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Course no II

Knots and 4-manifolds

BRENDAN OWENS

Abstract

These notes are based on the lectures given by the author during Winter Braids IX in Reims in
March 2019. We discuss slice knots and why they are interesting, as well as some ways to decide if a
given knot is or is not slice. We describe various methods for drawing diagrams of double branched
covers of knots in the 3-sphere and surfaces in the 4-ball, and how these can be useful to decide
if an alternating knot is slice. We include a description of the computer search for slice alternating
knots due to the author and Frank Swenton.

These notes are a written accompaniment to the series of three lectures given by the author
during the Winter Braids IX school and conference held in Reims, France in March 2019. The
goal of the lectures was to give an inviting introduction to 4-dimensional aspects of classical
knot theory, with a focus on slice knots and some ways to find or obstruct them. We prioritise
intuition over precision, and urge the interested reader to consult other sources for further
reading and detail. We aim to provide such sources as we go along.

There are many good introductory books on knot theory. Three that are particularly useful
for the material in these notes are those by Lickorish, Livingston, and Rolfsen [38, 41, 55].
An excellent introduction to smooth 4-dimensional topology is the book of Gompf and Stipsicz
[19].

1. Lecture 1

Slice knots

A knot is a smooth embedding of S1 in S3, considered up to smooth isotopy, and sometimes
also up to reversal. Some examples are shown below, drawn in the usual way as projections
with crossing information at the double points. If our knots are oriented we indicate this with
an arrow, as shown.
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The above diagrams are alternating: as you traverse the knot, you alternate between over-
and under-crossings. A knot is called alternating if it admits an alternating diagram.

A 2-knot is an embedding of S2 in S4, again up to isotopy. This can be either smooth or
topologically locally flat, the latter meaning that at each point of the 2-knot, one can find
continuous local coordinates in which the 2-knot maps to a coordinate plane [14]. A knot K is
slice if K is the intersection of a 2-knot with the equatorial S3 in S4, as indicated in the cartoon
below. We say K is smoothly or topologically slice, according to whether the 2-knot is smooth
or just locally flat.

O④
'

⑧

.

Equivalently K is the boundary of an embedded D2 in D4. Perhaps surprisingly, this simple
concept has fundamental significance in 4-dimensional topology. We will give some examples,
and then briefly describe two applications of slice knots.

Slice and ribbon surfaces in the 4-ball

It turns out that surfaces in the 4-ball can be represented and studied using knot and link dia-
grams. We begin with a trivial example: the unknot bounds an embedded disk in S3. Thinking
of S3 as the boundary of the 4-ball, this also gives a disk in D4; we modify it to obtain a properly
embedded disk, with boundary mapping to boundary and interior to interior, by pushing points
in the interior of the disk into the interior of the 4-ball. Two nontrivial slice knots, the stevedore
knot and the square knot, are shown below.
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Consider the top left diagram. One can view this as a narrow strip or band connecting two
disks in S3. The band passes through each of the disks once, making what is called a ribbon
singularity: this is a self-intersection of a surface along an interval, such that the preimage of
the interval consists of one internal interval in the domain surface and one properly embedded
interval, with its endpoints on the boundary. Thus we see an immersed disk in S3 bounded
by the stevedore knot. As with the trivial disk bounded by the unknot, we can push the in-
terior of this disk into the interior of the 4-ball. Doing this carefully enables us to resolve the
ribbon intersections and obtain an embedded disk. We simply make sure that the part of the
disk containing the internal interval gets pushed further into the 4-ball than the part of the
disk containing the properly embedded interval. Thus the pictures above demonstrate that the
stevedore and square knots are slice. A surface in S3 is called ribbon-immersed if it is em-
bedded except for some ribbon singularities as in these examples. We see that in general the
boundary of a ribbon-immersed disk is a slice knot.

It is helpful to view these disks from the point of view of Morse theory (we will give a brief
introduction to Morse theory and handlebodies in Lecture 2). Given any smooth surface F in the
4-ball, we may isotope it so that the radial distance function restricts to give a Morse function
on F. Then we can draw the intersection of F with 3-spheres of fixed distance from the origin;
the result is a sequence of link diagrams in S3 called a “movie". The movie version of the same
slice disk for the stevedore is shown below:

A

÷
- o

.
.

?
-

What are the steps in this sequence? From r = 0 to r = 1/2, we have passed two minima of
r|F, resulting in a two component unlink. In general a minimum gives rise to an extra unknot
component in the next frame of the movie. Correspondingly, if we pass a maximum, then
an unknot, which is contained in a 3-ball disjoint from the rest of the link, disappears. What
happens between r = 1/2 and r = 1? On the level of diagrams, we perform a band move: that

II–3



Brendan Owens

is to say, we find an embedded rectangle in S3 which intersects the link shown in the r = 1/2
picture on two opposite sides, and then we erase those two sides of the rectangle and replace
them by the other two sides. In terms of Morse theory, we pass a saddle point. To see this it
may help to look at the following picture which might occur at r = 0.9: an isotopy has occurred
between r = 1/2 and r = 0.9, and we can now see that the r = 1 frame results from this by
passing a saddle point.

A

:
An embedded surface F in B4 is called ribbon if the radial distance function restricts to be

Morse with no maxima. From the preceding example, we see that this gives rise to a ribbon-
immersed surface in S3, and that by pushing the interior into the 4-ball to resolve the singu-
larities we may recover F.

