ε) is called the link of (X,0).

Example 1.4. 1. Assume that X is the real cusp in R2 with equation 3 − y2 = 0. Then
its link at 0 consists of two points in the circle S1ε.

2. If X is the complex cusp in C2 with equation 3 − y2 = 0, its link at 0 is the trefoil knot
in the 3-sphere S3ε.

3. If X is the complex surface E8 in C3 with equation 2+ y3+ z5 = 0, its (non embedded)
link at 0 is a Seifert manifold, i.e., i.e., a 3 manifold which admits a action of the circle
group S1 on it with no fixed points.

The Conical Structure Theorem gives a complete answer to Question 1 in the topological
category, but it completely ignores the geometric properties of the set (X,0). In particular, a
very interesting question is:

Question 2: How does the link X(ε) evolve metrically as ε tends to 0?

In other words, is X ∩Bε bilipschitz homeomorphic to the straight cone Cone(X(ε))? Or are
there some parts of X(ε) which shrink faster than linearly when ε tends to 0?

Question 2 can be studied from different points of view depending on the choice of the
metric. If (X,0) ⊂ (Rn,0) is the germ of a real analytic space, there are two natural metrics
on (X,0) which are defined from the Euclidean metric of the ambient space Rn:

Definition 1.5. The outer metric do on X is the metric induced by the ambient Euclidean
metric, i.e., for all , y ∈ X, do(, y) = ‖ − y‖Rn .

The inner metric d on X is the length metric defined for all , y ∈ X by: d(, y) = inf ength(γ)
where γ : [0,1] → X varies among rectifyable arcs on X such that γ(0) =  and γ(1) = y.

Definition 1.6. Let (M,d) and (M′, d′) be two metric spaces. A map ƒ : M→ M′ is a bilipschitz
homeomorphism if ƒ is a bijection and there exists a real constant K ≥ 1 such that for all
, y ∈ M,

1

K
d(, y) ≤ d′(ƒ (), ƒ (y)) ≤ Kd(, y).

Definition 1.7. Two real analytic germs (X,0) ⊂ (Rn,0) and (X′,0) ⊂ (Rm,0) are inner Lips-
chitz equivalent (resp. outer Lipschitz equivalent if there exists a germ of bilipschitz homeo-
morphism ψ : (X,0)→ (X′,0) with respect to the inner (resp. outer) metrics.

The equivalence classes of the germ (X,0) ⊂ (Rn,0) for these equivalence relations are
called respectively the inner Lipschitz geometry and the outer Lipschitz geometry of (X,0).

Definition 1.8. Throughout these notes, we will use the “big-Theta" asymptotic notations
of Bachmann-Landau in the following form: given two function germs ƒ , g : ([0,∞),0) →
([0,∞),0), we say ƒ is big-Theta of g and we write ƒ (t) = Θ(g(t)) if there exist real num-
bers η > 0 and K > 0 such that for all t such that ƒ (t) ≤ η, 1K g(t) ≤ ƒ (t) ≤ Kg(t).

Example 1.9. Consider the real cusp C with equation y2−3 = 0 in R2. For a real number t >
0, consider the two points p1(t) = (t, t3/2) and p2(t) = (t,−t3/2) on C. Then do(p1(t), p2(t)) =
Θ(t3/2) for this notation), while the inner distance is obtained by taking infimum of lengths of
paths on C between the two points p1(t) and p2(t). The shortest length is obtained by taking
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a path going through the origin, and we have d(p1(t), p2(t)) = Θ(t). Therefore, taking the
limit of the quotient as t tends to 0, we obtain:

do(p1(t), p2(t))

d(p1(t), p2(t))
= Θ(t1/2)→ 0.



C

p1(t)

p2(t)

y

Figure 1.1: The real cusp y2 − 3 = 0

Using this, you are ready to resolve the following exercise.

Exercise 1.10. 1. Prove that there is no bilipschitz homeomorphism between the outer
and inner metrics on the real cusp C with equation y2 − 3 = 0 in R2.

2. Prove that (C,0) equipped with the inner metric is metrically conical, i.e. bilipschitz
equivalent to the cone over its link.

Example 1.11. Consider the real surface S in R3 with equation 2 + y2 − z3 = 0 in R2. For
a real number t > 0, consider the two points p1(t) = (t3/2,0, t) and p2(t) = (−t3/2,0, t) on S.
Then do(p1(t), p2(t)) = Θ(t3/2). We also have d(p1(t), p2(t)) = Θ(t3/2) since d(p1(t), p2(t))
is the length of a half-circle joining p1(t) and p2(t) on the circle {z = t} ∩ S.

Exercise 1.12. Consider the real surface S of Example 1.11.

1. Prove that the identity map is a bilipschitz homeomorphism between the outer and
inner metrics on (S,0).

2. Prove that (S,0) equipped with the inner metric is not metrically conical, that is it is
not inner Lipschitz homeomorphic to the straight cone over its link.

If (X,0) is a germ of a real analytic space, the two metrics do and d defined above ob-
viously depend on the choice of an embedding (X,0) ⊂ (Rn,0) since they are defined by
using the Euclidean metric of the ambient Rn. We now prove of one of the main results which
motivates the study of Lipschitz geometry of singularities:

Proposition 1.13. The Lipschitz geometries of (X,0) for the outer and inner metrics are
independent of the embedding (X,0) ⊂ (Rn,0).

In other words, bilipschitz classes of (X,0) just depend on the analytic type of (X,0). Before
proving this result, let us give some consequences which motivate the study of Lipschitz
geometry of germs of singular spaces.

