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1. Introduction

This is a lecture note for the lectures given at the 2017 Winterbraids conference in Caen. The aim of the
lectures was to introduce 3–dimensional contact geometry to the audience. This subject is strongly related
to braids, and one of its main theorems (the Bennequin’s theorem, which I show in the first lecture) uses
braids as its main tool. Contact geometry, although originated in the works of Sophus Lie and Huygens, has
been living its renaissance since the early 2000s, when Giroux introduced topological tools to study contact
structures. The aim of the last two lectures was to see these tools in action, through examples and proofs. In
these notes, though, I only explain the first two lectures, as the third was based on a paper, that has already
appeared since then [EV17].
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There are several excellent notes and books on contact structures [Etn03, Etn06, Gei06, OS04] that give
a more complete introduction to some of the subjects in these notes. However the topics of braid foliations
and open book foliations mostly appear in papers, so I spent more time explaining some of the details, and
I believe that these notes are a good way to start learning about these subjects.

Acknowledgments

I would like to thank the organisers of the conference for the invitation, and the opportunity to talk about
my research area to a different audience. It was eye-opening to see which subjects were interesting to
the participants, and I was very happy to get all the feedbacks on my talk. I would also like to thank John
Etnyre for helping me prepare the lectures, and Paolo Ghiggini for looking at my notes, and giving invaluable
feedback.

2. Contact Structures

To put everything in perspective, we start this section with the general definition of contact structures, but
we will soon specialise to the 3–dimensional case, where there are explicit models one can work with. So,
the reader unexperienced in differential geometry should not get discouraged by this section; everything will
get very concrete staring from the next subsection. For a complete introduction to contact structures see
[Gei06, OS04] or [Etn03].

A contact structure on an odd dimensional manifold M2n+1 is a totally non integrable hyperplane field ξ.
This means, that there is no greater than n dimensional hypersurface (not even locally) whose tangents lie
in ξ. Locally any such hyperplane field can be given as the kernel of a 1-form α (i.e. ξ = kerα), and the
non integrability condition then translates to

α∧ dαn > 0,

where dαn is the wedge-product of dα with itself n times. In the above case α is called a contact form for
ξ. If α can be given globally, then the contact structure is cooriented, and then we require the (2n+ 1)-form
α∧ dαn to be a positive multiple of the volume form of M.

Example 2.1. The standard example for contact structures is given by R2n+1 with coordinates

(z, 1, y1, . . . , n, yn)

and contact form

αst = dz −
n
∑

=1

yd.

See Figure 2.1 for the 2n + 1 = 3 case.

By Darboux’s Theorem [Gei06, Theorem 2.5.1] the standard contact structure gives a local model for all
contact structures, in the sense that we can always choose local coordinates so that the contact structure is
the standard (R2n+1, ξst) in those coordinates.

The maximal dimension of an embedded manifold that can be tangent to the contact structure is n,
and we call an embedded n–dimensional submanifold L Legendrian if it is tangent to ξ at all points (i.e.
TpL ⊂ ξp). For example in the standard contact structure all the n–planes with fixed z and y-coordinates
are Legendrian.

In 3–dimensions closed connected Legendrian submanifolds are called Legendrian knots, and they are
C0-dense:

Proposition 2.2. Any knot K can be C0-approximated by a Legendrian knot L.
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x

Figure 2.1: The standard contact structure ξst = ker(dz − yd) on R3. (Figure by
Stephan Schönenberger).

Sketch of Proof. It is enough to prove this statement locally, thus we can work with an arc A embedded in
the standard contact structure (R3, ξst). An arc L is Legendrian in the standard contact structure if TpL ∈ ξst

or in other words if αst(TpL) = 0. For the coordinates (, y, z) of L this means dz− yd = 0 or y = dz
d on

L. Thus the y–coordinate of a Legendrian arc L can be recovered from the projection of L to the (, z)-plane
as the slope of the projection.

The y-coordinate of A does not have this property, but as in Figure 2.2 we can approximate its (, z)-
projection with an arc L′ whose slope is “close” to the y-coordinate of A. Then the Legendrian lift of L′ gives
a good approximation for A. �

Figure 2.2: Approximation by a Legendrian arc in the standard contact structure as seen
in the projection to the (, z)-plane.

Example 2.3. Using the above Proposition we can now give a real life appearance of contact structures.
Consider a “skate” or the front wheel of a car moving on the plane R2. Its configuration space can be
described by its position, (, y) ∈ R2 and the angle ϑ ∈ S1 of the front wheel. If the car does not slide,
then all motions of its front wheel satisfies the equation tnϑ = dy

d . In other words, if we take the contact
structure ξ = ker(cosϑdy + sinϑd) on R2 × S1, then (non-sliding) motions of the front wheel are in
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one-to-one correspondance with Legendrian paths in (R2 × S1, ξ). Now Proposition 2.2 translates to the
fact that “you can always parallel park your car” to a space that is bigger than your car: simply take any path
in the plane, that brings the front wheel to the right position, and then approximate it with a Legendrian arc.
The approximating arc describes how to park the car.

Other applications of contact geometry can be found in partial differential equations, Riemannian geom-
etry, optics and Thermodynamics.

3. Bennequin bound

On R3 in addition to the standard contact structure ξst = ker(dz−yd) there are several contact structures
one can define:

Example 3.1. The symmetric contact structure ξsym in R3, given by the contact form

αsym = dz − yd + dy,

or in polar coordinates (z, r, ϑ):
αsym = dz − r2dϑ.

This contact structure agrees with ξst on the y-axis, but it is rotational symmetric.

Example 3.2. The overtwisted contact structure ξOT on R3 is given as the kernel of the 1-form:

cos rdz + r sin rdϑ.