As usual one can turn such handlebody decompositions upside down. In this context this
simply means we run the movie backwards. Now maxima result in adding split disjoint unknots
to our movie frame, and minima correspond to removing them. (The split union of two links
in S3 is the link which contains the given links in disjoint 3-balls.) Saddles still correspond to
band moves: the operation of replacing two sides of an embedded rectangle with the other
two sides is its own inverse. Also note that one may push minima deep into the 4-ball and
maxima close to the surface, so that the corresponding movie events are sorted with minima
followed by saddles followed by maxima, or the reverse. Thus every smooth compact surface
in B4 bounded by a given link L is given by a movie, which in turn is given by a finite set of
band moves applied to a split union of L with an unlink, which results in another unlink. Here
the first unlink corresponds to maxima and the second to minima.

We say a knot is ribbon if it bounds a ribbon disk in B4, or equivalently if it bounds a ribbon-
immersed disk in S3. Since the Euler characteristic of a disk is one, being ribbon is equivalent
to the existence of k band moves applied to the knot which convert it to the (k+1)-component
unlink. More generally, a knot K is (smoothly) slice if and only if there exists a set of k band
moves applied to the split union of K and an -component unlink, converting it to the (k− + 1)-
component unlink. A longstanding question of Fox asks if every slice knot is ribbon [11].

Exotic R4 from Khovanov homology

From the work of many mathematicians, including Radó, Moise, and Stallings, we know that in
any dimension but 4, there is a unique smooth structure on Rn [46, 52, 59]. It is an amazing
fact that R4 admits more than one smooth structure. In fact it follows from combining deep
work of Donaldson, Freedman, Gompf, and Taubes [60] that in fact R4 admits uncountably
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many smooth structures! This requires gauge theory and in particular a great deal of analysis.
We will give a brief sketch here of a gauge-theory-free proof due to Rasmussen, following a
suggestion of Gompf, in which the existence of an exotic smooth structure on R4 follows from
the existence of a knot which is topologically slice but not smoothly slice. Examples are the
(−3,5,7) pretzel knot, shown below, and the untwisted Whitehead double of the trefoil [19,
Figure 6.13]. In both cases topological sliceness follows from a deep theorem of Freedman [13],
which tells us that knots with trivial Alexander polynomial are topologically slice, while smooth
nonsliceness follows from a computation of Rasmussen’s s-invariant, defined using Khovanov
homology [53].

-
It

⇐

Given a knot K in S3 we obtain a 4-manifold with boundary called the knot trace XK ; this is
obtained by gluing a 2-handle to the 4-ball along K. To be slightly more precise, we have

XK = D4 ∪ (D2 × D2),

where we quotient by a gluing map defined on ∂D2 × D2 which takes ∂D2 × 0 to K, and ∂D2 × 1
to a 0-framing, or if you prefer to a push-off or longitude of K which is nullhomologous in S3 \K,
or equivalently which lies on a Seifert surface for K. Cartoon below:

i
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'

Then we have the following lemma, which holds in either the smooth or topological category:

Lemma 1.1 (Kirby-Melvin). K is slice ⇐⇒ XK ,→ S4 ⇐⇒ XK ,→ R4.

A literal sketch of the proof is as follows:
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The cartoon on the left gives the forward direction, and the converse comes from the sketch
on the right. The smaller D4 inside XK is standard (it is a ball neighbourhood of the centre
of D4 ⊂ XK) so its complement in S4 is a ball in which we see a slice disk. For details see
Kirby-Melvin or Miller-Piccirillo [32, 44].

Finally we take a knot K as above which is topologically but not smoothly slice. Thus XK
embeds topologically in R4. Freedman-Quinn tell us that R4 \ XK admits a smooth structure,
and this can be extended over all of R4, with XK as a smooth submanifold [12]. Since Kirby-
Melvin tell us that XK does not embed smoothly in standard R4, this smooth structure must be
exotic.

As a final note about the above, we must mention the proof by Piccirillo that the Conway
knot is not slice, which made a similar use of Lemma 1.1 and Rasmussen’s invariant [26, 51].
She exhibited a knot K with nonzero Rasmussen invariant which is therefore not slice, and
showed that the knot trace of K is diffeomorphic to that of the Conway knot.

The concordance group of knots

The set of oriented knots in S3 is an abelian monoid with the operation given by connected
sum. This can be realised diagrammatically as shown below, or one can excise two standard
pairs (D3, D1) from each of (S3, K1) and (S3, K2) and glue the complements together matching
orientations.

000

⑥ →

Sadly there are no inverses for this operation at the level of knots and isotopy: knot genus
is additive by [57] (or see [38, Theorem 2.4]), so the only way to get an unknot by connected
sum is if each summand is the unknot.

An isotopy of knots K ' K ′ is equivalent to an embedding

S1 ×  ,→ S3 × 

which gives K and K ′ on the boundary, and which is the identity on the interval summand.
We can remove this restriction and allow any smooth (or locally flat) proper embedding of
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the annulus into S3 ×  which cobounds K and K ′. Such an embedded annulus is called a
concordance between K and K ′. It is quite straightforward to see that this gives an equivalence
relation on the set of oriented knots, which we will write K ∼ K ′.