The outer Lipschitz geometry determines the inner Lipschitz geometry since the inner
metric is determined by the outer one through integration along paths. Moreover, the inner
Lipschitz geometry obviously determines the topological type of (X,0). Therefore, an impor-
tant consequence of Proposition 1.13 is that the Lipschitz geometries give two intermediate
classifications between the analytical type and the topological type.
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A very small amount of analytic invariants are determined by the topological type of an
analytic germ (even if one considers the embedded topological type). In particular, a natural
question is to ask whether the Lipschitz classification is sufficiently rigid to catch analytic
invariants:

Question 3: Which analytical invariants are in fact Lipschitz invariants?

Recent results show that in the case of a complex surface singularity, a large amount of
analytic invariants are determined by the outer Lipschitz geometry. For example, the mul-
tiplicity of a complex surface singularity is an outer Lipschitz invariant ([18] for a normal
surface, [10] for a hypersurface in C3 and [9] for the general case). However it is now known
that multiplicity is not a Lipschitz invariant in higher dimensions ([5]). In [18] it is shown
that many other data are in fact Lipschitz invariants in the case of surface singularities, such
as the geometry of hyperplane sections and the geometry of polar curves and discriminant
curves of generic projections; higher dimensions remain almost unexplored. This shows that
the outer Lipschitz class contains potentially a lot of information on the singularity and that
outer Lipschitz geometry of singularities is a very promising area to explore.

Here is another motivation. Analytic types of singular space germs contain continuous
moduli, and this is why it is difficult to describe a complete analytic classification. For exam-
ple, consider the family of curves germs (Xt ,0)t∈C where Xt is the union of four transversal
lines with equation y( − y)( − ty) = 0. For every pair (t, t′) with t 6= t′, (Xt ,0) is not ana-
lytically equivalent to (Xt′ ,0). On the contrary, it is known since the works of T. Mostowki in
the complex case ([16]), and Parusinski in the real case ([19] and [20]), that the outer Lips-
chitz classification of germs of singular spaces is tame, which means that it admits a discrete
complete invariant. Then a complete classification of Lipschitz geometry of singular spaces
seems to be a more reachable goal.

Proof of Proposition 1.13. Let (ƒ1, . . . , ƒn) and (g1, . . . , gm) be two systems of generators of
the maximal idea M of (X,0). We will first prove that the outer metrics d and dJ for the
embeddings

 = (ƒ1, . . . , ƒn) : (X,0)→ (Rn,0) and J = (g1, . . . , gm) : (X,0)→ (Rm,0)

are bilipschitz equivalent. It suffices to prove that the outer metric for the embedding

(ƒ1, . . . , ƒn, g1, . . . , gm) : (X,0)→ (Rn+m,0)

is bilipschitz equivalent to the metric d . By induction, we just have to prove that for any
g ∈M, the metric d′ associated with the embedding ′ = (ƒ1, . . . , ƒn, g) : (X,0) → (Rn+1,0) is
bilipschitz equivalent to d .

Since g is in the ideal M, it is a function g(ƒ1, . . . , ƒn) of the generators ƒ1, . . . , ƒn. Let  be
the graph of the function g(1, . . . , n) in (Rn,0) × R. It is defined over a neighbourhood of 0
in Rn. The projection π :  → Rn is bilipschitz over any compact neighbourhood of 0 in Rn on
which it is defined. We have ′(X,0) ⊂  ⊂ Rn × R, so π|′(X,0) : ′(X,0) → (X,0) is bilipschitz
for the outer metrics d′ and d . �

2. Inner Lipschitz geometry of complex curve singularities

We start with an example.
Let X ⊂ C2 be the complex cusp with equation y2 − 3 = 0. Let t ∈ R and consider the two

points p1(t) = (t, t3/2) and p2(t) = (t,−t3/2) on X. Since these two points are on two distinct
strands of the braid X ∩ (S1|t| × C), it is easy to see that the shortest path in X from p1(t)
to p2(t) passes through the origin and that d(p1(t), p2(t)) = Θ(t). This suggests that (X,0)
is locally inner Lipschitz homeomorphic to the cone over its link. This means that the inner
Lipschitz geometry tells one no more than the topological type, i.e., the number of connected
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components of the link (which are circles), and is therefore uninteresting. We will prove that
this is the same for any complex curve.

Definition 2.1. An analytic germ (X,0) is metrically conical if it is inner Lipschitz homeo-
morphic to the straight cone over its link.

Proposition 2.2. Any complex space curve germ (C,0) ⊂ (CN,0) is metrically conical.

Proof. Take a linear projection p : CN → C which is generic for the curve (C,0) (i.e., its kernel
contains no tangent line of C at 0) and let π := p|C, which is a branched cover of germs. Let
Dε = {z ∈ C : |z| ≤ ε} with ε small, and let Cε be the part of C which branched covers Dε.
Since π is holomorphic away from 0 we have a local Lipschitz constant K() at each point
 ∈ Cr {0} given by absolute value of the derivative map of π at . On each branch γ of C
this K() extends continuously over 0 by taking for K(0) the absolute value of the restriction
p |T0γ : T0γ→ C where T0X denotes the tangent cone to γ at 0. So the infimum and supremum
K− and K+ of K() on Cε r {0} are defined and positive. For any arc γ in Cε which is smooth
except where it passes through 0 we have K−ℓ(γ) ≤ ℓ′(γ) ≤ K+ℓ(γ), where ℓ respectively ℓ′

represent arc length using inner metric on Cε respectively the metric lifted from Bε. Since Cε
with the latter metric is strictly conical, we are done. �

3. Outer Lipschitz classification of complex curve germs

3.1. Reduction to the plane curve case

Let G(n − 2,Cn) be the Grassmanian of (n − 2)-planes in Cn.
Let D ∈ G(n − 2,Cn) and let ℓD : Cn → C2 be the linear projection with kernel D. Suppose

(C,0) ⊂ (Cn,0) is a complex curve germ. There exists an open dense subset ΩC of G(n−2,Cn)
such that for D ∈ ΩC, D contains no limit of secant lines to the curve C ([23]).