It is called overtwisted because it has an embedded disc

D = {(z, r, ϑ) : z = 0, r ≤ π, ϑ ∈ S1},

which is tangent to ξOT at the boundary.

The dichotomy of overtwisted and tight (non overtwisted) contact structures has been discovered by
Eliashberg, noticing, that overtwisted contact structures can be classified using only homological data. Tight
contact structures are generally hard to classify.

In the following we will investigate if the other contact structures ξst and ξsym have such an embedded
disc, or more generally which of the above three contact structures are “different”. We define two contact
structures (M0, ξ0) and (M1, ξ1) to be contactomorphic if there is a diffeomorphism ψ : M0 → M1 that
brings ξ0 to ξ1 i.e. ψ∗ξ0 = ξ1. Note that the contact structures ξst and ξsym are contactomorphic through
the diffeomorphism

ψ : (, y, ) 7→ (,
y

2
, z +

y

2
).

Thus the remaining question is whether ξsym and ξOT are contactomorphic to each other. Bennequin
[Ben83] gave a very clever negative answer to the above question using braids. In the remaining of this
section we will build up our language to state and prove his theorem.

3.1. Transverse knots

In dimension 3, we distinguish another type of knots that respects the contact structure, called transverse
knots. The tangent of these knots are positively transverse to the contact structures (i.e. TpK ô ξp, and TpK
coorients ξp, or simply αp(TpK) > 0). These knots are closely related to Legendrian knots, in the sense,
that transverse knots are classified by the set of Legendrian knots that are C0-close to them [EFM01]. More
importantly to our discussion, braids around the z-axis are naturally transverse in ξsym (just isotop the
braid far from the axis, and notice that as r →∞ then the notions “having positive ϑ-derivative” and “being
positively transverse to ξsym” agree). See Subsection 4.3 for a more complete discussion on the relation of
braids and transverse knots.
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3.1.1. Self linking number

The self linking number is an invariant of homologically trivial transverse knots. We first pick a Seifert surface
 for K. As H2() = 0 the planefield ξ| is trivialisable, so we can choose a vector field  over  that gives
a section of the bundle ξ| →  (i.e. p ∈ ξp for all p ∈ ). Let K ′ = K + ϵ be a small push off of K in the
direction given by . Then the self linking number of K in ξ with respect to  is defined as:

s(K; ) = k(K,K ′)

Clearly the above definition does not depend on the section  of ξ|. Moreover if H2(M) = 0, then it is
also independent on , and in this case we write s(K) for s(K; ). If H2(M) = 0, then we can choose the
section  globally, not only over .

There is another useful way to compute the self linking number as an obstruction of extending a framing
of K given by T ∩ ξ over . More precisely let  be a framing of K given as vectors in the lines Tp ∩ ξp
pointing outward of . Then the self linking number can be computed as

(3.1) s(K; ) = −〈e(ξ|;), []〉.

Now the statement of Bennequin’s Theorem is the following:

Theorem 3.3 (Bennequin). If K is a transverse knot in (R3, ξsym) and  a Seifert surface, then

s(K) ≤ −X ().

3.1.2. Self linking number in (R3;ξsym).

If K is given as the closure of a braid B around the z-axis then the self linking number can be computed in
terms of the combinatorial data encoded in B. To see this first notice that  = ∂

∂ + y
∂
∂z gives a section of

ξsym. Then the linking of K and K ′ = K + ϵ can be computed as half the signed number of intersections
of the projections of K and K ′ for example to the y-plane. As one can see in Figure 3.1 the projections
intersect each other negatively on the far left and far right for every strand of B, and twice around every
crossing of B with sign agreeing of that of the crossing. Thus



y
z

K

K ′

Figure 3.1: Computing the self linking number of a braid in ξsym in the projection to the y-plane.

s(K) = k(K,K ′) = (B) − n(B),

where n(B) is the number of strands of B, (B) is the algebraic length of B (i.e. for a braid B =
∏

σϵ
n

we
have (B) = ϵ).
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Note that for positive braids (i.e. if ϵ = +1 for all ) on one hand one can construct a Seifert surface  for
B just by gluing |B| (positively) twisted bands to n(B) discs (See Figure 3.2), thus X () = n(B) − |B|. On
the other hand (B) = |B|. So we conclude that for positive braids we have the equality: s(B) = −X ().

Figure 3.2: A Seifert surface with χ() = n(B) − |B| for a positive braid.

3.2. Characteristic foliations.

Equation (3.1) gives another way to compute the self linking number of a transverse knot using the char-
acteristic foliation. Let  be any surface for K, then  can be extended to  as follows. The characteristic
foliation Fξ() = Fξ of a surface  is an oriented singular foliation given as the integral curves of the ori-
ented line field Tp ∩ ξp. Note that since  is oriented and ξp is co-oriented the intersection Tp ∩ ξp has
a natural orientation (whenever Tp 6= ξp) given by a vector p ∈ Tp ∩ ξp with the property that p and
a vector p ∈ Tp with αp(p) > 0 gives the positive orientation of Tp.