It is also straightforward to see that a knot K is slice if and only if K is concordant to the
unknot. More generally, K ∼ K ′ if and only if K# − K ′ is slice, where −K denotes the mirror
reverse of the oriented knot K. Recall that the mirror of a knot in S3 is its image under reflection
in a plane; thus one obtains a diagram for −K from one for K by changing all crossings and
reversing the orientation. If K ∼ K ′, then drilling out a regular neighbourhood of the image in
S3 ×  of an arc {1} ×  from the concordance S1 ×  results in a slice disk in D4 bounded by
K#− K ′. Conversely, if K#− K ′ is slice then we can add a (3,1) handle pair to (D4, K#− K ′) to
obtain a concordance. Breaking that down: a slice disk for K# − K ′ gives rise to an annulus in
D4 bounded by the disjoint union of K and −K ′ by applying a band move to undo the connected
sum. We then attach a 3-handle to the 4-ball along a 2-sphere separating K and −K ′ to obtain
the required embedded annulus in S3 × .

One then has that C = {oriented knots}/ ∼ is a group with operation given by connected
sum, and with the inverse of K represented by −K. There are two versions of this, depending
on whether the concordances are smoothly or locally flatly embedded. For further reading on
knot concordance, please see for example [27, 41, 42].

One can also consider concordance of links, with an equivalence relation given by embed-
dings of disjoint unions of annuli in S3 × . This does not give rise to a group in the same way
for links of more than one component. For various approaches to defining concordance groups
of links, see [8, 24, 28].

Basic problem: how to decide if a given knot K is or is not slice?
Showing K is slice:

• exhibit a slice or ribbon disk as described above

• exhibit a handle decomposition of the 4-ball involving 0-, 1-, and 2-handles. Then the
boundaries of the cocores of the 2-handles are slice knots in S3, and one can apply Kirby
calculus to obtain diagrams of them in the standard picture of S3. This method has been
successfully used by Gompf-Scharlemann-Thompson and also Abe-Tange [1, 18].

To show K is nonslice, there are a plethora of obstructions, some of which obstruct topologi-
cal sliceness and some just smooth sliceness. These include

• determinant (square for slice knots)

• signature and Levine-Tristram signatures

• Fox-Milnor condition on the Alexander polynomial

• Herald-Kirk-Livingston condition on twisted Alexander polynomials

• Heegaard Floer concordance invariants

• Rasmussen’s invariant and other invariants coming from variants and refinements of
Khovanov homology.
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Some sources for the above include [25, 27, 36, 37, 39, 42, 53].
Some notable progress in recent years includes Lisca’s classification of slice two-bridge

knots, together with his verification that all such are ribbon [40]. The obstruction used by Lisca
is an application of Donaldson’s diagonalisation theorem, and double branched covers of the
4-ball; we will look at this in more detail in Lecture 3. Subsequently, Lecuona applied Lisca’s
method to prove that slice implies ribbon for a family of alternating Montesinos knots [35].

Sample problems:

• Classify slice knots in some chosen family of knots

• Classify ribbon knots in some chosen family of knots

• Prove slice implies ribbon for some chosen family of knots

• Classify slice disks (or ribbon disks, or ribbon disks with up to a certain number of critical
points) for some chosen knot.

For an example of an answer to the last question above, we have

Example 1.2. There is only one isotopy class of ribbon disk for the unknot.

This follows from theorems of Gabai and Scharlemann [15, 56]. These show that the only
way to apply k band moves to the unknot and obtain the (k + 1)-component unlink is the
obvious planar diagram, which gives rise to the standard disk pushed in from S3.

For other work on classification of slice disks, see [6, 30, 43].
Our focus for the rest of these lectures will be on alternating knots, and whether we can

determine if they are slice. The powerful obstruction from Donaldson’s diagonalisation theorem
and double branched covers used by Lisca extends to this case, as we will describe. We will
see that in addition to giving us an obstruction, Donaldson’s theorem actually helps us to find
ribbon disks.

2. Lecture 2

The main goal of this lecture is to look at double branched covers of knots and links in the 3-
sphere and surfaces in the 4-ball. We begin with a very brief introduction to Morse theory and
Kirby calculus, which enables us to draw pictures of smooth 3- and 4-dimensional manifolds.
For more details we refer the reader to [2, 19, 45].

Let Mn be a smooth compact manifold, possibly with boundary. We may choose a Morse
function

ƒ : M→ R.

This has the property that at each critical point p of ƒ , there exist local coordinates in which

ƒ = −21 − · · · − 
2
k + 

2
k+1 + · · · + 

2
n.

We say that the index (p) of p is k. This leads to a handlebody decomposition of M as follows.
We consider sublevel sets Mb = ƒ−1(−∞, b]. These are the same up to diffeomorphism for
nearby regular values of b, and change when the level b passes a critical point of index k by
attachment of a k-handle, which is Dk×Dn−k attached to Mb along ∂Dk×Dn−k. This is illustrated
for the most standard example (the height function on a torus) below.
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There are 4 critical points, of index 0, 1, 1, and 2. The first sublevel set is the empty set, to
which we attach a 0-handle D2 when we pass the minimum of the height function ƒ . Then each
time we pass an index one critical point we attach a band D1 × D1 along two opposite faces
of the rectangle. Finally we pass a maximum and attach a 2-handle, which in this dimension is
just a 2-disk attached along its boundary circle.