Definition 3.1. The projection ℓD is said to be generic for C if D ∈ ΩC.

In the sequel, we will use extensively the following result

Theorem 3.2 ([23, pp. 352-354]). If ℓD is a generic projection for C, then the restriction
ℓD |C : C→ ℓD(C) is a bilipschitz homeomorphism for the outer metric.

As a consequence of Theorem 3.2, in order to understand Lipschitz geometry of curves
germs, it suffices to understand Lipschitz geometry of plane curves germs.

3.2. Lipschitz classification Theorem for the outer metric

We start again with an example.

Example 3.3. Consider the plane curve germ (C,0) with two branches C1 and C2 having
Puiseux expansions

C1 : y = 3/2 + 13/6, C2 : y = 5/2 .

Its topological type is completely described by the sets of characteristic exponents of the
branches: {3/2,13/6} and {5/2} and by the contact exponents between the two branches:
3/2. This data is summarized in the Eggers tree of the curve germ (see [24]), or equivalently,
in what we will call the carrousel tree (Figure 3.1), which is exactly the Kuo-Lu tree defined in
[13] but with the horizontal bars contracted to points.

Now, for small t ∈ R+ , consider the intersection C ∩ { = t}. This gives 8 points p(t),  =
1 . . . ,8 and then, varying t, this gives 8 real semi-analytic arcs p : [0,1) → X such that
p(0) = 0 and ‖p(t)‖ = Θ(t).
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Figure 3.1: The carrousel tree

Figure 3.2 gives pictures of sections of C with complex lines  = 0.1, 0.05, 0.025 and 0.
The central blue two-points set corresponds to the branch y = 5/2 while the two lateral red
three-points sets correspond to the other branch.

0.1

0.05

0.025

0

Figure 3.2: Sections of C

It is easy to see on this example that for each pair , j with  6= j, we have do(p(t), pj(t)) =
Θ(tq(,j)) where q(, j) ∈ Q+ and that the set of such q(, j)’s is exactly the set of essential
exponents {3/2,13/6,5/2}. This shows that one can recover the essential exponents by
measuring the outer distance between points of C.

More generally, we will show that we can actually recover the carrousel tree by measuring
outer distances on X even after a bilipschitz change of the metric. Conversely, the outer
Lipschitz geometry of a plane curve is determined by its embedded topological type. This
gives the complete classification of the outer geometry of complex plane curve germs:

Theorem 3.4. Let (C1,0) ⊂ (C2,0) and (C2,0) ⊂ (C2,0) be two germs of complex curves.
The following are equivalent:

1. (C1,0) and (C2,0) have same outer Lipschitz geometry.

2. there is a meromorphic germ ϕ : (C1,0) → (C2,0) which is a bilipschitz homeomor-
phism for the outer metric;

3. (C1,0) and (C2,0) have the same embedded topological type;

4. there is a bilipschitz homeomorphism of germs h : (C2,0)→ (C2,0) with h(C1) = C2.

As a corollary of Theorem 3.2 and Theorem 3.4, we obtain:

Corollary 3.5. The outer Lipschitz geometry of a curve germ (C,0) ⊂ (CN,0) determines and
is determined by the embedded topological type of any generic linear projection (ℓ(C),0) ⊂
(C2,0).
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The equivalence of (1), (3) and (4) of Theorem 3.4 is proved in [17]. The equivalence of
(2) and (3) was first proved by Pham and Teissier ([21] or its english transation [22, 10] by
developing the theory of Lipschitz saturation and revisited by Fernandes in [8]. In the present
lecture notes, we will give the proof of (1) ⇒ (3), since it is based on the so-called bubble
trick argument which can be considered as a prototype for exploring Lipschitz geometry of
singular spaces in various settings. In the next section, we give an alternative version that
we call bubble trick with jumps which is easier to adapt to more sophisticated situations.
For example, bubble tricks with jumps are used in [18] to study outer Lipschitz geometry of
surface germs and in [11, 12] which introduce adapted theories of homology and homotopy ,
called moderately discontinuous homology and homotopy, providing powerful new Lipschitz
invariants.

Proof of (1) ⇒ (3) of Theorem 3.4. We want to prove that the embedded topological type of
a plane curve germ (C,0) ⊂ (C2,0) is determined by the outer Lipschitz geometry of (C,0).

We first prove this using the analytic structure and the outer metric on (C,0). The proof is
close to Fernandes’ approach in [8]. We then modify the proof to make it purely topological
and to allow a bilipschitz change of the metric.

The tangent cone to C at 0 is a union of lines L(j), j = 1, . . . ,m, and by choosing our
coordinates we can assume they are all transverse to the y-axis.

There is ε0 > 0 such that for any ε ≤ ε0 the curve C meets transversely the set

Tε := {(, y) ∈ C2 : || = ε} .

Let M be the multiplicity of C. The lines  = t for t ∈ (0, ε0] intersect C in M points
p1(t), . . . , pM(t) which depend continuously on t. Denote by [M] the set {1,2, . . . ,M}. For
each j, k ∈ [M] with j < k, the distance d(pj(t), pk(t)) has the form O(tq(j,k)), where q(j, k) =
q(k, j) is either a characteristic Puiseux exponent for a branch of the plane curve C or a
coincidence exponent between two branches of C in the sense of e.g., [14]. We call such
exponents essential. For j ∈ [M] define q(j, j) =∞.