Characteristic foliations in contact structures can be easily recognised. Remember that the divergence
of a vector field  is defined by the equation LXω = dω ·ω. Then

Lemma 3.4. [Gir00] Let ω be an area form for , then the vector field  over  defines a characteristic
foliation on  ,→ (M,ξ) for some (M,ξ) if and only if dω 6= 0 at the zeros of . �

The above lemma for example, implies that characteristic foliations cannot have centers (depicted on the
left side of Figure 3.3). Isolated singularities of a generic characteristic foliation are elliptic (see the first two
figure of Figure 3.3) or hyperbolic (see the third picture of Figure 3.3). At an isolated singular point the sign
of dω is positive (resp. negative) if the orientation of ξp and Tp agree (resp. disagree). This means,
that positive elliptic points are sources, and negative elliptic points are sinks. See Figure 3.3. The signs
of hyperbolic points cannot be directly read from a picture. Let e± denote the number of positive (resp.
negative) elliptic points, and similarly h± denote the number of hyperbolic points with the given signs. Now
we have (e+ + e−) many elliptic points and (h+ + h−) many hyperbolic points, thus:

Theorem 3.5 (Poincaré–Hopf). With the notations above

X () = (e+ + e−) − (h+ + h−). �

Remember that the above Theorem follows from the fact that the Euler characteristic can be computed
as the signed count of zeros of a generic section of TM that agrees with TK along K:

X () = 〈e(T, TK), []〉,
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Figure 3.3: Possible singularities of a generic singular foliation. The first two are elliptic
points (sink and source), the third is a hyperbolic or saddle point and the fourth is a center

and since the sections TK and  of T along K give the same framing, we have that the above equals to

X () = 〈e(T,|K ), []〉.

The singular vector field  then gives such a generic section of T. Note that  also gives a section of
ξ|, and clearly has the same zeros as in the previous computation. The signs of these zeros, however, are
different: at positive singularities the orientation of Tp and ξp agree, thus the signs agree, and similarly, at
negative singularities the signs disagree. Thus

(3.2) s(K) = −〈e(ξ|,|K ), []〉 = (e− − h−) − (e+ − h+).

By Theorem 3.5 and Equation (3.2) Bennequin’s inequality can be written as:

(e− − h−) − (e+ − h+) = s(K) ≤ −X () = −(e+ − h+) − (e− − h−)

which is equivalent to

(3.3) e− ≤ h− .

Thus ideally we would like to prove that for any transverse knot we can always find a Seifert surface whose
characteristic foliation has no negative elliptic points (i.e. e− = 0). We won’t be able to prove this statement,
but we will be able to reduce e− as long as s(K) > −X (). To achieve this goal we need to introduce a
new foliation Fb on some embedding of , which on the one hand is topologically conjugate to Fξ (i.e. 
has a homeomorphism that brings the two foliations into each other); thus can be used to compute the self
linking number, and on the other hand is more rigid, so that we have a good understanding on how changes
of the embedding  ,→ R3 affect the foliation Fb.

3.3. Braid foliations

Consider the S1-family of half planes given (in cylindrical coordinates) by

Hϑ = {(z, r, ϑ) : (z, r) ∈ R× R≥0} ⊂ R3

for a fixed ϑ ∈ S1. These half planes intersect each other in the z-axis, and otherwise cover every point
of the space exactly once. See Figure 3.4. The intersection of a surface  with the half planes {Hϑ}ϑ∈S1
gives a singular foliation Fb() = Fb on . Similarly to characteristic foliations the foliation Fb inherits an
orientation from the coorientation of Hϑ given by ∂

∂ϑ . Also notice that the coorientation ∂
∂ϑ descends as a

coorientation of the leaves of Fb. Generically Fb can be put in a nice position:

-Transversely pointing outward at ∂: Since K is in braid position, the orientation convention for the
leaves tells us, that Fb is transvere to K and points out the surface.
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∂
∂ϑ

Figure 3.4: The planes Hϑ and the z-axis.

-Elliptic points: By a C∞-small isotopy we can assume that  is transverse to the z-axis, thus Fb has
only finitely many intersections with the z-axis, each of which is an elliptic point. Positive intersec-
tions give sources and negative ones are sinks. The coorientation is counterclockwise along positive
elliptic points, and clockwise along negative ones. See Figures 3.5 and 3.6.

-Morse-like singularities: Away from the z-axis we have a well defined map ϑ : R3 \ {z-axis}→ S1,
thus by a C∞-small isotopy we can arrange that ϑ| : → S1 is a circle-valued Morse function with
singularities of distinct critical values. The local minima and maxima of ϑ| correspond to centers of
the foliation Fb, while the index 1 saddle points give hyperbolic singularities. The sign of such critical
points are determined by whether the orientation of Hϑ and T agree or disagree. Thus minima are
positive, maxima are negative, while the sign of saddle points are determined by the coorientation of
the leaves around them. See Figure 3.5 and 3.6.

-Leaves are arcs or circles: By the previous point at a regular value of ϑ| the level set Hϑ ∩  is
compact, thus it consists of circles and properly embedded arcs.

-No saddle -saddle connection: Since the critical values are all distinct, every half plane, Hϑ, con-
tains at most one critical point, thus the arcs cannot connect saddles. They can run between a
saddle and an elliptic point, or a point in ∂, and between two elliptic points of different signs, or
between positive elliptic points and a point of ∂.

The above properties can all be achieved by a C∞-small isotopy, and in the following we will always assume
them when we talk about braid foliations. We show, that by possibly changing  we can also achieve that
there are no circle leaves.

Proposition 3.6. Any Seifert surface  of K with minimal genus can be isotoped so that its braid foliation
has no circle leaves.

Sketch of Proof. Suppose that Fb has a circle leaf. Since ∂ = K is a braid (in particular  is not a torus
or sphere, and the foliation has at least one elliptic point), then following one of the transverse directions
± ∂
∂ϑ from a point on the circle we get to a hyperbolic point p with a separatrix that forms a loop. See Figure

3.7. Let D ⊂ Hϑ be the disc bounded by this loop. If the interior of D is disjoint from , then as it is shown
on Figure 3.7 we can surger  along D to get a new Seifert surface ′ for K union some closed surface.
After isotopy the braid foliation on ′ has less loop separatrices than the braid foliation on , thus the above
process will eventually end.
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Figure 3.5: Singularities of Fb as embedded in R3.