A huge benefit of this description for low-dimensional topologists is that it enables us to draw
(n− 1)-dimensional pictures of n-dimensional manifolds. Let’s see this for the above example.
There is a single minimum point, so there is a single 0-handle. The boundary of the 0-handle
is a copy of S1, and this is where we draw our diagram of the torus. We just need to specify
how the two 1-handles are attached; we will then have built a surface with a single boundary
component, and there is then just one manifold that we can obtain by attaching a 2-handle, so
we don’t need to specify any more information except that there is a 2-handle to be attached.
This results in the following picture of the torus.

rn> ¥I¥ U 2- handle

In a similar way we can obtain 3-dimensional diagrams for 4-manifolds, which is of great benefit
for those of us who have difficulty seeing in 4 dimensions! These are commonly referred to as
Kirby diagrams. Suppose that M is a compact connected oriented 4-manifold. A suitable Morse
function gives rise to a handle decomposition

M4 = 0-handle ∪ {1-handles} ∪ {2-handles} ∪ {3-handles}(∪4-handle?),
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where there is a 4-handle attached if the manifold is closed. We draw the attaching regions in
∂(0-handle) = S3. The attaching region for a 1-handle is ∂D1 × D3, which is a pair of disjoint
3-balls. The attaching region for a 2-handle is ∂D2 × D2 which is a solid torus. We specify this
by giving a knot in S3 and a framing coefficient which is an integer; the 0-framing of a knot in
S3 is equal to a push-off on its Seifert surface, or in other words a push-off of the knot which
is nullhomologous in the knot complement. More generally the m-framing is a push-off of the
knot which has linking number m with the knot. Here are some examples.

⑤ ⑤
°@ ° v4 - h

s
'
✗ ☐
3 52×52

O' van
① R2 - 2

E- 8 , 2E8=
Poincaré homology

sphere

A result of Laudenbach and Poénaru [34] tells us that any self-diffeomorphism of a connected
sum of copies of S1 × S2 extends over the boundary sum of copies of S1 × D3. This means that
for a closed 4-manifold, we do not need to specify how the 3- and 4-handles are attached.
However, for a 4-manifold with boundary, it is necessary to specify the embedded 2-spheres
along which we attach any 3-handles.

There is a useful alternative way to draw 1-handles in Kirby diagrams, namely as dotted
circles: one draws an unknot with a dot along it which is a meridian of an arc in the boundary of
the 0-handle connecting the two balls which are the attaching region of the 1-handle. Attaching
circles of 2-handles which go over the 1-handle are instead drawn as passing through the
dotted circle. The following local picture gives a good idea of how to translate between these
two methods of drawing Kirby diagrams.

Hita ←

It is straightforward to calculate the homology groups and the intersection pairing QM on the
second homology (Poincaré dual to the cup product pairing) from a Kirby diagram of M. Kirby
calculus is the application of certain moves such as handleslides which are known to preserve
M and/or its boundary 3-manifold. For more details on Kirby diagrams, see [2, 19].
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There are two common and useful approaches for drawing pictures of 3-manifolds. One is to
appeal to a theorem of Rohlin [54] which tells us that every (closed oriented) 3-manifold is the
boundary of a smooth 4-manifold, and we can just draw a Kirby diagram of such a bounding
4-manifold. Another is to take a 3-dimensional handle decomposition and draw our picture in
the oriented surface  which is the boundary of the handlebody given by the union of the
0- and 1-handles, which is connected if there is a single 0-handle. We then draw two sets of
circles on : one set, commonly drawn in blue, which shows where to attach the 2-handles,
and one set in red which if cut along would undo the attachment of the 1-handles. These are
called Heegaard diagrams. Here are some simple examples.

⑤ ~ . -
53 S

'

✗ S
'

Double branched covers

Let L be a link of  components in S3. Denote a regular neighbourhood of L by ν(L) ∼= L × D2.
Let X be the link complement

X = S3 \
◦

ν(L).

Then H1(X) ∼= Z, generated by meridians μ1, . . . , μ. Let eX→ X be the double cover of X which
is nontrivial on each meridian. The double cover (S3, L) of S3 branched along L is then given
as follows.

(S3, L) = ν(L) ∪ eX

S3 = ν(L) ∪ X

z2

In the same way we obtain the branched double cover (D4, F) of a surface F, smoothly prop-
erly embedded in the 4-ball. The surface F does not have to be connected or orientable, and
it may contain closed components. We would like to learn to draw Kirby diagrams for these;
this will be described in more detail in ongoing work of the author with Sašo Strle [48], and
other accounts are given in [2, 3, 19]. We follow a method due to Akbulut-Kirby, following a
construction of Kauffman, also used by Gordon-Litherland [3, 20, 31]. This applies to the spe-
cial case of branch locus Fn−2 in Dn arising from an embedded submanifold in ∂Dn by pushing
the interior of the submanifold into the interior of the n-ball.