Lemma 3.6. The map q : [M] × [M] → Q ∪ {∞}, (j, k) 7→ q(j, k), determines the embedded
topology of C.

Proof. To prove the lemma we will construct from q the so-called carrousel tree, which is a
tree carrying equivalent data as the Eggers tree, so it determines the embedded topology of
C.

The q(j, k) have the property that q(j, ) ≥mn(q(j, k), q(k, )) for any triple j, k, . So for any
q ∈ Q∪{∞}, q > 0, the relation on the set [M] given by j ∼q k⇔ q(j, k) ≥ q is an equivalence
relation.

Name the elements of the set q([M]× [M])∪{1} in decreasing order of size: ∞ = q0 > q1 >
q2 > · · · > qs = 1. For each  = 0, . . . , s let G,1, . . . , G,M be the equivalence classes for the
relation ∼q . So M0 = M and the sets G0,j are singletons while Ms = 1 and Gs,1 = [M]. We form
a tree with these equivalence classes G,j as vertices, and edges given by inclusion relations:
the singleton sets G0,j are the leaves and there is an edge between G,j and G+1,k if G,j ⊆
G+1,k. The vertex Gs,1 is the root of this tree. We weight each vertex with its corresponding
q.

The carrousel tree is the tree obtained from this tree by suppressing valence 2 vertices
(i.e., vertices with exactly two incident edges): we remove each such vertex and amalgamate
its two adjacent edges into one edge. We follow the computer science convention of drawing
the tree with its root vertex at the top, descending to its leaves at the bottom.

At any non-leaf vertex  of the carrousel tree we have a weight q, 1 ≤ q ≤ q1, which
is one of the q’s. We write it as m/n, where n is the lcm of the denominators of the q-
weights at the vertices on the path from  up to the root vertex. If ′ is the adjacent vertex
above  along this path, we put r = n/n′ and s = n(q − q′ ). At each vertex  the
subtrees cut off below  consist of groups of r isomorphic trees, with possibly one additional
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tree. We label the top of the edge connecting to this additional tree at , if it exists, with the
number r, and then delete all but one from each group of r isomorphic trees below . We
do this for each non-leaf vertex of the carrousel tree. The resulting tree, with the q labels
at vertices and the extra label on a downward edge at some vertices is easily recognized as
a mild modification of the Eggers tree: there is a natural action of the Galois group whose
quotient is the Eggers-tree. �

As already noted, this reconstruction of the embedded topology involved the complex
structure and the outer metric. We must show that we can reconstruct it without using the
complex structure, even after applying a bilipschitz change to the outer metric. We will use
what we call a bubble trick.

Recall that the tangent cone of C is a union of lines L(j). We denote by C(j) the part of C
tangent to the line L(j). It suffices to recover the topology of each C(j) independently, since
the C(j)’s are distinguished by the fact that the distance between any two of them outside
a ball of radius ε around 0 is Θ(ε), even after bilipschitz change of the metric. We therefore
assume from now on that the tangent cone of C is a single complex line.

We now arrive at a crucial moment of the proof:
The bubble trick. The points p1(t), . . . , pM(t) we used to find the numbers q(j, k) were ob-
tained by intersecting C with the line  = t. The arc p1(t), t ∈ [0, ε0] satisfies d(0, p1(t)) =
Θ(t). Moreover, the other points p2(t), . . . , pM(t) are in the transverse disk of radius rt cen-
tered at p1(t) in the plane  = t. Here r can be as small as we like, so long as ε0 is then
chosen sufficiently small.

Instead of a transverse disk of radius rt, we can use a ball B(p1(t), rt) of radius rt centered
at p1(t). This B(p1(t), rt) intersects C in M disks D1(t), . . . , DM(t), and we have d(Dj(t), Dk(t)) =
Θ(tq(j,k)), so we still recover the numbers q(j, k). In fact, the ball in the outer metric on C of
radius rt around p1(t) is BC(p1(t), rt) := C ∩ B(p1(t), rt), which consists of these M disks
D1(t), . . . , DM(t).

We now replace the arc p1(t) by any continuous arc p′1(t) on C with the property that
d(0, p′1(t)) = Θ(t). If r is sufficiently small it is still true that BC(p′1(t), rt) consists of M disks
D′1(t), . . . , D

′
M(t) with d

�

D′j (t), D
′
k(t)

�

= Θ(tq(j,k)). So at this point, we have gotten rid of the
dependence on analytic structure in discovering the topology, but not yet dependence on
the outer geometry.

Let now d′ be a metric on C such that the identity map is a K-bilipschitz homeomorphism
in a neighbourhood of the origin. We work inside this neighbourhood, taking t, ε0 and r suffi-
ciently small. B′(p, η) will denote the ball in C for the metric d′ centered at p ∈ C with radius
η ≥ 0.