Figure 3.6: Sign of the singularities of a braid foliations. In order: a positive and a negative
elliptic point, and a positive and a negative saddle point. The green arrows indicate the ∂

∂ϑ
direction, while the curly arrows indicate the orientation of .

Since the only singularity on Hϑ is p, the interior of D intersects  only in circles. We choose an innermost
circle, and following ± ∂

∂ϑ we end up with a hyperbolic point p′ and a loop separatrix bounding a disc D′ on
Hϑ′ . Since D′ is isotopic to a disc (a subset of D) disjoint from  and an annulus part of  (foliated by circles
of Fb) we can isotop  to be disjoint from D′, and proceed as above.

Note that, if  has minimal genus, each of the above steps separates off spheres, that bound balls in R3,
and thus ′ is isotopic to . So any minimal genus Seifert surface can be isotoped rel. K so that the braid
foliation does not contain a circle leaf. �

As a consequence of Proposition 3.6 we can remove center singularities:

Corollary 3.7. K has a Seifert surface  with braid foliation that has no center singularities. �
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p

∂
∂ϑ

D

Hϑ

 ′

Figure 3.7: Left: separatrix of the hyperbolic point p forming a loop. Right: surgery along D.

Since characteristic foliations do not have center singularites, this was an essential step to prove conju-
gacy of Fξ and Fb.

Proposition 3.8. Suppose that  has a braid foliation with no center singularities. Then there is an ambient
isotopy of , so that Fξ and Fb are topologically conjugate.

Sketch of Proof. First we push up  a bit near the intersections with the z-axis, so that  is horizontal at the
elliptic points. This makes sure that, Fb and Fξ have the same elliptic points with the same signs.

Then we isotop  by deforming the r-direction with a smoothing of the function that has slope 1 at
[0, ϵ] ∪ [2ϵ,∞) and has slope C at [ϵ,2ϵ]. Where ε is sufficiently small, so that Fb has no singularity
in the {ϵ < r < 2ϵ} area, and C is so large that Hϑ and ξ are close enough. This will ensure, that the
hyperbolic singularities of Fb and Fξ are close to each other.

Since Fb has no circle leaves, the surface  can be obtained as the union of the neighborhoods of
elliptic points, neighborhoods of separatrices and regularly foliated discs. The statement then follows from
the fact that for each of these discs D, the foliations Fb and Fξ are topologically conjugate rel. ∂D. This
is obviously true, for the neighborhoods of the elliptic points and the regularly foliated discs. As for the
neighborhood of the separatrices assume, without loss of generality, that D is the neighborhood of (the two)
stable separatrices at a hyperbolic point p of Fb. See Figure 3.8. Then Fb points outward along ∂D, thus

Figure 3.8: Neighborhood of a stable separatrix. Note that instead of the elliptic points,
the separatrix could run into ∂ on one or both sides.

∂D is positively braided around the z-axis. Thus it is a transverse (un)knot. This implies that Fξ also points
outward along ∂D, thus since Fb|D and Fξ|D have the same singularites they are indeed conjugate rel.
∂D. �
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Proposition 3.9. Let  be a Seifert surface for the transverse knot K. Then either s(K) ≤ −X () or K is
transverse isotopic to a transverse knot that has a Seifert surface with braid foliation with no negative elliptic
points.

Sketch of Proof. Let s be a negative elliptic point. The star Ds of s is defined as the closure of the union
of the leaves flowing into s. Since s is a negative elliptic point, the leaves ending at s can start at positive
elliptic points or hyperbolic points. Let us first consider the set of hyperbolic points {h1, . . . , hn} that are
connected to s. Each of them has ingoing separatrices, that also belong to Ds, and connect h with two
positive elliptic points that are also connected with s. Thus we can (re)number the hyperbolic and positive
elliptic points connected to s to form a circle h1, e1, h2, . . . , hn, en with ingoing separatrices connecting
e and e+1 to h (here the indices are cyclical). See Figure 3.9. Note that since each hyperbolic point

s s s s

Figure 3.9: The star of a negative elliptic point, with n = 2,3,4 and 12.

is connected to s, they must have different ϑ-coordinate, thus this circle is embedded. In fact the circle
(together with the stable separatrices) forms the boundary of Ds. Note that n must be greater than 1, as
for n = 1, h1 would be connected with two ingoing separatrices to e1. This is impossible, as all incoming
leaves of e1 have different ϑ-coordinate, while the separatrices of h1 all happen in the same time.

When n = 2, then a small neighbourhood N of Ds is depicted in Figure 3.10, and the foliation determines
(up to isotopy) a unique embedding of N into R3, shown also on Figure 3.10. (Note also, that the fact that
Ds is coming from a braid foliation forces one of the hyperbolic points to be positive and the other one to
be negative.) Let’s consider the curve U of Figure 3.10 separating off a negative and a positive elliptic point

U

D

 ′

Figure 3.10: Embedding N into R3. The right picture shows the embedding after the
surgery along D.

and the two hyperbolic points from ∂N. Then U bounds a disc D in R3 that does not intersect the z-axis. If

IV–11



Vera Vértesi

D is disjoint from , then we can perform surgery on  along D to obtain a new Seifert surface ′ that has
one less negative elliptic point.