We cut open the ball along the trace of the homotopy that pushed the interior of the sub-
manifold into the interior of Dn to obtain the properly-embedded F. This results in a copy of
Dn again, with a regular neighbourhood N of F, which is the total space of an -bundle over F,
in its boundary. This cut-open Dn has corners, as illustrated below in the case n = 2, with F a
single point, and N drawn in blue.
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The pair (Dn, F) may be recovered from this cut-open ball by gluing N to itself using the invo-
lution τ given by reflection on the fibres. We obtain the double cover (Dn, F) of Dn branched
along F by taking two copies of the cut-open D2 and gluing them to each other via the same
involution τ.

t

,
:c
0

We also note for later that if one glues the two copies of the cut-open Dn by identifying copies
of N ×  instead of just N, one obtains the same manifold (Dn, F), up to diffeomorphism. Here
is a sketch for the n = 2 example.

Okay ☒ →④
The double branched cover of a link in S3

As a 4-dimensional example of the above method, we will explain how to derive a Kirby diagram
and also a Heegaard diagram for the double branched cover of a link in S3. This Kirby diagram
was first obtained by Ozsváth and Szabó, and the closely related Heegaard diagram is due to
Greene [22, 50]; their proofs differed from that given here. We begin with a diagram of our link
L; let’s choose a diagram of the figure-8 knot for an example, shown in Figure 2.1 along with
the resulting Kirby and Heegaard diagrams.

To draw these, we first choose a chessboard colouring of the diagram: we colour the regions
of the diagram black or white, so that at each crossing the colours meet like squares on a
chessboard. Here is one of the two choices for our example.
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Egg
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-

Figure 2.1. Kirby and Heegaard diagrams for the double branched
cover of the figure-8.

Let F be the resulting black spanning surface embedded in S3. We obtain the Kirby diagram
from the link diagram by copying the diagram with the following substitutions at crossings
(each crossing gets replaced by a clasp between white regions).

II–13



Brendan Owens

*¥ - *:

¥
.

-

This results in one 2-handle attaching circle for each white region of the diagram. The framing
coefficient of each is given by summing the local contributions (+1 or −1) from each crossing.
We then add one 3-handle; it turns out that this may be cancelled with any of the 2-handles in
the diagram without changing the 4-manifold. We will see that this is in fact a Kirby diagram
for (D4, F), where by an abuse of notation we also use F to refer to the properly embedded
surface obtained by pushing the interior of the black surface into the 4-ball.

The Heegaard diagram also makes use of the chessboard colouring and the black surface F.
For this we require F to be connected. Let N again be a regular neighbourhood of F which is the
total space of an -bundle over F. The boundary of N is our Heegaard surface . The red curves
are exactly given by the boundaries of all but one of the white regions of the chessboard-
coloured diagram; the omitted region can be chosen arbitrarily. The blue curves are obtained
by taking a parallel copy of the red curves, and then applying a Dehn twist for each crossing
in the diagram to the one or two blue curves passing through that part of  (as in Figure 2.1).

Proposition 2.1. The Kirby diagram described above represents the double cover (D4, F) of
the 4-ball branched along the pushed-in black surface. The 3-handle may be cancelled with any
of the 2-handles in the diagram. The Heegaard diagram represents the double cover (S3, L)
of S3 branched along the link L.

Proof. We note that the n-ball Dn has a handle decomposition given by a single 0-handle and
a cancelling pair consisting of an (n − 2)-handle and an (n − 1)-handle. Equivalently we can
build Dn by starting with Sn−2×D2 and adding a single (n− 1)-handle, whose attaching sphere
is Sn−2 × {point}. Explicitly, we take a regular neighbourhood of the equatorial Sn−2 — the
intersection of the boundary of Dn with a hyperplane through the origin — and then attach a
thickened-up equatorial slice (a neighbourhood of a disk in the same hyperplane). In particular
we can obtain D4 by starting with S2 × D2 and attaching a 3-handle along S2 × {point}.

So what does this have to do with double branched covers? Suppose we have a copy of
D4 with a link L in its boundary. We project L to the equatorial S2 in the boundary sphere to
obtain our diagram, and we chessboard-colour it to obtain our black surface F. We take N to
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be a regular neighbourhood of F in S3 and N ×  to be a regular neighbourhood of F in D4. The
intersection of N ×  with the 2-sphere of the diagram contains the black regions, connected
together at the crossings; its complement in this 2-sphere consists of one disk for each white
region. By attaching one 2-handle for each white region of the diagram to N ×  we obtain a
regular neighbourhood S2 × D2 of the sphere containing the diagram, and then we attach a
3-handle to complete the 4-ball.

Now consider the description of (D4, F) given above, by gluing together two copies of D4

cut open along the homotopy pushing F into the interior. Each of these has a copy of N in its
boundary, and we recall that N is the total space of an -bundle over F. We use the involution
τ coming from reflection on the fibres of this -bundle to identify the copies of N ×  in each
cut-open D4; the quotient is (D4, F). We want to describe a handle decomposition of this. We
take one of the cut-open 4-balls to be our 0-handle. This also contains N ×  from the second
copy, via the gluing map. We then add a 2-handle for each white region and a 3-handle to
complete the second copy of the cut-open D4.

To draw the Kirby diagram, we need to understand how these handles are attached. To build
the 4-ball starting with N × , the attaching circles for the 2-handles lie in the plane of the
diagram and are 0-framed. After attaching all but one of the 2-handles to N ×  the result is
a 4-ball D2 × D2 ⊂ S2 × D2; then attaching the last 2-handle changes this to S2 × D2, but this
is cancelled by the attachment of the 3-handle. To build the double branched cover, we need
to see the image of these attaching circles and framings under the gluing map τ. The local
picture for this is shown in Figure 2.2.