The bilipschitz change of the metric may disintegrate the balls in many connected compo-
nents, as sketched on Figure 3.3. So if we try to perform the same argument as before using
the balls B′(p′1(t), rt) instead of BC(p′1(t), rt), we get a problem since B′(p′1(t), rt) may have
many irrelevant components and we can no longer simply use distance between components.
To resolve this, we consider the two balls B′1(t) = B′(p′1(t),

rt
K3
) and B′2(t) = B′(p′1(t),

rt
K ), so

we have the inclusions:

BC
�

p′1(t),
rt

K4
�

⊂ B′1(t) ⊂ BC
�

p′1(t),
rt

K2
�

⊂ B′2(t) ⊂ BC
�

p′1(t), rt
�

Using these inclusions, we obtain that only M components of B′1(t) intersect B′2(t) and that
naming these components D′1(t), . . . , D

′
M(t) again, we still have d(D′j (t), D

′
k(t)) = Θ(t

q(j,k)) so
the q(j, k) are determined as before (prove this as an exercise). See Figure 3.3 for a schematic
picture of the situation (for clarity of the picture, we draw the balls B′1(t) and B′2(t) as if the
distance d′ were induced by an ambient metric, but it is not the case in general). �
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0

p1(t) B′1(t)
B(p′1(t),

rt
K2
)

B′2(t)

Figure 3.3:

4. The bubble trick with jumps

As we have seen in the above proof, the “bubble trick" is a powerful tool to capture invari-
ants of Lipschitz geometry such as a number of connected components and distance order
between them. However, this first version is not well adapted to explore the outer Lips-
chitz geometry of singular spaces of dimensions ≥ 2 for the following reason. In the case
of a plane curve, the method used in the latter proof consisted in considering a projection
ℓ : (C,0) → (C,0) and to prove that the orders of distances between points of ℓ−1(t) ∩ C with
respect to t are Lipschitz invariants. Now, assume that (X,0) is a complex surface germ
with multiplicity m ≥ 2 (so it has a singularity at 0), and consider a generic projection
ℓ : (X,0) → (C2,0). Then the critical locus ℓ is a curve germ ℓ,0) ⊂ (X,0) called the polar
curve, and its image Δ = ℓ() is a curve germ (Δ,0) ⊂ (C2,0) called the discriminant curve
of ℓ. The number of points in ℓ−1(t) ∩ C depends on t ∈ Cr {0}: it equals m − 1, where the
multiplicity of (X,0) if t ∈ ℓ and m otherwise. Moreover, considering a continuous real arc
p(t) on (C2,0), the distance order between the points p1(t), . . . , pm(t) will depend on the
position of p(t) with respect to the discriminant curve Δ = ℓ() of ℓ. So the situation is much
more complicated, even in dimension 2.

In [18], the authors used an adapted version of the bubble trick which enables them to ex-
plore the outer Lipschitz geometry of a complex surface (X,0). Roughly speaking, it consists
in using horns

H(p(t), r|t|q) =
⋃

t∈[0,1)
B((p(t), |t|q)

where p̃(t) is a real arc on (X,0) such that ||p(t)|| = Θ(t) and r ∈]0,+∞[ and in exploring
“jumps" in the topology of H(p(t), |t|q) when q varies from +∞ to 1, for example, jumps of
the number of connected components.

In order to give a flavour of this bubble trick with jumps, we will perform it on a plane curve
germ, giving an alternative proof of (1) ⇒ (3) of Theorem 3.4.

The bubble trick with jumps.
We use again the notations of the version of the bubble trick presented in the previous

section. Let (C,0) be a plane curve germ with s branches C1, . . . , Cs and let p′1(t) be a
continuous arc on C1 with the property that d(0, p′1(t)) = Θ(t). Let us order the numbers
q(1, k), k = 2, . . . ,M in decreasing order:

1 ≤ q(1,M) < q(1,M − 1) < · · · < q(1,2) < q(1,1) =∞.

Let us consider the horns Hq,r, = H(p′1(t), r|t|
q) with q ∈ [1,+∞[.

For q >> 1 and small ε > 0, the number of connected components of B(0, ε)∩
�

Hq,r r{0}
�

equals 1. Now, let us decrease q. For every small η > 0, the number of connected components
of Hq1,2+ηr{0} equals 1, while the number of connected components of Hq1,2−ηr{0} is > 2.
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Decreasing q, we have a jump in the number of connected components exactly when passing
one of the rational numbers q(1, k). So this enables one to recover all the characteristic
exponents of C1 and its contact exponents with the other branches of C. We can do the same
for a real arc p′ (t) in each branch C of (C,0) and this which will recover the integers q(, k)
for k = 1, . . . ,M. We then reconstruct the function q : [M] × [M] → Q≥1 which characterizes
the embedded topology of (C,0), or equivalently the carrousel tree of (C,0).

Moreover, the same jumps appear when using horns

H′(p′(t), r|t|q) =
⋃

t∈[0,1)
B′((p′(t), r|t|q),

where B′ means balls with respect to a metric d′ which is bilipschitz equivalent to the initial
outer metric. Indeed, if K is the bilipschitz constant of such a biblipschitz change, then we
have the inclusions

H
�

p′(t),
rt

K4
�

⊂ H′
�

p′(t),
rt

K3
�

⊂ H
�

p′(t),
rt

K2
�

⊂ H′
�

p′(t),
rt

K3
�

⊂ H
�

p′(t), rt
�

,

the same argument as in the version 1 of the bubble trick shows that for q fixed and
different from q(1, k), k = 2, . . . ,M, the numbers of connected components of B(0, ε)∩

�

Hq,r r

{0}
�

and B(0, ε) ∩
�

H′q,r r {0}
�

are equal.

Example 4.1. Consider again the plane curve with two branches of Example 3.3 given by
the Puiseux expansions:

C1 : y = 3/2 + 13/6, C2 : y = 5/2 .

Consider first an arc p′1(t) arc inside C1 parametrized by  = t ∈ [0,1). Then p(t) corresponds
to one of the two extremities of the carrousel tree of Figure 3.1 whose neighbour vertex is
weighted by 5/2. Figure 4.1 represents the intersection of the horn Hq,r, = H(p(t), r|t|q) with
q ∈ [1,+∞[ with { = t} for t ∈ Cr{0} with |t| sufficiently small for different values of q. This
shows two jumps: a first jump at q = 5/2, which says that 5/2 is a characteristic exponent
of a branch since p′(t) and the new point appearing in the intersection belong to the same
connected component C1 of C r {0} (they are both blue!), while the second jump at 3/2
says that 3/2 is the contact exponent of C1 with the other component since the new points
appearing at q = 3/2 − η belong to C2.

q > 5/2

3/2 < q < 5/2

1 < q < 3/2

Figure 4.1: Sections of C

This first exploration enables one to construct the left part of the carrousel tree of C shown
on Figure 4.2, i.e., the one corresponding to the carrousel tree of C1.