If D intersects , then it intersects it in arcs (with endpoints on K ∩ D) and circles. We first remove the
intersection of K with D (which then automatically removes the arcs) by exchange moves as on Figure 3.11.
(See [BF98] for a precise description of the process.) This move induces an isotopy of K and consequently
of . As one can see on the right hand side of Figure 3.11, this move does not change (B) and n(B) for

Figure 3.11: Left: an exchange move. The blue strands indicate (possibly more than 1)
strand(s) of K. Right: the effect of an exchange move on the braid presentation.

a braid. In particular an exchange move produces a transverse knot K ′ with the same self linking number.
This observation would be enough to prove Bennequin’s Theorem, but we will use the fact that an exchange
move does not change the transverse isotopy type of K and although during the isotopy the foliation might
change, Fb at the beginning and at the end are conjugate.

To remove circle intersections of  and D, take an innermost one c, bounding a disc D′ ⊂ D disjoint from
, and do surgery on  along D′. We then obtain a new Seifert surface ′ (containing Ds) and a closed
surface, which we will remove. (Again, if we assumed that  had minimal genus, then ′ would be isotopic
to .) By repeating this process we can remove all circle intersections.

Now suppose that n > 2 for all negative elliptic points s. If s(K) > −X (), then by Equation (3.3) we
also have e− > h− , thus there is at least one negative elliptic point s, so that Ds contains more positive
than negative hyperbolics points on its boundary. Then there must be two consecutive positive hyperbolic
points, say h1 and h2 in Ds. Take a small neighborhood D of a transverse arc connecting h1 and h2 and
intersecting leaves coming from e1 only. See Figure 3.12. Then the foliation of D defines (up to isotopy) a
unique embedding of D into R2. By an isotopy of this embedding, shown on the bottom of Figure 3.12, we
can modify the foliation of D as on the top right of Figure 3.12. This modification is essentially exchanging
the order of critical points for the circle-valued Morse function ϑ. See [BF98] for a precise statement. This
change in the foliation reduces the number of hyperbolic points in Ds, thus by induction we can find a
negative elliptic point s with n = 2, and proceed as above. So eventually we can isotop  to reduce the
number of negative elliptic points, and then again by induction we can achieve that the foliation has no
negative elliptic points, as required. �

Proof of Bennequin’s Theorem. Take a transverse braid representation of K with a Seifert surface , then
either s(K) ≤ −X (), or by Proposition 3.9 we can isotop  to have a braid foliation with no negative
elliptic points. Then by Proposition 3.8 Fb and Fξ are conjugate, thus they have the same number of critical
points from each type. In particular Fξ has no negative elliptic points. Remember that by the discussion
after Equation (3.2) this is equivalent to Bennequin’s inequality. �

Theorem 3.10. ξsym is not contactomorphic to ξOT.

Proof. For this, one needs to notice, that the unknot U = {z = 0, r = π + ϵ} in ξOT violates Bennequin’s
inequality. The characteristic foliation FξOT on the disc D = {r ≤ π + ϵ} is depicted on the right hand side
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D

∂
∂ϑ

Figure 3.12: top left: the neighborhood of Ds with two saddle points of the same sign
enclosed in the blue circle. top right: Fb after exchanging the order of the saddle points.
bottom: the embedded picture for exchanging the order of the saddle points.

of Figure 3.13, and if we slightly push up the middle of D then it modifies to the left hand side of 3.13. The

Figure 3.13: Characteristic foliation on the disc D, and on a slight push up of D.

characteristic foliation FξOT on this pushed up disc has one positive elliptic point and no other singularities,
thus

s(U) = −e− = 1 > −X (D) = −1,
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as needed. �

4. Open books and Generalisation of braids

4.1. Open books

The key in the proof of Bennequin’s Theorem was that there was a foliation of R3 \ {z − axis} given by
the half-planes Hϑ which was “close” to ξsym. By compactifying R3 to S3 the z-axis turns into a circle, and
planes become discs Dϑ. In the following we will generalise this concept to any closed oriented 3–manifold
M, and we will also relate it to contact structures ξ on M.

Definition 4.1. An open book (L, π) of a closed oriented 3–manifold M consists of a link L ,→ M and a
fibration π : M \ L → S1 such that for each ϑ ∈ S1 the closure Sϑ of the surface S̊ϑ = π−1(ϑ) is a Seifert
surface for L. The link L is called the binding, while the surfaces Sϑ are the pages of the open book.

Note that the naming “open book” comes from the structure of the fibration near the bindings. See Figure
3.4. For a more complete treatment of open books see [OS04, Etn06]. The first example of an open book
comes from the compactification of S3 as described above. In this case the binding is the unknot coming
from the compactification of the z-axis and the pages are the discs Dϑ.

Example 4.2. Let H+ = U ∪ U′ be the positive Hopf link of Figure 4.1. Then S3 − H+ is a thickened torus

U U′ U

U′

Aϑ

ϕ

ψ

Figure 4.1: left and middle: positive Hopf link H+ , right:, the complement of H+ ∼= T2 × ,
the back and front, and the right and left of the cube are glued together.

T2× . Let us introduce coordinates (ψ,ϕ)× on T2× , and identify it with S3−L so that (ψ,ϕ0)ψ∈S1×{1}
parametrises U (for any fixed ϕ0 ∈ S1), while (ψ0, ϕ)ϕ∈S1 × {0} parametrises U′ (for any fixed ψ0 ∈
S1). Consider the fibration π : T2 ×  → S1 given by π = ψ + ϕ − . Then (H+ , π) gives an open book
decomposition for S3 with annuli pages Aϑ = {ψ + ϕ −  = ϑ}.

The same example can be described if we consider S3 as the unit sphere {|z1|2 + |z2|2 = 1} in C2.
Then the positive Hopf link H+ = {z1z2 = 0}, and the fibration π : S3 \ H+ → S1 is given by the equation
π = z1z2

|z1z2 | . One can generalise this example for other polynomials:

Example 4.3. Let p(z1, z2) : C2 → C be a polinomial with a unique zero at (0,0). Then for a sphere S3
ϵ

with sufficiently small radius ϵ the pair (Kp = p−1(0)∩S3ϵ , π =
p(z1,z2)
|p(z1,z2)| ) gives an open book decomposition

for S3
ϵ
.