-

:

'

y
t→ i.

'

"

i

Figure 2.2. The involution τ near a crossing.

We see that a crossing in the diagram results in a clasp between the 2-handle attaching
circles coming from the white regions on either side of the crossing. The effect on a framing
curve, which is just a pushoff on the surface ∂N, is similar and results in the framing curve
getting a full twist around the attaching circle. These local contributions exactly correspond to
the description given above of the 2-handle attaching circles and their framing coefficients.

Finally the boundary (S3, L) of (D4, F) is the union of the boundaries of the two 4-balls
that we glue together, minus the interior of N. The complement of N in S3 is a 3-dimensional
handlebody, and thus the construction naturally yields a Heegaard decomposition of (S3, L).
The red curves of the Heegaard diagram bound disks in the first copy of S3 \N, and via Figure
2.2 we see that the blue curves bound in the second copy. �

More double branched covers of D4

We have seen how to draw a simple Kirby diagram for the double cover of D4 branched along
the black surface of a link diagram. One can also draw Kirby diagrams of more general surfaces
in D4 and hence compute their homological invariants including intersection form. For details
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on this see [2, 3, 19, 48]. We give a brief description here for the case of a ribbon surface.
We take F to be a ribbon-immersed surface in S3 with a handle decomposition chosen so that
all ribbon singularities consist of 1-handles passing through 0-handles. Draw this in R3 with
the 0-handles in the z-plane, lying just below the -axis. All attachments of 1-handles to 0-
handles should be on the -axis and all ribbon singularities below the -axis in the interiors
of the 0-handles. It helps to also “comb the 1-handles up" so that they mostly lie near the
z-plane and above the -axis. We then take the preimage of this diagram under the double
branched covering map

ϕ : R3 → R3, (, ζ = y + z) 7→ (, ζ2).
An example is shown in Figure 2.3 for the stevedore ribbon disk encountered in Lecture 1.
In practice one can draw the preimage of the diagram under ϕ by taking the diagram in the
upper half plane, away from the -axis, and revolving it around the -axis, then connecting the
tangle diagrams in the upper half plane and the lower half plane with a half twist of 4 strands
for each ribbon singularity, and with no twist on two strands at the end of each 1-handle (see
Figure 2.3).

→

Figure 2.3. The double branched cover of the stevedore ribbon disk.

From this we draw a Kirby diagram as follows. Each 1-handle of F gives rise to an embedded
annulus in ϕ−1(R3); we take the core of this annulus to be the attaching circle for a 2-handle,
and the linking number of the boundary of the annulus is the framing coefficient. We also draw
1-handles in dotted circle notation, one for all but one of the 0-handles of F; these are drawn
around the boundary of the preimage under ϕ of the corresponding 0-handle of F. Again, see
Figure 2.3 for an example. For details and more examples see the sources cited above.

The main point here is that given a surface F in D4, there are known methods for obtaining
a Kirby diagram of (D4, F) and hence computing the homology groups and the intersection
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pairing of this manifold. In [48] the author and Strle give a definition of disoriented homology
groups associated to such a surface F, together with a bilinear pairing on one of the groups.
We show that these are isomorphic to the homology groups of the double branched cover,
together with the intersection pairing. This enables these invariants to be computed directly
from a diagram of F, without needing to first obtain a Kirby diagram.

For the remainder of these notes, if F is a properly embedded surface in D4 or a surface
embedded or ribbon-immersed in S3 giving rise to a pushed-in surface in D4, then we will use
the notation (D4, F) to refer to the resulting double branched cover. We will also use ΛF to
refer to the intersection lattice of this manifold, or in other words the second homology group
modulo torsion of (D4, F) together with its intersection pairing.

3. Lecture 3

Our goal in this final lecture is to explain how Donaldson’s diagonalisation theorem [9] gives
rise to a very useful slice obstruction for alternating knots, and also to an obstruction to any
given band move being part of a sequence that yields a ribbon disk. A computer search for
ribbon alternating knots based on this has been implemented in joint work of the author and
Frank Swenton [49] which has resulted in a database of over 200,000 previously unknown slice
knots.

Goeritz, Gordon-Litherland, and Donaldson

We begin by describing the Goeritz lattice of a connected chessboard-coloured diagram. Label
the white regions R0, . . . , Rm and then write down a square matrix ÒG as follows. The rows and
columns of ÒG are numbered from 0 to m. The diagonal entries ÒG are given by a signed count
of the crossings around region R, with signs given as follows.

% ¥1

"

The off-diagonal terms ÒGj are given by a signed count of the crossings between R and Rj, with
the opposite signs to those above. The Goeritz matrix G is obtained from ÒG by deleting the 0th
row and column. Here is an example.

% ¥1

"
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We get

ÒG =





2 −1 −1
−1 −2 3
−1 3 −2



 , and G =
�

−2 3
3 −2

�

.

This was introduced by Goeritz in 1933 [17]. He showed that the determinant and more gen-
erally the Minkowski units [47] of G give rise to knot invariants. The astute reader may notice
that the matrices above represent the intersection pairing which may be computed from the
Kirby diagram for (D4, F) in Figure 2.1.