To complete the picture, we now consider an arc p′2(t) inside C2 corresponding to a com-
ponent of C2 ∩ { = t}. This means that p′2(t) corresponds to one of the 6 extremities of the
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1

3
2

?
5
2

Figure 4.2:

carrousel tree of Figure 3.1 whose neighbour vertex is weighted by 13/6. Figure 4.3 repre-
sents the jumps for the horns Hq,r, centered on p′2(t). This shows two jumps: a first jump at
q = 13/6, which says that 13/6 is a characteristic exponent of C2, then a second jump at 3/2
corresponding to the contact exponent of C1 and C2.

q > 13/6

3/2 < q < 13/6

1 < q < 3/2

Figure 4.3: Sections of C

This exploration of C2 enables one to construct the right part of the carrousel tree of C
shown on Figure 4.4, i.e., the one corresponding to the carrousel tree of C2.

?

1

3
2

13
6

13
6

Figure 4.4:

Merging the two above partial carrousel trees, we obtain the carrousel tree of Figure 3.1,
recovering the embedded topology of (C,0).
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5. The thick-thin decomposition of a normal surface singularity

We know that any curve germ (C,0) ⊂ (CN,0) is metrically conical for the inner geometry
(Proposition 2.2). This is no longer true in higher dimensions. The first example of a non-
metrically-conical (X,0) appeared in [1]: for k ≥ 2, the singularity Ak : 2 + y2 + zk+1 = 0 is not
metrically conical for the inner metric. The examples in [2, 3, 4] then suggested that failure
of metric conicalness is common. For example, among ADE singularities of surfaces, only A1
and D4 are metrically conical. In [4] it is also shown that the inner Lipschitz geometry of a
singularity may not be determined by its topological type.

A complete classification of the Lipschitz inner geometry of normal complex surfaces is
presented in [6]. It is built on the existence of the so-called thick-thin decomposition of the
surface into two semi-algebraic sets.

The obstruction to the metric conicalness of a germ (X,0) is the existence of fast loops. Let
p and q be two pairwise coprime positive integers such that p ≥ q. Set β = p

q . The prototype
of a fast loop is the β-horn.

Hβ = {(, y, z) ∈ R2 × R+ : (2 + y2)q = (z2)p}.

β = 1 β > 1

Figure 5.1: The β-horns Hβ

Exercise 5.1. Show that Hβ is inner bilipschitz homeomorphic to Hβ′ if and only if β = β′.

H1 is a straight cone, so it is metrically conical. As a consequence of Exercise 5.1, we
obtain that for β > 1, Hβ is not metrically conical. For t > 0, set γt = Hβ ∩ {z = t}. When
β > 1, the family of curves (γt)t>0 is a fast loop inside Hβ. More generally:

Definition 5.2. Let (X,0) ⊂ (Cn,0) be a semianalytic germ. A fast loop in (X,0) is a contin-
uous family of loops {γε : S1 → X(ε)}0<ε≤ε0 such that:

1. γε is essential (i.e., homotopically non trivial) in the link X(ε) = X ∩ Sε;

2. there exists q > 1 such that

lim
ε→0

length(γε)

εq
= 0.

In the next section, we will define what we call the thick-thin decomposition of a normal
surface germ (X,0). It consists in decomposing (X,0) as a union of two semi-algebraic sets
(X,0) = (Y,0)

⋃

(Z,0) where (Z,0) is thin (Definition 6.2) and where (Y,0) is thick (Definition
6.7). The thin part (Z,0) will concentrate all the fast loops of (X,0) inside a Milnor ball with
radius ε0. The thick part (Y,0) is the closure of the complement of the thin part and has the
property that it contains a maximal metrically conical set. This enables one to characterize
the germs (X,0) which are metrically conical:
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Theorem 5.3. [6, Theorem 7.5, Corollary 1.8] Let (X,0) be a normal complex surface and
let

(X,0) = (Xthck ,0)
⋃

(Xthn,0)

be its thick-thin decomposition.
Then (X,0) is metrically conical if and only if Xthn = ∅, so (X,0) = (Xthck ,0).

6. Thick-thin decomposition

Definition 6.1. Let (Z,0) ⊂ (Rn,0) be a semi-algebraic germ. The tangent cone of (Z,0)
is the set T0Z of vectors  ∈ Rn such that there exist a sequence of points (k) in Z r {0}
tending to 0 and a sequence of positive real numbers (tk) such that

lim
k→∞

1

tk
k = .

Definition 6.2. A semi-algebraic germ (Z,0) ⊂ (Rn,0) of pure dimension is thin if the di-
mension of its tangent cone T0X at 0 satisfies dim(T0Z) < dim(Z).

Example 6.3. For every β > 1, the β-horn Hβ is thin since dim(Hβ) = 2 while T0Hβ is a
half-line. On the other hand, H1 is not thin.

Example 6.4. Let λ ∈ C∗ and denote by Cλ the plane curve with Puiseux parametrization
y = λ5/3. Let , b ∈ R such that 0 <  < b. Consider the semi-algebraic germ (Z,0) ⊂ (C2,0)
defined by Z =

⋃

≤|λ|≤b Cλ. The tangent cone T0Z is the complex line y = 0, while Z is 4-
dimensional, so (Z,0) is thin.