Theorem 4.4 (Alexander). Any closed oriented 3–manifold has an open book decomposition.

Over the years several proofs were given to this statement, in this note we will outline one using branched
covers.
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Sketch of Proof. We use the fact [Ale20], that every 3–manifold can be obtained as a 3–fold branched cover
over a link K in S3. This means that there is a map ρ : M → S3 that is 3 to 1 in the complement of the link
K. Put K in braid position, and ”pull back” the trivial open book (U,πU) of S3. In other words we consider
the open book (L = ρ−1(U), π = π ◦ ρ). This is indeed an open book for M where L is a triple cover of the
unknot, and the pages are branched covers of Dϑ. �

An open book decomposition (L, π) for M can be described using the fact that π restricted to the comple-
ment of a page S0 gives a fibration over  = S1 \{0} which is diffeomorphic to S× , and thus the important
information is carried in the way the two ends are glued together.

Definition 4.5. An abstract open book is the pair (S, h), where S is a surface with nonempty boundary, and
h : S → S is a diffeomorphism of S that is the identity near ∂S. Here, again, S is the page of the abstract
open book, and h is its monodromy.

We have already seen that open book decompositions give rise to abstract open books. For the con-
verse for any abstract open book (S, h) we construct a 3–manifold M with an open book decomposition
corresponding to (S, h). Consider the mapping torus of h:

Mh = S × /(,0) ∼ (h(),1)

and identify the points on its boundary that come from the same points of ∂S:

M =
S × 

(,0) ∼ (h(),1) for  ∈ S and (, t) ∼ (, t′) for  ∈ ∂S and t, t′ ∈ 
.

Then the equivalence class of ∂S gives the binding L and π is given by the projection map to the -coordinate.
With this equivalence open book decompositions up to isotopies of M are in one to one correspondence
with abstract open books up to conjugation of h and composing h with an isotopy of S.

Abstract open books give a very efficient ways of describing open books, as one just needs to give a
surface with boundary, and then the isotopy class of the monodromy can be described as compositions of
Dehn twists [Lic62]:

Definition 4.6. Let γ be an embedded closed curve in S then the Dehn twist, Dγ along γ is a diffeomor-
phism Dγ : S → S that is the identity in the complement of a neighborhood N(γ) of γ, and it is given by
(ψ, t) 7→ (ψ+ ƒ (t), t)) in N(γ) ∼= S1× , where ƒ (t) is a smooth function that is 0 near 0 and 1, monotonely
increasing up to 2π in [0, 12 ] and monotonely decreasing in [ 12 ,1]. See Figure 4.2.

Dγ()



Figure 4.2: Image of an arc  =  × {0} under the Dehn twist Dγ.

Example 4.7. The trivial open book decomposition of S3 gives the abstract open book (D2, id).

Example 4.8. The open book decomposition corresponding to the Hopf fibration, of Example 4.2, gives
(A,Dγ), where A is an annulus, and Dγ is the right handed Dehn twist along the core of A. See Figure 4.3.
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γ



Figure 4.3: Open book corresponding to the Hopf fibration.

Example 4.9. The negative Hopf fibration H− with binding U ∪
←−
U′ (here

←−
U′ is U′ with opposite orientation)

and annular pages gives the abstract open book is (A,D−1
γ
).

4.2. Open books and Contact structures

As it turns out, open books are also an efficient tool in describing contact structures:

Definition 4.10. [Gir02] An open book (L, π) supports a contact structure ξ if ξ it has a contact form α (i.e.
ξ = kerα) such that dα gives an area form on the pages Sϑ, and the binding, L is transverse. In this case
we say that the contact structure is compatible with ξ.

We have already seen that the trivial open book (U,πU) supports ξsym.

Example 4.11. (H+ , π) also supports ξsym.

Thurston-Winkelnkemper proved the existence of compatible contact structures before the concept was
generally defined:

Theorem 4.12. [TW75] Every open book supports some contact structure.

Proof. Let (S, h) be an abstract open book, and remember that we constructed M by collapsing the circles
corresponding to points of ∂S on the boundary of the mapping torus Mh. Take a neighborhood N(∂S) of ∂S
so that h is the identity restricted to N(∂S). Let S′ = S \N(∂S) ⊂ S, then M is the union of some solid tori

N = N(∂S) × S1/(, t) ∼ (, t′),

and the mapping torus of h|S′ :

M′ = Mh|S′ = S
′ × /(,0) ∼ (h(),1).

Our strategy is to construct matching contact structures on both separately, and then glue them together.

To construct ξ on M′ first take a 1-form η on S′ such that dη is an area form on S′ and in the local
coordinates (r, ψ) on N(∂S′) ∼=  × ∂S′ (with ∂S′ = {r = 1}) the 1-form can be written as η = rdψ. See
Figure 4.4. Then on S′ ×  take the 1-form

ϑη + (1 − ϑ)h∗η,

where ϑ parametrises  in the mapping torus. After smoothing this 1-form glues to a 1-form α′ on M′ such
that dα′ is an area form on each S′

ϑ
= S′ × {ϑ}, and for K sufficiently large the 1-form

αK = α′ + Kdϑ
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is a contact form.