The Goeritz lattice of a chessboard-coloured diagram is described as follows. One takes the
(free) abelian group Λ with one generator given by each white region, and one relation given
by the sum of all of the generators. Note this has basis given by all but one of the generators.
The pairing

λ : Λ × Λ→ Z

is given by the matrix ÒG. Comparing to the Kirby diagram from Lecture 2, we recover Gordon-
Litherland’s result that the Goeritz lattice is the intersection lattice on the second homology
group of the double branched cover (D4, F) [20].

We also observe the following. The author learned this proof from Josh Greene. For more
topological proofs see [23, Prop. 4.1] or [49, Lemma 3.1].

Lemma 3.1. The Goeritz lattice of a connected alternating diagram is definite. More precisely,
for one choice of chessboard-colouring the Goeritz lattice is positive definite, and for the other
it is negative definite.

Proof. The Goeritz lattice of the crossingless diagram of the unknot is trivial and hence both
positive and negative definite. Assume now that our diagram has at least one crossing. Being
alternating is equivalent to all crossings having the same sign when computing the Goeritz
matrix. Assume that all of these signs are +1, so that the diagonal entries of ÒG are all positive
and the off-diagonal entries are all nonpositive. The rows of ÒG sum to zero (for any diagram).
Let r denote the sum of the absolute values of the off-diagonal entries of G in the th row. Then
r = G − |ÒG0| is less than or equal to G. The eigenvalues of the symmetric matrix G are real
and by Gershgorin’s circle theorem [16], they are contained in

⋃

[G − r, G + r]

and hence nonnegative. Since their product is the determinant of a link with connected alter-
nating diagram and hence nonzero [7], the eigenvalues are all positive. The proof for the other
colour is similar. �

We note that Josh Greene and Josh Howie independently proved in 2015 that the property
in Lemma 3.1 characterises alternating links: a link admits a connected alternating diagram if
and only if it bounds two embedded surfaces in S3 for which the double branched cover of D4

has definite intersection pairing (one positive and one negative) [23, 29].
We now describe a key slice obstruction for alternating knots. The double cover of S3

branched along the unknot is S3, and the double cover of D4 branched along an unknotted
properly embedded D2 — or in other words along the standard slice disk for the unknot — is
again D4. An imprecise slogan that has some validity is that “rational homology does not see
knotting". This manifests itself here in the fact that the double cover of S3 branched along any
knot is a rational homology S3 [38, Chapter 9], and the following fact due to Casson-Gordon [4]:
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the double cover (D4,Δ) branched along any properly embedded disk has the same rational
homology as the 4-ball.

We can combine this with Donaldson’s celebrated diagonalisation theorem [9], which states
that if X is a closed smooth 4-manifold with a positive-definite intersection form then in fact its
intersection lattice ΛX = (H2(X;Z)/Tors,QX) is isomorphic to the standard Zn lattice; in other
words, ΛX admits an orthonormal basis. This gives us the following.

Lemma 3.2. Let K be an alternating knot and let F be the black surface of its alternating
diagram, with chessboard colouring chosen so that ΛF is positive definite. Let b be a band
move applied to K. Then

1. if K is slice, then ΛF embeds as a finite index sublattice of a standard Zm lattice;

2. if b is part of a sequence of band moves giving a ribbon disk for K, then there is a
commutative diagram of lattice morphisms

ΛF Zm,

ΛF∪b

where the horizontal arrow is the inclusion from (1), and F ∪ b is a ribbon-immersed
surface in S3 obtained by attaching the band b to F.

Proof sketch. For part (1), we use the fact that the double branched cover (D4, F) of F is
positive definite and the double branched cover (D4,Δ) of a slice disk is a rational homology
ball. Gluing these along their common boundary gives a smooth closed manifold X = (S4, F ∪
Δ); this is the double cover of the 4-sphere branched along a properly embedded closed surface
obtained from F and Δ. The Mayer-Vietoris sequence shows that ΛF is a finite index sublattice
of the intersection lattice of X. It follows that the latter is also positive definite, and thus
diagonalisable by Donaldson. (This is the slice obstruction used by Lisca in [40].)

Part (2) follows from the fact that the closed manifold X = (S4, F ∪ Δ) is built from (D4, F)
by adding a 2-handle for each 1-handle of Δ followed by a 3-handle for each minimum of Δ and
finally a 4-handle (see for example [19, 48]). This gives a commutative diagram of manifold
inclusions

(D4, F) X,

(D4, F ∪ b)

from which the commutative diagram of lattice morphisms follows. �

There are a couple of points to note about Lemma 3.2. The first is that the mirror of a slice
knot is slice, so one may change the crossings and the colour and apply the lemma twice
to each alternating knot and to each band move. The second is that following Greene and
Jabuka [21], one may strengthen the lemma using Heegaard Floer homology. This puts extra
conditions on the lattice embedding in the lemma, namely that every equivalence class in
Zm/ΛF is represented by an element of {0,1}m.