Let Z(ε) be the intersection of Z with the boundary of the polydisc {|| ≤ ε} × {|y| ≤ ε}
(By [7], one obtains, up to homeomorphism (or diffeomorphism in a stratified sense), the
same link Z(ε) as when intersecting with a round sphere). When ε > 0 is small enough,
Z(ε) ⊂ {|| = ε} × {|y| ≤ ε} and the projection Z(ε) → S1ε defined by (, y) →  is a locally
trivial fibration whose fibers are the flat annuli At = Z∩{ = t}, |t| = ε, and the lengths of the
boundary components of At are Θ(ε5/3).

Notice that Z can be described through a resolution as follows. Let σ : Y → C2 be the
minimal embedded resolution of the curve C1 : y = 5/3. It consists of four successive blow-
ups of points. Denote E1, . . . , E4 the corresponding components of the exceptional divisor
σ−1(0) indexed by their order of occurence. Then σ is a simultaneous resolution of the curves
Cλ. Therefore, the strict transform of Z by σ is a neighbourhood of E4 minus neighbourhoods
of the intersecting points E4 ∩ E2 and E4 ∩ E3 as pictured in Figure 6.1. The tree T on the
left is the dual tree of σ. Its vertices are weighted by the self-intersections E2 and the arrow
represents the strict transform of C1.

T
E4E2

E3

E1

−1−3−3 −2−2

C∗λ

Figure 6.1: The strict transform of Z by σ

Definition 6.5. Let 1 < q ∈ Q. A q-horn neighbourhood of a semi-algebraic germ (A,0) ⊂
(RN,0) is a set of the form { ∈ Rn ∩Bε : d(,A) ≤ c||q} for some c > 0, where d denotes the
Euclidean metric.

The following proposition helps picture “thinness”
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Proposition 6.6. [6, Proposition 1.3] Any thin semi-algebraic germ (Z,0) ⊂ (RN,0) is con-
tained in some q-horn neighbourhood of its tangent cone T0Z.

We will now define thick semi-algebraic sets. The definition is built on the following obser-
vation. Let (X,0) ⊂ (Cn,0) be a complex surface germ; we would like to decompose (X,0)
into two semialgebraic sets (A,0) and (B,0) glued along their boundary germs, where (A,0)
is thin and (B,0) is metrically conical. But try to glue a thin germ (A,0) with a metrically
conical germ (B,0) so that they intersect only along their boundary germs.... It is not possi-
ble! There would be a hole between them (see Figure 6.2). So we have to replace (B,0) by
something else than conical.

hole

B

A

Figure 6.2: Trying to glue a thin germ with a metrically conical germ

“Thick” is a generalization of “metrically conical.” Roughly speaking, a thick algebraic set
is obtained by slightly inflating a metrically conical set in order that it can interface along its
boundary with thin parts. The precise definition is as follows:

Definition 6.7 (Thick). Let Bε ⊂ RN denote the ball of radius ε centered at the origin, and
Sε its boundary. A semi-algebraic germ (Y,0) ⊂ (RN,0) is thick if there exists ε0 > 0 and
K ≥ 1 such that Y ∩ Bε0 is the union of subsets Yε, ε ≤ ε0 which are metrically conical with
bilipschitz constant K and satisfy the following properties (see Fig. 1.1):

1. Yε ⊂ Bε, Yε ∩ Sε = Y ∩ Sε and Yε is metrically conical;

2. For ε1 < ε2 we have Yε2 ∩ Bε1 ⊂ Yε1 and this embedding respects the conical struc-
tures. Moreover, the difference (Yε1 ∩ Sε1 ) r (Yε2 ∩ Sε1 ) of the links of these cones is
homeomorphic to ∂(Yε1 ∩ Sε1 ) × [0,1).

0

Sε

Sε0

Yε

Yε0

Figure 6.3: Thick germ

Clearly, a semi-algebraic germ cannot be both thick and thin.

Example 6.8. The set Z = {(, y, z) ∈ R3 : 2+ y2 ≤ z3} gives a thin germ at 0 since it is a 3-
dimensional germ whose tangent cone is half the z-axis. The intersection Z ∩Bε is contained
in a closed 3/2-horn neighbourhood of the z-axis. The complement in R3 of this thin set is
thick.
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Example 6.9. Consider again the thin germ (Z,0) ⊂ (C2,0) of Example 6.4. Fix η > 0. In C2,
consider the conical set W defined as the union of the complex lines y = α for |α| ≥ η. Then
the germ (Y,0) defined by Y = C2 r Z is a thick germ which is an inflation of W. Notice that
the strict transform of Y by the resolution σ introduced in Example 6.4 is a neighbourhood of
the union of curves E1 ∪ E3.

For any semi-algebraic germ (A,0) of (RN,0), we write A(ε) := A ∩ Sε ⊂ Sε. When ε is
sufficiently small, A(ε) is the ε-link of (A,0).

Definition 6.10 (Thick-thin decomposition). A thick-thin decomposition of the normal com-
plex surface germ (X,0) is a decomposition of it as a union of semi-algebraic germs of pure
dimension 4:

(6.1) (X,0) =
r
⋃

=1
(Y,0) ∪

s
⋃

j=1
(Zj,0) ,

such that the Y r {0} and Zj r {0} are connected and:

1. Each Y is thick and each Zj is thin;

2. The Y r {0} are pairwise disjoint and the Zj r {0} are pairwise disjoint;

3. If ε0 is chosen small enough that Sε is transverse to each of the germs (Y,0) and
(Zj,0) for ε ≤ ε0, then X(ε) =

⋃r
=1 Y

(ε)
 ∪

⋃s
j=1 Z

(ε)
j decomposes the 3-manifold X(ε) ⊂ Sε

into connected submanifolds with boundary, glued along their boundary components.