The construction extends to the solid tori N′ = ∂S × D2 (with coordinates ψ × (ϑ,R)) as

dψ + ƒ (R)dϑ,

where ƒ :  → R is R2 near 0 and K near 1. See Figure 4.4. This indeed gives a contact form on N with

ψ

R

S′

N

ϑ
r

ψ

Figure 4.4: Coordinates near the binding of an open book.

transverse binding. �

Moreover we have:

Theorem 4.13. [Gir02] Contact structures supported by the same open book are isotopic.

Which gives a map from the set of isotopy classes of open books to the set of isotopy classes of contact
structures:

{open books of M}

isotopy
→

{contact structures on M}

isotopy
Giroux proved, that the above map is surjective. Moreover he gave a description for when two open books
give isotopic contact structures.

Definition 4.14. Let (S, h) be an abstract open book, and let c be a properly embedded arc on the surface
S. Add a 1–handle to S along the endpoints of c to obtain, after smoothing a new surface S′. The arc c
union the core of the 1–handle gives a closed curve γ in S′. Also h can be extended to S′ to eh by defining it
to be the identity on the 1–handle. The open book (S′, h′), where h′ = eh ◦Dγ is the stabilisation of (S, h)
along γ. Similarly (S, h) is the destabilisation of (S′, h′). See Figure 4.5.

c γ

S S′

Figure 4.5: Stabilisation of an open book.

The easiest way to see the corresponding embedded picture is through Hopf-plumbing. Let (A,Dγ) be
the abstract open book corresponding to the Hopf-fibration. Choose an arc  connecting the two boundary
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components of the annulus A with neighborhood N() ∼=  × . See Figure 4.3. Similarly, for the arc c in S
take its neighborhood N(c) ∼= c × . Note that the above 1–handle addition can be described as:

S′ = S ∪N()→N(c) A,

where the map N() → N(c) identifies the -direction of N() with the -direction of N(c) and vice versa.
The mondodromy h′ is the composition h ◦Dγ. Note that this construction works for any second open book
instead of (A,Dγ). In this case we take two open books (S1, h1) and (S2, h2) and glue them along the
neighborhoods of two properly embedded arcs c1 ⊂ S1 and c2 ⊂ S2. The resulting surface

S = S1 ∪N(c1)→N(c2) S2

with monodromy h1 ◦ h2 is called the Murasugi sum of (S1, h1) and (S2, h2).

Theorem 4.15. [Gab83] If (S1, h1) and (S2, h2) are open books compatible with the contact manifolds
(M1, ξ1) and (M2, ξ2), then their Murasugi sum (S, h) is compatible with (M1#M2, ξ1#ξ2).

Sketch of Proof. Take (the equivalence class of) B1 ∼= N(c1) × [ 12 ,1]/ ∼ in the 3–manifold M1 corre-
sponding to the abstract open book (S1, h1), and similarly take B2 ∼= N(c1) × [0, 12 ]/ ∼⊂ M2. Then the
connected sum of M1 and M2 can be formed by glueing M1 \ B1 and M2 \ B2 along their boundaries. We
choose the identification ψ : − ∂B1 → −∂B2 that sends ∂N(c1) × { 12 + t} to ∂N(c2) × {t}, where the
identification of ∂N(c1) and ∂N(c2) matches that in the definition of the Murasugi sum. See Figure 4.6. This
proves that the abstract open book (S, h) gives M1#M2, and by the definition of compatibility of contact
structure, the compatible contact structure on (S, h) is indeed ξ1#ξ2. �

0

1
2

1

1

B2

B1

1
2

0

S1

S2

S

Figure 4.6: Murasugi sums of open books.

As (A,Dγ) describes the standard contact structure on S3, Hopf stabilisation does not change (M,ξ).

Corollary 4.16. The stabilisation of an open book (S, h) is compatible with the same contact structure. �

Moreover the converse of this statement is also true:

Theorem 4.17. [Gir02] The above map is surjective i.e. any contact structure ξ has a compatible open book.
Moreover two open books compatible with a contact structure ξ are related by a sequence of stabilisations
and destabilisations.
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4.3. Generalised braids

Open books give a new way to think about knots as “braids” in any 3–manifold:

Definition 4.18. A knot K is braided with respect to an open book decomposition (L, π) if K is disjoint from
L and positively transverse to all the pages Sϑ).

Note, this is equivalent to say that π|K : K → S1 is a covering map. This definition generalises the fact,
that braids in R3 (or S3) naturally give transverse knots for ξsym. The Alexander Theorem also generalises
to this setting:

Theorem 4.19. [Sko92] Given a knot K and an open book (L, π), then K can be isotoped to be braided with
respect to (L, π).

This means that knots can be described using mapping class groups of a punctured surface. Let (S, h) be
the abstract open book corresponding to (L, π). A braided knot K intersects S0 in n points P = {p0, . . . , pn−1},
and K can be described as the mapping torus of a homeomorphism eh : (S, P) → (S, P) fixing the points P
as a set, and being isotopic to h : S→ S if we forget the points in P.

We can always assume, that the points of P are inside a small disc D, which is identified with a standard
disc (D,P) with n punctures. This identification gives an embedding of the usual braid group Bn into the
mapping class group of (S, P), and as an abuse of notation we still denote the generators (exchanging p
and p+1) by σ. The image of Bn does not give all of the mapping class group. For example we can do a
”finger move” along any curve starting and ending at a point of P. See Figure 4.7. To get a generating set of
the mapping class group we need to take one finger move for each generator of π1(S, p0).



γ

Figure 4.7: The image (right) of the curve  (left) under a fingermove along the curve γ (left).

Choosing a different ϑ (instead of 0) conjugates the element of the mapping class group with another
mapping class group element, and just as in the classical case we can also change the number of points by
stabilisation of the braid. Braid stabilisation happens inside the small disc D, and is defined exactly in the
same way: adding an extra strand (point to P) and composing with the group element with σ±

n
. Note that

braid stabilisation keeps the open book unchanged. The above two moves are called Markov moves. Now
the Markov theorem can be stated for generalised braids:

Theorem 4.20. [Sun93] Two knots braided with respect to an open book (L, π) are isotopic if and only if
they are related by braid isotopies and Markov moves.