As an example let’s consider the stevedore knot K together with the following band move
b.
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We can calculate ΛF using the Goeritz matrix: we find this has rank 2 and the pairing is given by

G =
�

5 −1
−1 2

�

, using generators 1 and 2 corresponding to the white regions R1 and R2. The

first part of Lemma 3.2 tells us that this admits a lattice embedding in Z2 with the dot product:
sure enough if we map 1 to (2,1) and 2 to (−1,1), this preserves the pairing. Moreover,
this embedding is unique up to symmetries. Now we apply the second part of the lemma. The
band b, shown in purple, would become part of the black surface for the new diagram. This
would split R0 into two new regions. We can choose the new generator 3 to correspond to the
resulting small white region on the right side of the band. Then we can calculate the Goeritz of
the new diagram and we find that

3 · 1 = 0

3 · 2 = −1.

By part (2) of the lemma, if b is part of a sequence giving a ribbon disk, then there exists a
vector (, y) ∈ Z2 with

(, y) · (2,1) = 0

(, y) · (−1,1) = −1.

Solving over the rationals we find (, y) = (1/3,−2/3) /∈ Z2. We conclude that this band move
is not part of any sequence giving a ribbon disk for K.

The reader may compare this to the band move given below, and see that it converts K
to the two-component unlink, and in fact is obtained by reversing the movie shown for K in
Lecture 1. In this case the new white region to the right of the band gets sent to (0,−1) ∈ Z2.

'

For more complicated band moves one cannot always compute ΛF∪b using the Goeritz ma-
trix. One may always either draw a Kirby diagram, or calculate using disoriented homology
[48]. This helpful tool does not seem to be sufficient to give an answer to the following.
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Question 3.3. Is there a unique isotopy class of ribbon disk for the stevedore knot?

The search algorithm of [49] is based on the band obstruction of Lemma 3.2, and on an
optimistic notion that alternating knots like to stay alternating. Recall that the nullity of a link
in S3 is the first Betti number of its double branched cover. The nullity of a knot is zero, and
that of an unlink is one less than the number of components. In a movie of a ribbon disk
starting with a knot and ending with an unlink, each band move increases the nullity by one.
Connected alternating diagrams have nullity zero, and in fact the nullity gives a lower bound
on how many “nonalternating" crossings a diagram can have. Our algorithm then applies the
following steps to a given alternating knot:

1. Check if the knot is obstructed by Lemma 3.2 (1) from being slice.

2. Try all band moves which are unobstructed by Lemma 3.2 (2) and which keep the result-
ing link as close to alternating as possible (i.e., the number of nonalternating crossings
and the nullity both increase by 1).

3. For each such band move, simplify the resulting link diagram using Tsukamoto-type
moves.

4. Repeat the previous two steps until all possibilities are exhausted or a crossingless
diagram is obtained. In the latter case, we declare the knot to be algorithmically ribbon.

Some remarks are in order. We show in [49] that the bands to be considered in step (2) take
the following form,

FH . f-#
so that there are always finitely many to consider. There are also finitely many alternating
diagrams of a given knot, and we have to deal with all of them.

Also, what are Tsukamoto-type moves? These are a set of local modifications on diagrams
which preserve isotopy type, and also the property of being close to alternating and unob-
structed by a slight generalisation of Lemma 3.2 which applies to such diagrams [49, Prop.
3.5]. They include Reidemeister I and II moves and five others shown below, the first of which
is the famous flype move of P. G. Tait.
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# → =EH 0¥ →¥
→ →I

→==☐
The third of these was called the untongue move by Tsukamoto, who proved in [61] that every
almost-alternating1 diagram of the two-component unlink may be converted to the crossing-
less diagram by a sequence of flypes, untongues, and Reidemeister I and II moves. It follows
that if an alternating knot admits a ribbon disk which can be presented by a single band move
converting it to an almost-alternating diagram of the unlink, then in fact this disk will be de-
tected by our algorithm. This together with experimental evidence and optimism led us to
state the following in [49].

Conjecture 3.4. If an alternating knot admits a ribbon disk with three critical points, then in
fact it is algorithmically ribbon.

If true, this would give an effective classification of such alternating knots: Tsukamoto’s the-
orem gives a recursive construction of all almost-alternating diagrams of the two-component
unlink, and each of these would arise from four possible band moves from alternating diagrams
as shown below. This set of alternating diagrams would contain repetitions and would include
diagrams of links as well as knots.

1A diagram is almost-alternating if it contains exactly one nonalternating crossing.
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The algorithmic search for alternating knots may be considered a work in progress. We have
applied it to all 250,912,342 prime alternating knots of up to 20 crossings, using the prime
alternating knot generator of Flint, Rankin, and de Vries [10]. Of these, we find 438,375 are
unobstructed from being slice by Lemma 3.2 and 231,968 turn out to be algorithmically ribbon.
We also know of a further 628 examples of ribbon alternating knots of up to 20 crossings which
are not algorithmically ribbon. The first of these was 12a631, shown to be ribbon by Seeliger
[58] using symmetric union diagrams (see also [5, 33]).

How can we improve the algorithm? One straightforward way is to implement more obstruc-
tions, including Levine-Tristram signatures and the Fox-Milnor condition (see for example [42]).
Beyond this the hope is that we may understand better how ribbon disks can arise and expand
the algorithm to find more of them. Thus we will expand the set of knots on which our algo-
rithm is able to determine the answer to the question “Slice: yes or no?" and hopefully one day
it will include all alternating knots.

For more details on the algorithm and to download Swenton’s software package KLO in which
it is implemented, we direct the reader to

www.klo-software.net/ribbondisks.
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