Definition 6.11. A thick-thin decomposition is minimal if

1. the tangent cone of its thin part
⋃s
j=1 Zj is contained in the tangent cone of the thin

part of any other thick-thin decomposition and

2. the number s of its thin pieces is minimal among thick-thin decompositions satisfying
(1).

The following theorem expresses the existence and uniqueness of a minimal thick-thin
decomposition of a normal complex surface singularity.

Theorem 6.12. [6, Section 8] Let (X,0) be a normal complex surface germ. Then a minimal
thick-thin decomposition of (X,0) exists. For any two minimal thick-thin decompositions of
(X,0), there exists q > 1 and a homeomorphism of the germ (X,0) to itself which takes the
one decomposition to the other and moves each  ∈ X by a distance at most ‖‖q.

The homeomorphism in the above theorem is not necessarily bilipschitz, but the bilipschitz
classification described in the further Classification Theorem 6.16 leads to a “best” minimal
thick-thin decomposition, which is unique up to bilipschitz homeomorphism.

It well known that the link of a normal surface singularity is a graph manifold in the sense of
Waldhausen. Before stating the classification Theorem, let us state a result which shows that
the minimal thick-thin decomposition of a normal surface germ induces a JSJ decomposition
of the link whose pieces are graph manifolds:

Theorem 6.13. ([6, Theorem 1.7]) A minimal thick-thin decomposition of (X,0) as in equa-
tion (6.1) satisfies r ≥ 1, s ≥ 0 and has the following properties for 0 < ε ≤ ε0:

1. Each thick zone Y(ε) is a Seifert fibered manifold.

2. Each thin zone Z(ε)j is a graph manifold (union of Seifert manifolds glued along bound-
ary components) and not a solid torus.
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3. There exist constants cj > 0 and qj > 1 and fibrations ζ(ε)j : Z(ε)j → S1 depending

smoothly on ε ≤ ε0 such that the fibers ζ−1j (t) have diameter at most cjεqj (we call

these fibers the Milnor fibers of Z(ε)j ).

In [6], the thick-thin decomposition is constructed by using a resolution of the singularity
(X,0). Another way of constructing it is as follows. A line L tangent to X at 0 is exceptional
if the limit at 0 of tangent planes to X along a curve in X tangent to L at 0 depends on the
choice of this curve (see [15]). Just finitely many tangent lines to X at 0 are exceptional.
To obtain the thin part one intersects X r {0} with a q-horn disk-bundle neighborhood of
each exceptional tangent line L for q > 1 sufficiently small and then discards any “trivial”
components of these intersections (those whose closures are locally just cones on solid tori;
such trivial components arise also in our resolution approach, and showing that they can be
absorbed into the thick part takes some effort ([6, section 10]).

In [2] a fast loop is defined as a family of closed curves in the links X(ε) := X∩Sε, 0 < ε ≤ ε0,
depending continuously on ε, which are not homotopically trivial in X(ε) but whose lengths
are proportional to εk for some k > 1, and it is shown that fast loops are obstructions to
metric conicalness.

Theorem 6.14. [6, 7.5] Each thin piece Zj contains fast loops. In fact, each boundary com-
ponent of its Milnor fiber gives a fast loop.

Corollary 6.15. The following are equivalent, and each implies that the link of (X,0) is
Seifert fibered:

1. (X,0) is metrically conical;

2. (X,0) has no fast loops;

3. (X,0) has no thin piece (so it consists of a single thick piece).

Bilipschitz classification. Finally, we will state a complete classification of the inner geom-
etry of (X,0) up to bilipschitz equivalence, based on a refinement of the thick-thin decompo-
sition. We describe this refinement in terms of the decomposition of the link X(ε).

We first refine the decomposition X(ε) =
⋃r
=1 Y

(ε)
 ∪

⋃s
j=1 Z

(ε)
j by decomposing each thin

zone Z(ε)j into its JSJ decomposition (minimal decomposition into Seifert fibered manifolds

glued along their boundaries), while leaving the thick zones Y(ε) as they are. We then thicken
some of the gluing tori of this refined decomposition to collars T2 × , to add some extra
“annular” pieces (the choice where to do this is described in [6, Section 10]). At this point we
have X(ε) glued together from various Seifert fibered manifolds (in general not the minimal
such decomposition).

Let 0 be the decomposition graph for this, with a vertex for each piece and edge for each
gluing torus, so we can write this decomposition as

(6.2) X(ε) =
⋃

ν∈V(0)
M(ε)ν ,

where V(0) is the vertex set of 0.

Theorem 6.16 (Classification Theorem). The bilipschitz geometry of (X,0) with respect to
the inner metric determines and is uniquely determined by the following data:

1. The decomposition of X(ε) into Seifert fibered manifolds as described above, refining
the thick-thin decomposition;

2. for each thin zone Z(ε)j , the homotopy class of the foliation by fibers of the fibration

ζ(ε)j : Z(ε)j → S1;
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3. for each vertex ν ∈ V(0), a rational weight qν ≥ 1 with qν = 1 if and only if M(ε)ν is a

Y(ε) (i.e., a thick zone) and with qν 6= qν′ if ν and ν′ are adjacent vertices.

In item (2) we ask for the foliation by fibers rather than the fibration itself since we do not
want to distinguish fibrations ζ : Z→ S1 which become equivalent after composing each with
a covering maps S1 → S1. Note that item (2) describes discrete data, since the foliation is
determined up to homotopy by a primitive element of H1(Z(ε)j ;Z) up to sign.
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