Note that braided knots with respect to an open book are automatically transverse in the supported
contact structure. These theorems can be reformulated for transverse braids as follows:

Theorem 4.21. [Pav11] Suppose that the contact structure (M,ξ) is supported by the open book (L, π).
Then any transverse knot K is transverse isotopic to a knot braided with respect to (L, π). Moreover two
braided knots with respect to (L, π) are transverse isotopic if and only if they are related by braid isotopies
and positive Markov moves.
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The above new description of knots and transverse knots gives rise to new invariants of knots and trans-
verse knots: one can define the braid index of a (transverse) knot K with respect to a given open book
(L, π) as the minimal n such that K is (transverse) isotopic to an n-braid with respect to (L, π). Or for any
(transverse) knot K one can easily construct an open book (L, π) such that K is a 1-braid with respect to
that open book. Then the minimal genus of those open books give another invariant for K. Although these
invariants are very natural, little is known about them.

4.4. Open book foliations

Generalising braid foliations of a surface , open book foliations [IK14] were defined as “generic” intersec-
tions of  and the pages of the open book. These objects are very similar to braid foliations; for instance
one can understand “moves” for these foliations induced by isotopies of . Moreover one can describe how
stabilisation of the open book effects the open book foliation. One can also define a general formula for the
self linking number in terms of open book foliations, and this formula helps to give examples of transverse
knots that satisfy the Bennequin bound with an equality. Uses of open book foliations are still found, and
they have potential to give simple proofs for complicated statements. As an example of how useful it is, I
would like to present a proof of a well-known theorem using braid foliations.

4.4.1. Recognising overtwisted discs

Remember, an overtwisted disc was a disc whose boundary was tangent to ξ. A push off of this disc turned
out to be a transverse unknot violating Bennequin’s inequality. Define a contact structure ξ overtwisted if
it has a transverse unknot with s(K) > −1. Sometimes one can recognise overtwisted contact structures
through their open books.

We say that a properly embedded arc γ′ in the surface S is to the left of another properly embedded arc
γ at their common starting point, n if after putting them in minimally intersecting position the tangents Tnγ
and Tnγ′ at n form a positive basis for S. See Figure 4.9. In this case we write γ ≺ γ′. If γ γ′, then the
minimally intersecting representatives are unique, and thus the above notion is well defined.

γ

h(γ)

n

Figure 4.8: An arc γ′ and its image to the left at n.

An arc γ in an abstract open book (S, h) is left veering if γ is not fixed by h, and h(γ) is to the left from
γ.

IV–20



Course no IV— Braids in Contact 3–manifolds

Theorem 4.22. [HKM07] If an abstract open book (S, h) has a left veering arc γ, then the compatible
contact structure is overtwisted.

In the following, using open book foliations, we will describe an explicit construction of Ito and Kawamuro
for an overtwisted disc for open books satisfying the above conditions. One can actually prove some sort of
converse for Theorem 4.22:

Theorem 4.23. [HKM07] A contact structure is overtwisted if and only if it is compatible with some open
book with a left veering arc. �

Proof of Theorem 4.22. [IK14] Suppose that h(γ) is to the left of γ at their common starting point n. In the
following we will construct a disc D, whose boundary violates Bennequin inequality.

The intersection of D with the pages Sϑ will be governed by a sequence of arcs

γ = γ0 ≺ γ1 · · · ≺ γk = h(γ)

such that all γ starts at n, but the endpoints p0, p1, . . . , pk−1 of γ0, . . . , γk−1 are all different and γ is
disjoint from γ+1. One can easily find such a sequence. In the following we explain the proof through the
example given on Figure 4.8.

Subdivide the circle S1 into 2k equal intervals with dividing points {ϑ =
2π
2k }

2k
=0 (here the 0’th and the

2k’th points agree), and let the disc D intersect Sϑ2 in γ ∪
⋃

j 6= γj[0, δ], where γj is γj with reversed
parametrisation and δ is sufficiently small so that γj[0, δ] is contained in N(∂S).

ϑ0 ϑ2 ϑ4

ϑ1 ϑ3

γ0
γ1

γ2

n n np0

p1

p2

Figure 4.9: The intersection of D with Sϑ for various ϑs.

In the intervals [ϑ2, ϑ2(+1)] we change γ∪
⋃

j 6= γj[0, δ] into γ+1∪
⋃

j 6=+1 γj[0, δ] through intersec-
tions Sϑ ∩ D, that are the union of

⋃

j 6=,+1 γj[0, δ] and two disjoint properly embedded arcs at all times
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except at ϑ = ϑ2+1. There, the two arcs meet in a single point q = γ+1(δ′) (See Figure 4.9), which
gives rise to a positive hyperbolic point of the open book foliation of D. See Figure 4.10. Now the open book

np1 p2

Figure 4.10: The open book foliation on D. The different times are labeled by the same
color as on Figure 4.9.

foliation on D is depicted on Figure 4.10, and one can see, that n is a negative elliptic point, the {p}
k−1
=0

are positive elliptic points, while the {q}
k−1
=0 are positive hyperbolic points (remember that p0 = pk). Thus

e+ = 1, e− = k, h+ = k and h− = 0. Plugging this data into Equation (3.2) we get:

s(∂D) = e− − e+ + h+ − h− = 1 − k + k − 0 = 1 > −1,

and thus ∂D indeed violates Bennequin’s inequality. �
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